
Math 461 Homework 4 Solutions 10/2/2020

Exercises:
§17 and Nets

1. Let C be a collection of subsets of X. Assume that ∅, X ∈ C and that finite unions and arbitrary
intersections of sets in C are in C. Show that the collection T := {X \ C | C ∈ C} is a topology on X
and that the collection of closed sets in this topology is C.

2. Let X be a topological space with subset S ⊂ X. Recall that S denotes the closure of S and S◦ denotes
the interior of S. We will also denote by Sc := X \ S the complement of S.

(a) Show that S = ((Sc)◦)c for all S ⊂ X.

(b) Show that S◦ = (Sc)c for all S ⊂ X.

3. Let X be a topological space and let A,B ⊂ X be subsets.

(a) Show that A ⊂ B implies A ⊂ B and A◦ ⊂ B◦.
(b) For A,B ⊂ X, show that A ∪B = A ∪B.

(c) For A,B ⊂ X, show that (A ∩B)◦ = A◦ ∩B◦.
(d) Let R have the standard topology. Find examples of subsets A,B ⊂ R such that A ∩B 6= A ∩B

and (A ∪B)◦ 6= A◦ ∪B◦.

4. Let X be a topological space. We say a subset S ⊂ X is dense in X if for every x ∈ X and every
neighborhood U of x one has U ∩ S 6= ∅. Show the following are equivalent:

(i) S is dense in X.

(ii) (Sc)◦ = ∅.
(iii) S = X.

5. Let (an)n∈N be a sequence of real numbers.

(a) Show that the collection F of finite subsets of N ordered by inclusion is a directed set.

(b) Show the following are equivalent:

(i) The net (∑
n∈F

an

)
F∈F

converges in R (with the standard topology).

(ii) For any bijection σ : N→ N, the series
∑∞
n=1 aσ(n) converges.

(iii) The series
∑∞
n=1 |an| converges.

6*. Let X be a topological space. Define functions C,K : P(X)→ P(X) by C(A) := Ac and K(A) = A.

(a) Given a fixed A ⊂ X, show that successively applying C and K to A yields at most fourteen
distinct sets.

(b) Find a subset of R (with the standard topology) for which fourteen distinct sets are obtained.

———————————————————————————————————————————–

Solutions:

1. First note X = X \ ∅ ∈ T and ∅ = X \X ∈ T . Next, let S ⊂ T be a subcollection. Then every U ∈ S
is still of the form U = X \A for some A ∈ C and so D := {X \U | U ∈ S} is a subcollection of C. We
have ⋃

U∈S
U =

⋃
A∈D

X \A = X \
⋂
A∈D

A.
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By assumption we have
⋂
A∈D A ∈ C, and so the above set belongs to T . Next, let U1, . . . , Un ∈ T .

Then for each j = 1, . . . , n there exists Aj ∈ C with Uj = X \Aj . Consequently

U1 ∩ · · · ∩ Un = (X \A1) ∩ · · · ∩ (X \An) = X \ (A1 ∪ · · · ∪An).

Since A1 ∪ · · · ∪ An ∈ C, the above set is in T . Thus T is a topology. The closed sets are then the
complements of the sets in T , which is precisely the collection C. �

2. (a) Note that (Sc)◦ is an open contained in Sc, and consequently ((Sc)◦)c is a closed set containing
S. This implies S ⊂ ((Sc)◦)c since the closure of S is the intersection of all closed sets containing
S. Conversely, suppose A is a closed set containing S. Then Ac is an open subset of Sc and
hence Ac ⊂ (Sc)◦ (the union of all open subsets of Sc). Taking complements again we see that
((Sc)◦)c ⊂ A. Taking the intersection over all closed sets containing A yields ((Sc)◦)c ⊂ S and
hence ((Sc)◦)c = S. �

(b) Denote T := Sc. Then by the previous part we have

(Sc)c = (T )c = (((T c)◦)c)c = (T c)◦ = (S)◦.

�

3. (a) Since A ⊂ B ⊂ B, we see that B is a closed set containing A. Hence A ⊂ B. Since A◦ ⊂ A ⊂ B,
we see that A◦ is an open subset of B. Hence A◦ ⊂ B◦. �

(b) First note that A ∪ B ⊂ A ∪ B implies A ∪B ⊂ A ∪ B. Conversely, A ⊂ A ∪ B ⊂ A ∪B implies
A ⊂ A ∪B. Similarly, B ⊂ A ∪B. Consequently, A ⊂ B ⊂ A ∪B, which implies the desired
equality. �

(c) First note that A◦ ∩B◦ ⊂ A∩B implies A◦ ∩B◦ ⊂ (A∩B)◦. Conversely, (A∩B)◦ ⊂ A∩B ⊂ A
so that (A ∩B)◦ ⊂ A◦. Similarly, (A ∩B)◦ ⊂ B◦, and so (A ∩B)◦ ⊂ A◦ ∩B◦, which implies the
desired equality. �

(d) Consider A = [0, 1) and B = [0, 2]. Then A ∩ B = ∅, which is closed so A ∩B = ∅. However,
A = [0, 1] and B = [1, 2] so that A ∩B = {1} 6= ∅.
Also, (A ∪ B)◦ = ([0, 2])◦ = (0, 2). But A◦ = (0, 1) and B◦ = (1, 2) so that A◦ ∪ B◦ = (0, 1) ∪
(1, 2) 6= (0, 2). �

4. (i ⇒ ii): Suppose, towards a contradiction, that there exists x ∈ (Sc)◦. But then (Sc)◦ is a neighbor-
hood of x that fails to contain any elements of S (since (Sc)◦ ⊂ Sc). Thus we must have (Sc)◦ = ∅.
(ii ⇒ iii): Using Exercise 2.(a) we have

S = ((Sc)◦)c = (∅)c = X.

(iii ⇒ i): We saw in lecture that x ∈ S if and only if every neighborhood of x intersects S. Hence for
all x ∈ X and all neighborhoods U of x one has U ∩ S 6= ∅. �

5. (a) For any F,G ∈ F write F ≤ G if F ⊂ G. We have F ≤ F since F ⊂ F . If F ≤ G and G ≤ H
for some F,G,H ∈ H, then F ⊂ G and G ⊂ H. Hence F ⊂ H so that F ≤ H. Let F,G ∈ F .
Then H := F ∪G is still a finite subset and F,G ⊂ H so that F,G ≤ H. Thus F is a directed set
under the relation ≤. �

(b) (i ⇒ ii): Fix a bijection σ : N→ N. Let S be a limit of the net. Let ε > 0, then (S − ε, S + ε) is
a neighborhood of S and consequently there exists F0 ∈ F so that∑

n∈F
an ∈ (S − ε, S + ε)

for any F ≥ F0. This is equivalent to ∣∣∣∣∣∑
n∈F

an − S

∣∣∣∣∣ < ε
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for all F ⊂ F0. Now, let N0 = maxσ−1(F0). Then for any N ≥ N0 we have σ({1, . . . , N}) ⊃ F0.
Consequently, for any N ≥ N0 we have∣∣∣∣∣

N∑
n=1

aσ(n) − S

∣∣∣∣∣ =

∣∣∣∣∣∣
∑

k∈σ({1,...,N})

ak − S

∣∣∣∣∣∣ < ε.

Since ε > 0 was arbitrary we see that
∑∞
n=1 aσ(n) = S.

(ii ⇒ iii): Note that
∑∞
n=1 an converges by considering the trivial bijection. Let I+ := {n ∈ N |

an ≥ 0} and I− := {n ∈ N | an < 0}, so that N = I+ ∪ I− and I+ ∩ I− = ∅. Observe that

N∑
n=1

|an| =
∑

I+3n≤N

an +
∑

I−3n≤N

−an =
∑

I+3n≤N

an −
∑

I−3n≤N

an,

and so it suffices to show the series
∑
n∈I+ an and

∑
n∈I− an both converge. First note

N∑
n=1

an =
∑

I+3n≤N

an +
∑

I−3n≤N

an,

and so we cannot have only one of the two series converge lest we contradict
∑∞
n=1 an converging.

Thus it remains to rule out the case that both
∑
n∈I+ an and

∑
n∈I− an diverge. Note that this

implies I+ and I− must be infinite sets, but as subsets of N they are also countable. Hence there
exists bijections α : N → I+ and β : N → I−. We will now construct a bijection σ : N → N for
which we obtain the contradiction that

∑∞
n=1 aσ(n) diverges.

Observe that for all N ∈ N
N∑
n=1

aα(n) ≤
N+1∑
n=1

aα(n) and

N∑
n=1

aβ(n) ≥
N+1∑
n=1

aβ(n)

since α(N+1) ∈ I+ and β(N+1) ∈ I−. Thus the former sequence increases monotonically to +∞
and the latter sequence decreases monotonically to −∞. Let N1 be the smallest natural number
for which

N1∑
n=1

aα(n) ≥ 1.

which exists since
∑N
n=1 aα(n) increases to +∞. Set σ(n) := α(n) for n = 1, . . . , N1. Let M1 be

the smallest natural number for which

M1∑
n=1

aβ(n) +

N1∑
n=1

aσ(n) ≤ −1,

which exists since
∑N
n=1 aβ(n) decreases to −∞. Set σ(n+N1) := β(n) for n = 1, . . . ,M1. Note

that
{α(1), . . . , α(N1)} ∪ {β(1), . . . , β(M1)} = {σ(1), . . . , σ(N1 +M1)}.

Suppose for some k ∈ N we have defined N1 < N2 < · · · < Nk−1, M1 < M2 < · · · < Mk−1, and
σ(n) for n = 1, . . . , Nk−1 +Mk−1 so that

Nk−1+Mk−2∑
n=1

aσ(n) ≥ 1 while

Nk−1+Mk−1∑
n=1

aσ(n) ≤ −1,

and so that

{α(1), . . . , α(Nk−1)} ∪ {β(1), . . . , β(Mk−1)} = {σ(1), . . . , σ(Nk−1 +Mk−1)}.
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Let Nk be the smallest integer satisfying Nk > Nk−1 and

Nk∑
n=Nk−1+1

aα(n) +

Nk−1+Mk−1∑
n=1

aσ(n) ≥ 1.

Set σ(n+Nk−1 +Mk−1) := α(n+Nk−1) for n = 1, . . . , Nk −Nk−1. Then let Mk be the smallest
integer satisfying Mk > Mk−1 and

Mk∑
n=Mk−1+1

aβ(n) +

Nk+Mk−1∑
n=1

aσ(n) ≤ −1.

Set σ(n+Nk +Mk−1) := β(n+Mk−1) for n = 1, . . . ,Mk −Mk1 . Cosnequently, we have

{α(1), . . . , α(Nk)} ∪ {β(1), . . . , β(Mk)} = {σ(1), . . . , σ(Nk +Mk)}.

So by induction we obtain a map σ : N→ N and strictly increasing sequences N1 < · · · < Nk < · · ·
and M1 < · · · < Mk < · · · satisfying the above. Note that for all N ∈ N, there exists N1, N2 ≥ N
so that

N1∑
n=1

aσ(n) ≥ 1 and

N2∑
n=1

aσ(n) ≤ −1.

(Take N1 = NN +MN−1 and N2 = NN +MN , for example). Consequently, the series
∑∞
n=1 aσ(n)

diverges. It remains to show σ is a bijection. Note that for each k ∈ N, the set

{σ(1), . . . , σ(Nk +Mk)} = {α(1), . . . , α(Nk)} ∪ {β(1), . . . , β(Mk)}

contains precisely Nk + Mk elements because α and β are each injective and they have disjoint
ranges. Thus σ is injective on {1, . . . , Nk +Mk}. So given any two distinct n,m ∈ N, we can find
k ∈ N so that n,m ≤ Nk +Mk and consequently σ(n) 6= σ(m). That is, σ is injective. To see that
σ is surjective, let m ∈ N. Then, without loss of generality, assume m ∈ I+ and let n := α−1(m).
Let k ∈ N be large enough so that n ≤ Nk. Then

m = α(n) ∈ {α(1), . . . , α(Nk)} ⊂ {σ(1), . . . , σ(Nk +Mk)}.

So m lies in the range of σ and hence σ is a surjection.

Thus σ : N → N is a bijection for which
∑∞
n=1 aσ(n) diverges, a contradiction. Thus we cannot

have both
∑
n∈I+ an and

∑
n∈I− an diverge.

(iii ⇒ i): Recall from your analysis class that this also implies
∑∞
n=1 an converges, say to some

S ∈ R. Let U be a neighborhood of S. Then by Exercise 1 on Homework 3 there exists ε > 0 so
that (S − ε, S + ε) ⊂ U . Let N1 ∈ N be such that for all N ≥ N1 one has∣∣∣∣∣

N∑
n=1

an − S

∣∣∣∣∣ < ε

2
.

Then, using the fact that
∑∞
n=1 |an| converges, let N2 ∈ N be such that for all N ≥ N2 one has

∞∑
n=N2+1

|an| <
ε

2
.

Let N0 = max{N1, N2} and set F0 := {1, 2, . . . , N0}. If F ⊃ F0, then we have...

�
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6. (a) We must show that the set of arbitrary words in letter C and K yield at most fourteen sets when
applied to A. First note that KK = K and CC = 1, where 1 denotes the identify function on
P(X). These rules imply that an arbitrary word can always be reduced to one which is alternating
in K and C. Thus it suffices to consider words starting with C or K (as well as the empty word
which gives 1):

K,KC,KCK,KCKC, . . .

C, CK,CKC,CKCK, . . . .

Towards showing that the above lists contain only finitely many distinct functions, we claim
that that KCKCKCK = KCK. This will follow from showing KCKCKCKC = KCKC and
applying C on the right of each side. By Exercise 2.(b), we have CKC(A) = (Ac)c = A◦. Define
I : P(X)→ P(X) by I(A) = A◦, and so we are trying to prove KIKI = KI. We first note

KIK(A) = A
◦ ⊂ A = K(A).

Indeed, A
◦

is the intersection of all closed sets containing A
◦
, and A is one such closed set. Next,

note that
I(A) = A◦ ⊂ A◦◦ = IKI(A).

Indeed, A◦
◦

is the union of all open subsets of A◦, and A◦ is one such open subset. Now, Exercise
3.(a) implies K(A) ⊂ K(B) whenever A ⊂ B. Piecing all of this together yields

KI(A) = K(I(A)) ⊂ K(IKI(A)) = KIKI(A) = KIK(I(A)) ⊂ K(I(A)) = KI(A).

Consequently, KIKI = KI and so the claimed equality KCKCKCK = KCK is true. This
implies that our above lists will start repeating after finitely many steps:

K,KC,KCK,KCKC,KCKCK,KCKCKC,KCKCKCK = KCK

C,CK,CKC,CKCK,CKCKC,CKCKCK,CKCKCKC,CKCKCKCK = CKCK.

Hence the fourteen potentially distinct sets are as follows:

1. 1(A) = A 8. C(A) = Ac

2. K(A) = A 9. CK(A) = A
c

3. KC(A) = Ac 10. CKC(A) = Ac
c

= A◦

4. KCK(A) = A
c

11. CKCK(A) = A
◦

5. KCKC(A) = Ac
c

= A◦ 12. CKCKC(A) = Ac
◦

= A◦
c

6. KCKCK(A) = A
◦

13. CKCKCK(A) = A
◦c

7. KCKCKC(A) = Ac
◦

= A◦
c

14. CKCKCKC(A) = Ac
◦c

= A◦
◦

Note that aside from A and Ac, every set in the left column is closed and every set in the right
column is open. Moreover, the sets in the right column are exactly the complements of the sets
directly to their left, while the sets in the left column (aside from A and K(A)) are the closures
of the sets to the right and up two rows. These observations are useful in computing the example
below.

(b) Consider the set
A = ([0, 1] \Q) ∪ (2, 3) ∪ (3, 4) ∪ {5}.

We then have

1. ([0, 1] \Q) ∪ (2, 3) ∪ (3, 4) ∪ {5} 8. (−∞, 0) ∪ ((0, 1) \Q) ∪ (1, 2] ∪ {3} ∪ [4, 5) ∪ (5,∞)
2. [0, 1] ∪ [2, 4] ∪ {5} 9. (−∞, 0) ∪ (1, 2) ∪ (4, 5) ∪ (5,∞)
3. (−∞, 2] ∪ {3} ∪ [4,∞) 10. (2, 3) ∪ (3, 4)
4. (−∞, 0] ∪ [1, 2] ∪ [4,∞) 11. (0, 1) ∪ (2, 4)
5. [2, 4] 12. (−∞, 2) ∪ (4,∞)
6. [0, 1] ∪ [2, 4] 13. (−∞, 0) ∪ (1, 2) ∪ (4,∞)
7. (−∞, 2] ∪ [4∞) 14. (2, 4)
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