Exercises:

§13, 14, 15, 16

1. Equip \mathbb{R} with the standard topology. Show that a set $U \subset \mathbb{R}$ is open if and only if for all $x \in U$ there exists $\epsilon>0$ such that $(x-\epsilon, x+\epsilon) \subset U$.
2. Let X be a space.
(a) Let $\left\{\mathcal{T}_{i} \mid i \in I\right\}$ be a non-empty collection topologies on X (indexed by some set I). Show that $\bigcap_{i \in I} \mathcal{T}_{i}$ is a topology on X.
(b) Let \mathcal{B} be a basis for a topology \mathcal{T} on X. Show that \mathcal{T} is the intersection of all topologies on X that contain \mathcal{B}.
(c) Let \mathcal{S} be a subbasis for a topology \mathcal{T} on a space X. Suppose \mathcal{T}^{\prime} is another topology on X that contains \mathcal{S}. Show that \mathcal{T} is coarser than \mathcal{T}^{\prime}.
(d) Let \mathcal{S} and \mathcal{T} be as in the previous part. Show that \mathcal{T} is the intersection of all topologies on X that contain \mathcal{S}.
3. Let X be an ordered set (with at least two elements) equipped with the order topology. For a subspace $Y \subset X$, show that the collection \mathcal{S} consisting of sets of the form $Y \cap(-\infty, a)$ or $Y \cap(a,+\infty)$ for $a \in X$ form a subbasis for the subspace topology on Y.
4. Let X and Y be topological spaces. A function $f: X \rightarrow Y$ is called an open map if for every open subset $U \subset X$ one has that its image $f(U)$ is open in Y.
(a) Equip $X \times Y$ with the product topology. Show that the coordinate projections $\pi_{1}: X \times Y \rightarrow X$ and $\pi_{2}: X \times Y \rightarrow Y$ are open maps.
(b) Let \mathcal{B} be a basis for the topology on X and suppose $f(B)$ is open for all $B \in \mathcal{B}$. Show that f is an open map.
(c) Show that the previous part does not hold for subbases. [Hint: consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f(0)=1$ and $f(x)=|x|$ if $x \neq 0$ where \mathbb{R} has the standard topology.]
5. Equip \mathbb{R} with the standard topology.
(a) Show that the subspace topology on $\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\} \subset \mathbb{R}$ is the discrete topology.
(b) Show that the subspace topology on $\{0\} \cup\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$ is not the discrete topology.
6. In this exercise, you will show that there is a countable basis that generates the standard topology on \mathbb{R}. For parts (a)-(c), you should only use the properties of \mathbb{Z} and \mathbb{R} given in $\S 4$.
(a) For $x \in \mathbb{R}$, show that there is exactly one $n \in \mathbb{Z}$ satisfying $n \leq x<n+1$.
(b) For $x, y \in \mathbb{R}$, show that if $x-y>1$ then there is at least one $n \in \mathbb{Z}$ satisfying $y<n<x$.
(c) For $x, y \in \mathbb{R}$, show that if $x-y>0$ then there exists $z \in \mathbb{Q}$ satisfying $y<z<x$.
(d) Let \mathcal{B} be the collection of open intervals $(a, b) \subset \mathbb{R}$ with $a, b \in \mathbb{Q}$. Show that \mathcal{B} is countable and is a basis for a topology on \mathbb{R}.
(e) Show \mathcal{B} generates the standard topology on \mathbb{R}.

Solutions:

1. Recall that the standard topology is the topology generated by the basis of open intervals. Suppose $U \subset \mathbb{R}$ is open. Then for $x \in U$ there exists an open interval (a, b) satisfying $x \in(a, b) \subset U$. Now, $x \in(a, b)$ implies $a<x<b$ and in particular $\epsilon:=\min b-x, x-a>0$. It follows that $(x-\epsilon, x+\epsilon) \subset(a, b) \subset U$. Conversely, suppose $U \subset \mathbb{R}$ satisfies that for all $x \in U$ there exists $\epsilon>0$ such that $(x-\epsilon, x+\epsilon) \subset U$. Since $(x-\epsilon, x+\epsilon)$ is an open interval (hence a basis set) and contains x, we see that U is open in the topology generated by the open sets; that is, U is open in the standard topology.
2. (a) We will verify for $\mathcal{T}_{0}:=\bigcap_{i \in I} \mathcal{T}_{i}$ the three conditions in the definition of a topology. First, we have $\emptyset, X \in \mathcal{T}_{i}$ for all $i \in I$ and thus $\emptyset, X \in \mathcal{T}_{0}$. Next, if $\mathcal{S} \subset \mathcal{T}_{0}$ is a subcollection, then this same subcollection is containend in every $\mathcal{T}_{i}, i \in I$. As each of these is a topology, we have

$$
\bigcup_{U \in \mathcal{S}} U \in \mathcal{T}_{i}
$$

for each $i \in I$. Consequently this union belongs to \mathcal{T}_{0}. Lastly, if $U_{1}, \ldots, U_{n} \in \mathcal{T}_{0}$, then these sets also belong to \mathcal{T}_{i} for every $i \in I$ whence $U_{1} \cap \cdots \cap U_{n} \in \mathcal{T}_{i}$ for every $i \in I$. Therefore $U_{1} \cap \cdots \cap U_{n} \in \mathcal{T}_{0}$ and so \mathcal{T}_{0} is a topology.
(b) Let \mathcal{T}^{\prime} be the intersection of all topologies containing \mathcal{B}. This collection of topologies is nonempty (it contains \mathcal{T} for example) and so by the previous part it is a topology on X. Because \mathcal{T} is one the topologies in this collection (by virtue of containing \mathcal{B}), we immediately obtain $\mathcal{T}^{\prime} \subset \mathcal{T}$. On the other hand, observe that $\mathcal{B} \subset \mathcal{T}^{\prime}$ and we showed in $\S 13$ that any topology containing \mathcal{B} contains \mathcal{T}. Thus $\mathcal{T} \subset \mathcal{T}^{\prime}$ and so $\mathcal{T}=\mathcal{T}^{\prime}$.
(c) If \mathcal{T}^{\prime} contains \mathcal{S} and is a topology, then \mathcal{T}^{\prime} contains all finite intersections of sets from \mathcal{S}, and all unions of such intersection. But we showed $\S 13$ that \mathcal{T} consists of precisely such sets, and so $\mathcal{T} \subset \mathcal{T}^{\prime}$.
(d) Let \mathcal{T}^{\prime} be the intersection of all topologies containing \mathcal{S}. This collection of topologies is nonempty (it contains \mathcal{T} for example) and so by part (a) it is a topology on X. Because \mathcal{T} is one the topologies in this collection (by virtue of containing \mathcal{S}), we immediately obtain $\mathcal{T}^{\prime} \subset \mathcal{T}$. On the other hand, $\mathcal{S} \subset \mathcal{T}^{\prime}$ and so by the previous part we have $\mathcal{T}^{\prime} \subset \mathcal{T}$. Thus $\mathcal{T}=\mathcal{T}^{\prime}$.
3. We first show this collection \mathcal{S} is a subbasis (i.e. that its union is all of Y). Since X contains at least two elements, we can find $a, b \in X$ with $a<b$. Then for all $x \in X$ we have either $x<a, x=a$, or $a<x$. In the first two cases we have $x<b$ and so $x \in(-\infty, b)$, while in the last case we have $x \in(a,+\infty)$. Since $x \in X$ was arbitrary, we have shown

$$
X=(a,+\infty) \cup(-\infty, b)
$$

Consequently,

$$
Y=Y \cap[(a,+\infty) \cup(-\infty, b)]=[Y \cap(a,+\infty)] \cup[Y \cap(b,+\infty)]
$$

The latter set is contained in the union over all of \mathcal{S}, and so \mathcal{S} is indeed a subbasis for Y.
Let \mathcal{T} be the topology on Y generated by \mathcal{S}, and let \mathcal{T}^{\prime} be the subspace topology on Y. Since open rays are open in X, the sets in \mathcal{S} are open in the subspace topology on Y. Thus $\mathcal{S} \subset \mathcal{T}^{\prime}$. By Exercise 2.(c), we obtain $\mathcal{T} \subset \mathcal{T}^{\prime}$. Conversely, that open rays are a subbasis for the order topology on X. Consequently the collection \mathcal{B} of finite intersections of open rays forms a basis for the order topology on X. We saw in $\S 16$ that this implies

$$
\mathcal{B}_{Y}:=\{Y \cap B \mid B \in \mathcal{B}\}
$$

is a basis for the subspace topology \mathcal{T}^{\prime} on Y. Observe that each $Y \cap B \in \mathcal{B}_{Y}$ is a finite intersection of sets from \mathcal{S} and therefore $Y \cap B \in \mathcal{T}$. Thus $\mathcal{B}_{Y} \subset \mathcal{T}$, which implies $\mathcal{T}^{\prime} \subset \mathcal{T}$. Hence $\mathcal{T}=\mathcal{T}^{\prime}$.
4. For parts (a) and (b) we will require the following claim: the image of a union of sets is the union of images. Indeed, if $f: A \rightarrow B$ is a function and \mathcal{C} is a collection of subsets $C \subset A$, then for $b \in f\left(\bigcup_{C \in \mathcal{C}} C\right)$ we have $b=f(a)$ for some $a \in \bigcup_{C \in \mathcal{C}} C$. Thus $c \in C$ for some $C \in \mathcal{C}$ and so

$$
b=f(a) \in f(C) \subset \bigcup_{C \in \mathcal{C}} f(C)
$$

Conversely, if $b \in \bigcup_{C \in \mathcal{C}} f(C)$, then $b \in f(C)$ for some $C \in \mathcal{C}$ and hence $b=f(a)$ for some $a \in C$. Since $a \in C \subset \bigcup_{C \in \mathcal{C}} C$, we have

$$
b=f(a) \in f\left(\bigcup_{C \in \mathcal{C}} C\right)
$$

This prove the claim.
(a) Recall that the basis for the product topology on $X \times Y$ is the collection of sets of the form $U \times V$ for open subsets $U \subset X$ and $V \subset Y$. Thus an arbitrary open set in $X \times Y$ is of the form $W:=\bigcup_{i \in I} U_{i} \times V_{i}$ for some indexing set I and open subsets $U_{i} \subset X$ and $V_{i} \subset Y$. From the above claim, we have

$$
\pi_{1}(W)=\bigcup_{i \in I} \pi_{1}\left(U_{i} \times V_{i}\right)=\bigcup_{i \in I} U_{i},
$$

which is open in X as the union of open subsets. Similarly, $\pi_{2}(W)=\bigcup_{i \in I} V_{i}$, which is open in Y. Thus π_{1} and $\pi 2_{2}$ are open maps.
(b) Let \mathcal{T} be the topology on X. Then for any $U \in \mathcal{T}$ we have

$$
U=\bigcup_{\mathcal{B} \ni B \subset U} B .
$$

Thus, using the above claim, we have

$$
f(U)=\bigcup_{\mathcal{B} \ni B \subset U} f(B),
$$

which is open as the union of open sets. Hence f is an open map.
(c) We first note that this function f is not open because $f\left(\left(-\frac{1}{2}, \frac{1}{2}\right)\right)=\left(0, \frac{1}{2}\right) \cup\{1\}$, which is not open in \mathbb{R}. However, the open rays in \mathbb{R} are a subbasis for the order topoology on \mathbb{R}, which is the same as the standard topology. Observe that

$$
f((a,+\infty))= \begin{cases}(a,+\infty) & \text { if } a>0 \\ (0,+\infty) & \text { otherwise }\end{cases}
$$

and

$$
f((-\infty, a))= \begin{cases}(|a|,+\infty) & \text { if } a<0 \\ (0,+\infty) & \text { otherwise }\end{cases}
$$

Thus f maps the subbasis of open rays to open sets, but it is not an open map.
5. (a) Denote this set by A. We will $\left\{\frac{1}{n}\right\}$ is open in A for each $n \in \mathbb{N}$. Note that $\{1\}=A \cap(3 / 4,+\infty)$ and so is open in A. For $n \in \mathbb{N}$ with $n>1$, let $\epsilon:=\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n^{2}+n}$. Then $\frac{1}{n+1}<\frac{1}{n}-\frac{\epsilon}{2}$ and $\frac{1}{n-1}>\frac{1}{n}+\frac{\epsilon}{2}$. Consequently,

$$
\left\{\frac{1}{n}\right\}=A \cap\left(\frac{1}{n}-\frac{\epsilon}{2}, \frac{1}{n}+\frac{\epsilon}{2}\right)
$$

and so is open in A.
(b) Denote this set by B. We claim that $\{0\}$ is not open in B. If it was open, then there would exist an open subset U of \mathbb{R} satisfying $\{0\}=B \cap U$. However, $0 \in U$ implies there exists $\epsilon>0$ satisfying $(0-\epsilon, 0+\epsilon)=(-\epsilon, \epsilon) \subset U$. Let $n \in \mathbb{N}$ be such that $n>\frac{1}{\epsilon}$. Then $0<\frac{1}{n}<\epsilon$ and hence

$$
\frac{1}{n} \in B \cap(-\epsilon, \epsilon) \subset B \cap U,
$$

a contradiction.
6. (a) We first argue that there is at least one such $n \in \mathbb{Z}$. First, suppose there exists $a, b \in \mathbb{Z}$ with $a \leq x \leq b$. Let n be the largest integer in $\{a, a+1, a+2, \ldots, a+(b-a)=b\}$ satisfying $n \leq x$. Consequently, $n+1>x$ and hence $n \leq x<n+1$. Now, if no such $a, b \in \mathbb{Z}$ exist, then we must have that either x is a lower bound for \mathbb{Z} or an upper bound for \mathbb{Z}. We will argue that the latter yields a contradiction (the proof of the former is similar). Indeed, if \mathbb{Z} is bounded above, then it has a least upper bound $y \in \mathbb{R}$. But $y-1$ cannot be an upper bound for \mathbb{Z} (lest we contradict y being the least upper bound) and hence $y-1 \leq n$ for some $n \in \mathbb{Z}$. Adding 1 to each side of this
inequality yields $y \leq n+1$ and so $y<n+2 \in \mathbb{Z}$, which contradicts y being an upper bound for \mathbb{Z}. Thus we must always be in the first case, where we found $n \leq x<n+1$.
Now, suppose $n \leq x<n+1$ and $m \leq x<m+1$ for $n, m \in \mathbb{Z}$. We must show $n=m$. If not, then (without loss of generality) $n<m$. Consequently $n+1 \leq m$, which implies $x<n+1 \leq m \leq x$, which contradicts the strict inequality $x<n+1$.
(b) Note that $x-y>1$ implies $y<y+1<x$. Let $n \in \mathbb{Z}$ be the unique integer satisfying $n \leq x<n+1$. We consider two cases: $n=x$ and $n<x$. In the former case, we claim $y<n-1<x$. The second inequality is immediate and if the first inequality fails then $n-1 \leq y$ which is equivalent to $x-y \leq 1$ (using $x=n$), which contradicts $x-y>1$. In the case when $n<x$, we claim $y<n<x$. Again the second inequality is immediate and if the first fails then we have $n \leq y$ which implies $n+1 \leq y+1<x$, contradicting $x<n+1$.
(c) Let $n \in \mathbb{N}$ be such that $n>\frac{1}{x-y}$ (which exists since otherwise \mathbb{Z} is bounded above we obtain the same contradiction as in part (a)). It follows that $n x-n y=n(x-y)>1$. By part (b), there exists $m \in \mathbb{Z}$ with $n y<m<n x$. Dividing by n yields $y<\frac{m}{n}<x$, and so we take $z:=\frac{m}{n} \in \mathbb{Q}$.
(d) We first show \mathcal{B} is countable. Define a function $f: \mathcal{B} \rightarrow \mathbb{Q} \rightarrow \mathbb{Q}$ by sending the interval (a, b) to the ordered pair (a, b) (pardon the unfortunate notation). This is clearly an injection. We have also seen that \mathbb{Q} is countable and that finite products of countable sets are countable, hence $\mathbb{Q} \times \mathbb{Q}$ is countable. So by Theorem 7.1 there is an injection $g: \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{N}$. But then $g \circ f: \mathcal{B} \rightarrow \mathbb{N}$ is an injection and hence \mathcal{B} is countable by Theorem 7.1 again.
Next we show \mathcal{B} is a basis. For $x \in \mathbb{R}$, using part (a) there exists $n \in \mathbb{Z}$ so that $n \leq x<n+1$. Consequently, $x \in(n-1, n+1) \in \mathcal{B}$. So every element of \mathbb{R} is contained in a basis set. Next, suppose $x \in B_{1} \cap B_{2}$ for $B_{1}, B_{2} \in \mathcal{B}$. Then $B_{1}=(a, b)$ and $B_{2}=(c, d)$ for some $a, b, c, d \in \mathbb{Q}$. Since B_{1} and B_{2} are not disjoint (there intersection contains x), we cannot have $b \leq c$ or $d \leq a$. That is $c<b$ and $a<d$. Consequently, we are in one of the four following cases:

$$
\begin{cases}a \leq c<b \leq d & \Rightarrow B_{1} \cap B_{2}=(c, b) \\ a \leq c<d \leq b & \Rightarrow B_{1} \cap B_{2}=(c, d) \\ c \leq a<d \leq b & \Rightarrow B_{1} \cap B_{2}=(a, d) \\ c \leq a<b \leq d & \Rightarrow B_{1} \cap B_{2}=(a, b)\end{cases}
$$

In all four cases, $B_{3}:=B_{1} \cap B_{2} \in \mathcal{B}$ and so we have $x \in B_{3} \subset B_{1} \cap B_{2}$. Thus \mathcal{B} is a basis.
(e) Let \mathcal{T} denote the standard topology on \mathbb{R} and let \mathcal{T}^{\prime} denote the topology generated by \mathcal{B}. First note that $\mathcal{B} \subset \mathcal{T}$, since the basis consists of open intervals. Hence $\mathcal{T}^{\prime} \subset \mathcal{T}$. Conversely, let $x, y \in \mathbb{R}$ with $x<y$. We will show $(x, y) \in \mathcal{T}^{\prime}$ and since open intervals form a basis for the standard topology on \mathbb{R} it will follow that $\mathcal{T} \subset \mathcal{T}^{\prime}$ and hence $\mathcal{T}=\mathcal{T}^{\prime}$. For $z \in(x, y)$ we have $z-x>0$ and $y-z>0$. Thus by part (c) there exist $a_{z}, b_{z} \in \mathbb{Q}$ satisfying $x<a_{z}<z<b_{z}<y$. Consequently, we have $z \in\left(a_{z}, b_{z}\right) \subset(x, y)$ and $\left(a_{z}, b_{z}\right) \in \mathcal{T}^{\prime}$. Therefore

$$
(x, y)=\bigcup_{z \in(x, y)}\left(a_{z}, b_{z}\right) \in \mathcal{T}^{\prime}
$$

as claimed.

