Exercises:

 $\S13, 14, 15, 16$

- 1. Equip \mathbb{R} with the standard topology. Show that a set $U \subset \mathbb{R}$ is open if and only if for all $x \in U$ there exists $\epsilon > 0$ such that $(x \epsilon, x + \epsilon) \subset U$.
- 2. Let X be a space.
 - (a) Let $\{\mathcal{T}_i \mid i \in I\}$ be a non-empty collection topologies on X (indexed by some set I). Show that $\bigcap_{i \in I} \mathcal{T}_i$ is a topology on X.
 - (b) Let \mathcal{B} be a basis for a topology \mathcal{T} on X. Show that \mathcal{T} is the intersection of all topologies on X that contain \mathcal{B} .
 - (c) Let S be a subbasis for a topology T on a space X. Suppose T' is another topology on X that contains S. Show that T is coarser than T'.
 - (d) Let S and T be as in the previous part. Show that T is the intersection of all topologies on X that contain S.
- 3. Let X be an ordered set (with at least two elements) equipped with the order topology. For a subspace $Y \subset X$, show that the collection S consisting of sets of the form $Y \cap (-\infty, a)$ or $Y \cap (a, +\infty)$ for $a \in X$ form a subbasis for the subspace topology on Y.
- 4. Let X and Y be topological spaces. A function $f: X \to Y$ is called an **open map** if for every open subset $U \subset X$ one has that its image f(U) is open in Y.
 - (a) Equip $X \times Y$ with the product topology. Show that the coordinate projections $\pi_1 \colon X \times Y \to X$ and $\pi_2 \colon X \times Y \to Y$ are open maps.
 - (b) Let \mathcal{B} be a basis for the topology on X and suppose f(B) is open for all $B \in \mathcal{B}$. Show that f is an open map.
 - (c) Show that the previous part does not hold for subbases. [Hint: consider the function $f : \mathbb{R} \to \mathbb{R}$ with f(0) = 1 and f(x) = |x| if $x \neq 0$ where \mathbb{R} has the standard topology.]
- 5. Equip \mathbb{R} with the standard topology.
 - (a) Show that the subspace topology on $\{\frac{1}{n} \mid n \in \mathbb{N}\} \subset \mathbb{R}$ is the discrete topology.
 - (b) Show that the subspace topology on $\{0\} \cup \{\frac{1}{n} \mid n \in \mathbb{N}\}$ is **not** the discrete topology.
- In this exercise, you will show that there is a *countable* basis that generates the standard topology on ℝ. For parts (a)–(c), you should only use the properties of Z and ℝ given in §4.
 - (a) For $x \in \mathbb{R}$, show that there is exactly one $n \in \mathbb{Z}$ satisfying $n \leq x < n+1$.
 - (b) For $x, y \in \mathbb{R}$, show that if x y > 1 then there is at least one $n \in \mathbb{Z}$ satisfying y < n < x.
 - (c) For $x, y \in \mathbb{R}$, show that if x y > 0 then there exists $z \in \mathbb{Q}$ satisfying y < z < x.
 - (d) Let \mathcal{B} be the collection of open intervals $(a, b) \subset \mathbb{R}$ with $a, b \in \mathbb{Q}$. Show that \mathcal{B} is countable and is a basis for a topology on \mathbb{R} .
 - (e) Show \mathcal{B} generates the standard topology on \mathbb{R} .

Solutions:

1. Recall that the standard topology is the topology generated by the basis of open intervals. Suppose $U \subset \mathbb{R}$ is open. Then for $x \in U$ there exists an open interval (a, b) satisfying $x \in (a, b) \subset U$. Now, $x \in (a, b)$ implies a < x < b and in particular $\epsilon := \min b - x, x - a > 0$. It follows that $(x - \epsilon, x + \epsilon) \subset (a, b) \subset U$. Conversely, suppose $U \subset \mathbb{R}$ satisfies that for all $x \in U$ there exists $\epsilon > 0$ such that $(x - \epsilon, x + \epsilon) \subset U$. Since $(x - \epsilon, x + \epsilon)$ is an open interval (hence a basis set) and contains x, we see that U is open in the topology generated by the open sets; that is, U is open in the standard topology. 2. (a) We will verify for $\mathcal{T}_0 := \bigcap_{i \in I} \mathcal{T}_i$ the three conditions in the definition of a topology. First, we have $\emptyset, X \in \mathcal{T}_i$ for all $i \in I$ and thus $\emptyset, X \in \mathcal{T}_0$. Next, if $\mathcal{S} \subset \mathcal{T}_0$ is a subcollection, then this same subcollection is containend in every $\mathcal{T}_i, i \in I$. As each of these is a topology, we have

$$\bigcup_{U\in\mathcal{S}}U\in\mathcal{T}_i$$

for each $i \in I$. Consequently this union belongs to \mathcal{T}_0 . Lastly, if $U_1, \ldots, U_n \in \mathcal{T}_0$, then these sets also belong to \mathcal{T}_i for every $i \in I$ whence $U_1 \cap \cdots \cap U_n \in \mathcal{T}_i$ for every $i \in I$. Therefore $U_1 \cap \cdots \cap U_n \in \mathcal{T}_0$ and so \mathcal{T}_0 is a topology.

- (b) Let \mathcal{T}' be the intersection of all topologies containing \mathcal{B} . This collection of topologies is nonempty (it contains \mathcal{T} for example) and so by the previous part it is a topology on X. Because \mathcal{T} is one the topologies in this collection (by virtue of containing \mathcal{B}), we immediately obtain $\mathcal{T}' \subset \mathcal{T}$. On the other hand, observe that $\mathcal{B} \subset \mathcal{T}'$ and we showed in §13 that any topology containing \mathcal{B} contains \mathcal{T} . Thus $\mathcal{T} \subset \mathcal{T}'$ and so $\mathcal{T} = \mathcal{T}'$.
- (c) If \mathcal{T}' contains \mathcal{S} and is a topology, then \mathcal{T}' contains all finite intersections of sets from \mathcal{S} , and all unions of such intersection. But we showed §13 that \mathcal{T} consists of precisely such sets, and so $\mathcal{T} \subset \mathcal{T}'$.
- (d) Let \mathcal{T}' be the intersection of all topologies containing \mathcal{S} . This collection of topologies is nonempty (it contains \mathcal{T} for example) and so by part (a) it is a topology on X. Because \mathcal{T} is one the topologies in this collection (by virtue of containing \mathcal{S}), we immediately obtain $\mathcal{T}' \subset \mathcal{T}$. On the other hand, $\mathcal{S} \subset \mathcal{T}'$ and so by the previous part we have $\mathcal{T}' \subset \mathcal{T}$. Thus $\mathcal{T} = \mathcal{T}'$.
- 3. We first show this collection S is a subbasis (i.e. that its union is all of Y). Since X contains at least two elements, we can find $a, b \in X$ with a < b. Then for all $x \in X$ we have either x < a, x = a, or a < x. In the first two cases we have x < b and so $x \in (-\infty, b)$, while in the last case we have $x \in (a, +\infty)$. Since $x \in X$ was arbitrary, we have shown

$$X = (a, +\infty) \cup (-\infty, b).$$

Consequently,

$$Y = Y \cap [(a, +\infty) \cup (-\infty, b)] = [Y \cap (a, +\infty)] \cup [Y \cap (b, +\infty)].$$

The latter set is contained in the union over all of \mathcal{S} , and so \mathcal{S} is indeed a subbasis for Y.

Let \mathcal{T} be the topology on Y generated by \mathcal{S} , and let \mathcal{T}' be the subspace topology on Y. Since open rays are open in X, the sets in \mathcal{S} are open in the subspace topology on Y. Thus $\mathcal{S} \subset \mathcal{T}'$. By Exercise 2.(c), we obtain $\mathcal{T} \subset \mathcal{T}'$. Conversely, that open rays are a subbasis for the order topology on X. Consequently the collection \mathcal{B} of finite intersections of open rays forms a basis for the order topology on X. We saw in §16 that this implies

$$\mathcal{B}_Y := \{ Y \cap B \mid B \in \mathcal{B} \}$$

is a basis for the subspace topology \mathcal{T}' on Y. Observe that each $Y \cap B \in \mathcal{B}_Y$ is a finite intersection of sets from \mathcal{S} and therefore $Y \cap B \in \mathcal{T}$. Thus $\mathcal{B}_Y \subset \mathcal{T}$, which implies $\mathcal{T}' \subset \mathcal{T}$. Hence $\mathcal{T} = \mathcal{T}'$. \Box

4. For parts (a) and (b) we will require the following claim: the image of a union of sets is the union of images. Indeed, if $f: A \to B$ is a function and C is a collection of subsets $C \subset A$, then for $b \in f(\bigcup_{C \in C} C)$ we have b = f(a) for some $a \in \bigcup_{C \in C} C$. Thus $c \in C$ for some $C \in C$ and so

$$b = f(a) \in f(C) \subset \bigcup_{C \in \mathcal{C}} f(C).$$

Conversely, if $b \in \bigcup_{C \in \mathcal{C}} f(C)$, then $b \in f(C)$ for some $C \in \mathcal{C}$ and hence b = f(a) for some $a \in C$. Since $a \in C \subset \bigcup_{C \in \mathcal{C}} C$, we have

$$b = f(a) \in f\left(\bigcup_{C \in \mathcal{C}} C\right).$$

This prove the claim.

- 9/25/2020
- (a) Recall that the basis for the product topology on $X \times Y$ is the collection of sets of the form $U \times V$ for open subsets $U \subset X$ and $V \subset Y$. Thus an arbitrary open set in $X \times Y$ is of the form $W := \bigcup_{i \in I} U_i \times V_i$ for some indexing set I and open subsets $U_i \subset X$ and $V_i \subset Y$. From the above claim, we have

$$\pi_1(W) = \bigcup_{i \in I} \pi_1(U_i \times V_i) = \bigcup_{i \in I} U_i,$$

which is open in X as the union of open subsets. Similarly, $\pi_2(W) = \bigcup_{i \in I} V_i$, which is open in Y. Thus π_1 and π_{2_2} are open maps.

(b) Let \mathcal{T} be the topology on X. Then for any $U \in \mathcal{T}$ we have

$$U = \bigcup_{\mathcal{B} \ni B \subset U} B.$$

Thus, using the above claim, we have

$$f(U) = \bigcup_{\mathcal{B} \ni B \subset U} f(B),$$

which is open as the union of open sets. Hence f is an open map.

(c) We first note that this function f is not open because $f((-\frac{1}{2}, \frac{1}{2})) = (0, \frac{1}{2}) \cup \{1\}$, which is not open in \mathbb{R} . However, the open rays in \mathbb{R} are a subbasis for the order topoology on \mathbb{R} , which is the same as the standard topology. Observe that

$$f((a, +\infty)) = \begin{cases} (a, +\infty) & \text{if } a > 0\\ (0, +\infty) & \text{otherwise} \end{cases}$$

and

$$f((-\infty, a)) = \begin{cases} (|a|, +\infty) & \text{if } a < 0\\ (0, +\infty) & \text{otherwise} \end{cases}$$

Thus f maps the subbasis of open rays to open sets, but it is not an open map.

5. (a) Denote this set by A. We will $\{\frac{1}{n}\}$ is open in A for each $n \in \mathbb{N}$. Note that $\{1\} = A \cap (3/4, +\infty)$ and so is open in A. For $n \in \mathbb{N}$ with n > 1, let $\epsilon := \frac{1}{n} - \frac{1}{n+1} = \frac{1}{n^2+n}$. Then $\frac{1}{n+1} < \frac{1}{n} - \frac{\epsilon}{2}$ and $\frac{1}{n-1} > \frac{1}{n} + \frac{\epsilon}{2}$. Consequently,

$$\left\{\frac{1}{n}\right\} = A \cap \left(\frac{1}{n} - \frac{\epsilon}{2}, \frac{1}{n} + \frac{\epsilon}{2}\right)$$

and so is open in A.

(b) Denote this set by *B*. We claim that $\{0\}$ is not open in *B*. If it was open, then there would exist an open subset *U* of \mathbb{R} satisfying $\{0\} = B \cap U$. However, $0 \in U$ implies there exists $\epsilon > 0$ satisfying $(0 - \epsilon, 0 + \epsilon) = (-\epsilon, \epsilon) \subset U$. Let $n \in \mathbb{N}$ be such that $n > \frac{1}{\epsilon}$. Then $0 < \frac{1}{n} < \epsilon$ and hence

$$\frac{1}{n} \in B \cap (-\epsilon, \epsilon) \subset B \cap U,$$

a contradiction.

6. (a) We first argue that there is at least one such $n \in \mathbb{Z}$. First, suppose there exists $a, b \in \mathbb{Z}$ with $a \leq x \leq b$. Let n be the largest integer in $\{a, a + 1, a + 2, \ldots, a + (b - a) = b\}$ satisfying $n \leq x$. Consequently, n + 1 > x and hence $n \leq x < n + 1$. Now, if no such $a, b \in \mathbb{Z}$ exist, then we must have that either x is a lower bound for \mathbb{Z} or an upper bound for \mathbb{Z} . We will argue that the latter yields a contradiction (the proof of the former is similar). Indeed, if \mathbb{Z} is bounded above, then it has a least upper bound $y \in \mathbb{R}$. But y - 1 cannot be an upper bound for \mathbb{Z} (lest we contradict y being the *least* upper bound) and hence $y - 1 \leq n$ for some $n \in \mathbb{Z}$. Adding 1 to each side of this

inequality yields $y \le n+1$ and so $y < n+2 \in \mathbb{Z}$, which contradicts y being an upper bound for \mathbb{Z} . Thus we must always be in the first case, where we found $n \le x < n+1$.

Now, suppose $n \le x < n+1$ and $m \le x < m+1$ for $n, m \in \mathbb{Z}$. We must show n = m. If not, then (without loss of generality) n < m. Consequently $n + 1 \le m$, which implies $x < n+1 \le m \le x$, which contradicts the strict inequality x < n+1.

- (b) Note that x-y > 1 implies y < y+1 < x. Let $n \in \mathbb{Z}$ be the unique integer satisfying $n \le x < n+1$. We consider two cases: n = x and n < x. In the former case, we claim y < n - 1 < x. The second inequality is immediate and if the first inequality fails then $n - 1 \le y$ which is equivalent to $x - y \le 1$ (using x = n), which contradicts x - y > 1. In the case when n < x, we claim y < n < x. Again the second inequality is immediate and if the first fails then we have $n \le y$ which implies $n + 1 \le y + 1 < x$, contradicting x < n + 1.
- (c) Let $n \in \mathbb{N}$ be such that $n > \frac{1}{x-y}$ (which exists since otherwise \mathbb{Z} is bounded above we obtain the same contradiction as in part (a)). It follows that nx ny = n(x y) > 1. By part (b), there exists $m \in \mathbb{Z}$ with ny < m < nx. Dividing by n yields $y < \frac{m}{n} < x$, and so we take $z := \frac{m}{n} \in \mathbb{Q}$. \Box
- (d) We first show \mathcal{B} is countable. Define a function $f: \mathcal{B} \to \mathbb{Q} \to \mathbb{Q}$ by sending the interval (a, b) to the ordered pair (a, b) (pardon the unfortunate notation). This is clearly an injection. We have also seen that \mathbb{Q} is countable and that finite products of countable sets are countable, hence $\mathbb{Q} \times \mathbb{Q}$ is countable. So by Theorem 7.1 there is an injection $g: \mathbb{Q} \times \mathbb{Q} \to \mathbb{N}$. But then $g \circ f: \mathcal{B} \to \mathbb{N}$ is an injection and hence \mathcal{B} is countable by Theorem 7.1 again.

Next we show \mathcal{B} is a basis. For $x \in \mathbb{R}$, using part (a) there exists $n \in \mathbb{Z}$ so that $n \leq x < n + 1$. Consequently, $x \in (n - 1, n + 1) \in \mathcal{B}$. So every element of \mathbb{R} is contained in a basis set. Next, suppose $x \in B_1 \cap B_2$ for $B_1, B_2 \in \mathcal{B}$. Then $B_1 = (a, b)$ and $B_2 = (c, d)$ for some $a, b, c, d \in \mathbb{Q}$. Since B_1 and B_2 are not disjoint (there intersection contains x), we cannot have $b \leq c$ or $d \leq a$. That is c < b and a < d. Consequently, we are in one of the four following cases:

$$\begin{cases} a \le c < b \le d \quad \Rightarrow B_1 \cap B_2 = (c, b) \\ a \le c < d \le b \quad \Rightarrow B_1 \cap B_2 = (c, d) \\ c \le a < d \le b \quad \Rightarrow B_1 \cap B_2 = (a, d) \\ c \le a < b \le d \quad \Rightarrow B_1 \cap B_2 = (a, b) \end{cases}$$

In all four cases, $B_3 := B_1 \cap B_2 \in \mathcal{B}$ and so we have $x \in B_3 \subset B_1 \cap B_2$. Thus \mathcal{B} is a basis. \Box

(e) Let \mathcal{T} denote the standard topology on \mathbb{R} and let \mathcal{T}' denote the topology generated by \mathcal{B} . First note that $\mathcal{B} \subset \mathcal{T}$, since the basis consists of open intervals. Hence $\mathcal{T}' \subset \mathcal{T}$. Conversely, let $x, y \in \mathbb{R}$ with x < y. We will show $(x, y) \in \mathcal{T}'$ and since open intervals form a basis for the standard topology on \mathbb{R} it will follow that $\mathcal{T} \subset \mathcal{T}'$ and hence $\mathcal{T} = \mathcal{T}'$. For $z \in (x, y)$ we have z - x > 0 and y - z > 0. Thus by part (c) there exist $a_z, b_z \in \mathbb{Q}$ satisfying $x < a_z < z < b_z < y$. Consequently, we have $z \in (a_z, b_z) \subset (x, y)$ and $(a_z, b_z) \in \mathcal{T}'$. Therefore

$$(x,y) = \bigcup_{z \in (x,y)} (a_z, b_z) \in \mathcal{T}'$$

as claimed.