Math 461 Homework 2 Solutions 9/18/2020

Exercises:

§9, 10,

11, 12

1. Let f: A — B be a function.

(a)
(b)

Use the axiom of choice to show that if f is surjective, then there exists g: B — A with fog(b) =b
for all b € B.

Without using the axiom of choice show that if f is injective, then there exists h: B — A with
ho f(a) =a for all a € A.

2. Show that the well-ordering theorem implies the axiom of choice.

3. Let Sq be the minimal uncountable well-ordered set from §10.

(a)
(b)
()

Show that S has no largest element.
Show that for every « € S, the subset {y € Sq | z < y} is uncountable.

Consider the subset
X :={z € Sq|(a,z)#0 for all a < z}.

Show that X is uncountable. [Hint: proceed by contradiction and use the fact that for any
y € Sq there exists z € Sq with (y,z) = (.]

4. In this exercise you will use Zorn’s lemma to prove the following fact from linear algebra: every
vector space V has a basis. For a subset A C V, recall: the span of A is the set of all finite linear
combinations of vectors in A; A is said to be independent if the only way to write the zero vector as a
linear combination of elements in A is via the trivial linear combination with all zero scalar coefficients;
and A is said to be a basis for V if it is independent and its span is all of V.

(a)
(b)
(c)

Suppose A C V is independent. Show that if v is not in the span of A, then AU{v} is independent.
Show that the collection of independent subsets of V', ordered by inclusion, has a maximal element.
Show that V' has a basis.

5. Let X be a topological space and let A C X be a subset. Suppose that for all z € A, there exists an
open set U satisfying z € U C A. Show that A is open.

Solutions:

1. (a)

Let A be the collection of subsets of the form f~1({b}) for b € B. Since f is surjective, each set
in this collection is non-empty. Moreover, if b # b', then f~1({b}) and f~1({b'}) are disjoint since
any common element a € A would satisfy f(a) =b and f(a) =¥, contradicting b # b’. Thus A is
a collection of disjoint non-empty sets. Let C be as in the axiom of choice: C'N f~1({b}) consists
of exactly one element, which we will denote by ¢g(b). Thus g: B — A is a function, and for b € B
we have f o g(b) = f(g(b)) = b since g(b) € f~1(b). O
Fix an arbitrary ap € A. Since f is injective, if b € f(A) then there is a unique a € A with
f(a) = b. Let us denote this unique element by a,. Define h: B — A by

h(b) = {ab ifbe f(A)

ag otherwise

For a € A, note that ay(,) = a since a is the unique element whose image under f is f(a). Thus
we have h(f(a)) = ap) = a. O
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2. Let A be a collection of disjoint non-empty sets. Define

3.

X::UA.

AcA

By the well-ordering theorem, there exists an order relation < on X making it well-ordered. For each
A€ A, we have A C X and A is non-empty by assumption. Consequently, by the well-ordering there
exists a smallest element in A, which we denote 2 4. Define C :={z4 | A € A}. Then for all A € A
we have {4} C C'N A. If this reverse containment does not hold, then by definition of C, we must
have xp € C'N A for some other B € A. But then xp € AN B contradicts the set in A being disjoint.
Thus CN A= {z4}, and so the axiom of choice holds. O

(a)

Suppose, towards a contradiction, that xy € Sq is a largest element. This means means x < xg
for all x € S and so
So={z |z <z} U{xo}.

However, {z | © < 2o} = S,, is the section of Sq by x¢ and is countable by definition of Sq. So the
above equality shows Sq is a finite union of countable sets and hence is countable, a contradiction.
Thus Sq has no largest element. |

Fix x € Sq and observe

So={yly<ziU{zrju{ylz<y}=S.U{z}U{y|z <y}

The first two sets in the last union are countable, and so we must have {y | x < y} lest we
contradict Sq being uncountable. O

Suppose, towards a contradiction, that X is countable. Then by the last theorem in §10 we know
X is bounded above by some y; € Sq. Let ya be the smallest element of the set {y | y1 < y}. This
exists because this set is non-empty and in fact uncountable by the previous part and because Sq
is well-ordered. Note that (y1,y2) = 0 since any y € Sq satisfying y; < y < y2 would contradict
y2 being the smallest element. We then inductively define a sequence (y,)neny C Sq by letting
yn be the smallest element of {y | yn—1 < y}, which exists by the same reasoning used for ys.
Likewise, we have (yn,—1,yn) = 0 for all n € N. Now, B := {y, | n € N} is a countable subset
of Sq and is therefore bounded above by the last theorem in §10. Since Sgq is well-ordered, the
supremum of B exists, which we denote by ..

yl<92<Z/3<"'<Z/n<yn+1"'§2/oo-

Consequently, v, < Yoo for all n € N. We claim that y., € X. Indeed, if yo, € X then there exists
a < Yoo With (a,ys) = 0. Since y is the smallest upper bound for B, it must be that a < y,, for
some n € N. Since ¥, < Yoo and (a, Yoo ) = 0, we must have a = y,,. But then a = y,, < yn11 < Yoo
contradicts (a, Yoo ) = . Thus we must have y, € X. However, this contradicts y; being an upper
bound for X. Thus X cannot be bounded above in Sq and is therefore uncountable. O

Suppose, towards a contradiction, that A U {v} is not independent. Then there exist distinct

vectors vy, ..., v, € AU{v} and non-zero scalars ¢y, ..., ¢, such that ¢c;v; 4+ - -+ ¢, v, = 0. Since
A is independent, we cannot have vq,...,v, € A. Thus one of vy,...,v, equals v, say v, = v.
But then ol -
vV=——v1+ -+ — Un—1,
n n
which contradicts v not being in the span of A. Thus A U {v} is independent. ]

Let Z denote the collection of independent subsets of V. Zorn’s lemma will give us the existence
of a maximal element if we can show that every chain in Z has an upperbound. Let C C Z be a
chain (i.e. a totally ordered subset). Consider the union

B::UA.

AcC
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Since A C B for all C, if we can show that B € 7 (i.e. that B is independent) then it will be
an upper bound for C. Let vq,...,v, € B and suppose ¢y, ..., c, are non-zero scalars. We must
show civi + -+ + cpvn # 0. By definition of B, for each j = 1...,n there is some A; € C with
v; € Aj. Since C is a chain, we have A; C A; or A; C A; for each 1 < 4,5 < n. Consequently,
there exists 1 < j < n such that A; C A; for all 1 <4 <n. (To find this j, start with j = 1, then
if Ay C As take j = 2 otherwise leave j = 1, and proceed in this way through all the indices.) So

we therefore have v1,...,v, € A; and since A; is independent we obtain cjvy + -+ + c,v, # 0.
Thus B is independent (i.e. B € Z) and is an upper bound for the chain C. Zorn’s lemma then
completes the proof. |

Using the notation from the previous part, let B € 7 be a maximal element, which exists by the
previous part. We claim that B is a basis for V. Indeed, B € Z implies B is independent. If the
span of B is not all V| then there exists v € V not in the span of B. By part (a), B U {v} is
an independent set and it is strictly larger than B, contradicting the maximality of B. Thus we
must have that the span of B is all of V, and therefore B is a basis for V' as claimed. O

5. For x € A, let U, be the open set satisfying x € U, C A. Observe

A= J{atc | VA

z€A T€EA

Thus the above inclusions must in fact be equalities. In particular, A = J, 4 U is open as a union of
open sets. U
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