Exercises:

$\S 9,10,11,12$

1. Let $f: A \rightarrow B$ be a function.
(a) Use the axiom of choice to show that if f is surjective, then there exists $g: B \rightarrow A$ with $f \circ g(b)=b$ for all $b \in B$.
(b) Without using the axiom of choice show that if f is injective, then there exists $h: B \rightarrow A$ with $h \circ f(a)=a$ for all $a \in A$.
2. Show that the well-ordering theorem implies the axiom of choice.
3. Let S_{Ω} be the minimal uncountable well-ordered set from $\S 10$.
(a) Show that S_{Ω} has no largest element.
(b) Show that for every $x \in S_{\Omega}$, the subset $\left\{y \in S_{\Omega} \mid x<y\right\}$ is uncountable.
(c) Consider the subset

$$
X:=\left\{x \in S_{\Omega} \mid(a, x) \neq \emptyset \text { for all } a<x\right\} .
$$

Show that X is uncountable. [Hint: proceed by contradiction and use the fact that for any $y \in S_{\Omega}$ there exists $z \in S_{\Omega}$ with $(y, z)=\emptyset$.]
4. In this exercise you will use Zorn's lemma to prove the following fact from linear algebra: every vector space V has a basis. For a subset $A \subset V$, recall: the span of A is the set of all finite linear combinations of vectors in $A ; A$ is said to be independent if the only way to write the zero vector as a linear combination of elements in A is via the trivial linear combination with all zero scalar coefficients; and A is said to be a basis for V if it is independent and its span is all of V.
(a) Suppose $A \subset V$ is independent. Show that if v is not in the span of A, then $A \cup\{v\}$ is independent.
(b) Show that the collection of independent subsets of V, ordered by inclusion, has a maximal element.
(c) Show that V has a basis.
5. Let X be a topological space and let $A \subset X$ be a subset. Suppose that for all $x \in A$, there exists an open set U satisfying $x \in U \subset A$. Show that A is open.

Solutions:

1. (a) Let \mathcal{A} be the collection of subsets of the form $f^{-1}(\{b\})$ for $b \in B$. Since f is surjective, each set in this collection is non-empty. Moreover, if $b \neq b^{\prime}$, then $f^{-1}(\{b\})$ and $f^{-1}\left(\left\{b^{\prime}\right\}\right)$ are disjoint since any common element $a \in A$ would satisfy $f(a)=b$ and $f(a)=b^{\prime}$, contradicting $b \neq b^{\prime}$. Thus \mathcal{A} is a collection of disjoint non-empty sets. Let C be as in the axiom of choice: $C \cap f^{-1}(\{b\})$ consists of exactly one element, which we will denote by $g(b)$. Thus $g: B \rightarrow A$ is a function, and for $b \in B$ we have $f \circ g(b)=f(g(b))=b$ since $g(b) \in f^{-1}(b)$.
(b) Fix an arbitrary $a_{0} \in A$. Since f is injective, if $b \in f(A)$ then there is a unique $a \in A$ with $f(a)=b$. Let us denote this unique element by a_{b}. Define $h: B \rightarrow A$ by

$$
h(b):=\left\{\begin{array}{ll}
a_{b} & \text { if } b \in f(A) \\
a_{0} & \text { otherwise }
\end{array} .\right.
$$

For $a \in A$, note that $a_{f(a)}=a$ since a is the unique element whose image under f is $f(a)$. Thus we have $h(f(a))=a_{f(a)}=a$.
2. Let \mathcal{A} be a collection of disjoint non-empty sets. Define

$$
X:=\bigcup_{A \in \mathcal{A}} A
$$

By the well-ordering theorem, there exists an order relation $<$ on X making it well-ordered. For each $A \in \mathcal{A}$, we have $A \subset X$ and A is non-empty by assumption. Consequently, by the well-ordering there exists a smallest element in A, which we denote x_{A}. Define $C:=\left\{x_{A} \mid A \in \mathcal{A}\right\}$. Then for all $A \in \mathcal{A}$ we have $\left\{x_{A}\right\} \subset C \cap A$. If this reverse containment does not hold, then by definition of C, we must have $x_{B} \in C \cap A$ for some other $B \in \mathcal{A}$. But then $x_{B} \in A \cap B$ contradicts the set in \mathcal{A} being disjoint. Thus $C \cap A=\left\{x_{A}\right\}$, and so the axiom of choice holds.
3. (a) Suppose, towards a contradiction, that $x_{0} \in S_{\Omega}$ is a largest element. This means means $x \leq x_{0}$ for all $x \in S_{\Omega}$ and so

$$
S_{\Omega}=\left\{x \mid x<x_{0}\right\} \cup\left\{x_{0}\right\}
$$

However, $\left\{x \mid x<x_{0}\right\}=S_{x_{0}}$ is the section of S_{Ω} by x_{0} and is countable by definition of S_{Ω}. So the above equality shows S_{Ω} is a finite union of countable sets and hence is countable, a contradiction. Thus S_{Ω} has no largest element.
(b) Fix $x \in S_{\Omega}$ and observe

$$
S_{\Omega}=\{y \mid y<x\} \cup\{x\} \cup\{y \mid x<y\}=S_{x} \cup\{x\} \cup\{y \mid x<y\}
$$

The first two sets in the last union are countable, and so we must have $\{y \mid x<y\}$ lest we contradict S_{Ω} being uncountable.
(c) Suppose, towards a contradiction, that X is countable. Then by the last theorem in $\S 10$ we know X is bounded above by some $y_{1} \in S_{\Omega}$. Let y_{2} be the smallest element of the set $\left\{y \mid y_{1}<y\right\}$. This exists because this set is non-empty and in fact uncountable by the previous part and because S_{Ω} is well-ordered. Note that $\left(y_{1}, y_{2}\right)=\emptyset$ since any $y \in S_{\Omega}$ satisfying $y_{1}<y<y_{2}$ would contradict y_{2} being the smallest element. We then inductively define a sequence $\left(y_{n}\right)_{n \in \mathbb{N}} \subset S_{\Omega}$ by letting y_{n} be the smallest element of $\left\{y \mid y_{n-1}<y\right\}$, which exists by the same reasoning used for y_{2}. Likewise, we have $\left(y_{n-1}, y_{n}\right)=\emptyset$ for all $n \in \mathbb{N}$. Now, $B:=\left\{y_{n} \mid n \in \mathbb{N}\right\}$ is a countable subset of S_{Ω} and is therefore bounded above by the last theorem in $\S 10$. Since S_{Ω} is well-ordered, the supremum of B exists, which we denote by y_{∞}.

$$
y_{1}<y_{2}<y_{3}<\cdots<y_{n}<y_{n+1} \cdots \leq y_{\infty} .
$$

Consequently, $y_{n}<y_{\infty}$ for all $n \in \mathbb{N}$. We claim that $y_{\infty} \in X$. Indeed, if $y_{\infty} \notin X$ then there exists $a<y_{\infty}$ with $\left(a, y_{\infty}\right)=\emptyset$. Since y_{∞} is the smallest upper bound for B, it must be that $a \leq y_{n}$ for some $n \in \mathbb{N}$. Since $y_{n}<y_{\infty}$ and $\left(a, y_{\infty}\right)=\emptyset$, we must have $a=y_{n}$. But then $a=y_{n}<y_{n+1}<y_{\infty}$ contradicts $\left(a, y_{\infty}\right)=\emptyset$. Thus we must have $y_{\infty} \in X$. However, this contradicts y_{1} being an upper bound for X. Thus X cannot be bounded above in S_{Ω} and is therefore uncountable.
4. (a) Suppose, towards a contradiction, that $A \cup\{v\}$ is not independent. Then there exist distinct vectors $v_{1}, \ldots, v_{n} \in A \cup\{v\}$ and non-zero scalars c_{1}, \ldots, c_{n} such that $c_{1} v_{1}+\cdots+c_{n} v_{n}=0$. Since A is independent, we cannot have $v_{1}, \ldots, v_{n} \in A$. Thus one of v_{1}, \ldots, v_{n} equals v, say $v_{n}=v$. But then

$$
v=-\frac{c_{1}}{c_{n}} v_{1}+\cdots+-\frac{c_{n-1}}{c_{n}} v_{n-1}
$$

which contradicts v not being in the span of A. Thus $A \cup\{v\}$ is independent.
(b) Let \mathcal{I} denote the collection of independent subsets of V. Zorn's lemma will give us the existence of a maximal element if we can show that every chain in \mathcal{I} has an upperbound. Let $\mathcal{C} \subset \mathcal{I}$ be a chain (i.e. a totally ordered subset). Consider the union

$$
B:=\bigcup_{A \in \mathcal{C}} A
$$

Since $A \subset B$ for all \mathcal{C}, if we can show that $B \in \mathcal{I}$ (i.e. that B is independent) then it will be an upper bound for \mathcal{C}. Let $v_{1}, \ldots, v_{n} \in B$ and suppose c_{1}, \ldots, c_{n} are non-zero scalars. We must show $c_{1} v_{1}+\cdots+c_{n} v_{n} \neq 0$. By definition of B, for each $j=1 \ldots, n$ there is some $A_{j} \in \mathcal{C}$ with $v_{j} \in A_{j}$. Since \mathcal{C} is a chain, we have $A_{i} \subset A_{j}$ or $A_{j} \subset A_{i}$ for each $1 \leq i, j \leq n$. Consequently, there exists $1 \leq j \leq n$ such that $A_{i} \subset A_{j}$ for all $1 \leq i \leq n$. (To find this j, start with $j=1$, then if $A_{1} \subset A_{2}$ take $j=2$ otherwise leave $j=1$, and proceed in this way through all the indices.) So we therefore have $v_{1}, \ldots, v_{n} \in A_{j}$ and since A_{j} is independent we obtain $c_{1} v_{1}+\cdots+c_{n} v_{n} \neq 0$. Thus B is independent (i.e. $B \in \mathcal{I}$) and is an upper bound for the chain \mathcal{C}. Zorn's lemma then completes the proof.
(c) Using the notation from the previous part, let $B \in \mathcal{I}$ be a maximal element, which exists by the previous part. We claim that B is a basis for V. Indeed, $B \in \mathcal{I}$ implies B is independent. If the span of B is not all V, then there exists $v \in V$ not in the span of B. By part (a), $B \cup\{v\}$ is an independent set and it is strictly larger than B, contradicting the maximality of B. Thus we must have that the span of B is all of V, and therefore B is a basis for V as claimed.
5. For $x \in A$, let U_{x} be the open set satisfying $x \in U_{x} \subset A$. Observe

$$
A=\bigcup_{x \in A}\{x\} \subset \bigcup_{x \in A} U_{x} \subset A
$$

Thus the above inclusions must in fact be equalities. In particular, $A=\bigcup_{x \in A} U_{x}$ is open as a union of open sets.

