
Math 461 Homework 2 Solutions 9/18/2020

Exercises:
§9, 10, 11, 12

1. Let f : A→ B be a function.

(a) Use the axiom of choice to show that if f is surjective, then there exists g : B → A with f ◦g(b) = b
for all b ∈ B.

(b) Without using the axiom of choice show that if f is injective, then there exists h : B → A with
h ◦ f(a) = a for all a ∈ A.

2. Show that the well-ordering theorem implies the axiom of choice.

3. Let SΩ be the minimal uncountable well-ordered set from §10.

(a) Show that SΩ has no largest element.

(b) Show that for every x ∈ SΩ, the subset {y ∈ SΩ | x < y} is uncountable.

(c) Consider the subset
X := {x ∈ SΩ | (a, x) 6= ∅ for all a < x}.

Show that X is uncountable. [Hint: proceed by contradiction and use the fact that for any
y ∈ SΩ there exists z ∈ SΩ with (y, z) = ∅.]

4. In this exercise you will use Zorn’s lemma to prove the following fact from linear algebra: every
vector space V has a basis. For a subset A ⊂ V , recall: the span of A is the set of all finite linear
combinations of vectors in A; A is said to be independent if the only way to write the zero vector as a
linear combination of elements in A is via the trivial linear combination with all zero scalar coefficients;
and A is said to be a basis for V if it is independent and its span is all of V .

(a) Suppose A ⊂ V is independent. Show that if v is not in the span of A, then A∪{v} is independent.

(b) Show that the collection of independent subsets of V , ordered by inclusion, has a maximal element.

(c) Show that V has a basis.

5. Let X be a topological space and let A ⊂ X be a subset. Suppose that for all x ∈ A, there exists an
open set U satisfying x ∈ U ⊂ A. Show that A is open.

———————————————————————————————————————————–

Solutions:

1. (a) Let A be the collection of subsets of the form f−1({b}) for b ∈ B. Since f is surjective, each set
in this collection is non-empty. Moreover, if b 6= b′, then f−1({b}) and f−1({b′}) are disjoint since
any common element a ∈ A would satisfy f(a) = b and f(a) = b′, contradicting b 6= b′. Thus A is
a collection of disjoint non-empty sets. Let C be as in the axiom of choice: C ∩ f−1({b}) consists
of exactly one element, which we will denote by g(b). Thus g : B → A is a function, and for b ∈ B
we have f ◦ g(b) = f(g(b)) = b since g(b) ∈ f−1(b). �

(b) Fix an arbitrary a0 ∈ A. Since f is injective, if b ∈ f(A) then there is a unique a ∈ A with
f(a) = b. Let us denote this unique element by ab. Define h : B → A by

h(b) :=

{
ab if b ∈ f(A)

a0 otherwise
.

For a ∈ A, note that af(a) = a since a is the unique element whose image under f is f(a). Thus
we have h(f(a)) = af(a) = a. �
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2. Let A be a collection of disjoint non-empty sets. Define

X :=
⋃
A∈A

A.

By the well-ordering theorem, there exists an order relation < on X making it well-ordered. For each
A ∈ A, we have A ⊂ X and A is non-empty by assumption. Consequently, by the well-ordering there
exists a smallest element in A, which we denote xA. Define C := {xA | A ∈ A}. Then for all A ∈ A
we have {xA} ⊂ C ∩ A. If this reverse containment does not hold, then by definition of C, we must
have xB ∈ C ∩A for some other B ∈ A. But then xB ∈ A ∩B contradicts the set in A being disjoint.
Thus C ∩A = {xA}, and so the axiom of choice holds. �

3. (a) Suppose, towards a contradiction, that x0 ∈ SΩ is a largest element. This means means x ≤ x0

for all x ∈ SΩ and so
SΩ = {x | x < x0} ∪ {x0}.

However, {x | x < x0} = Sx0 is the section of SΩ by x0 and is countable by definition of SΩ. So the
above equality shows SΩ is a finite union of countable sets and hence is countable, a contradiction.
Thus SΩ has no largest element. �

(b) Fix x ∈ SΩ and observe

SΩ = {y | y < x} ∪ {x} ∪ {y | x < y} = Sx ∪ {x} ∪ {y | x < y}.

The first two sets in the last union are countable, and so we must have {y | x < y} lest we
contradict SΩ being uncountable. �

(c) Suppose, towards a contradiction, that X is countable. Then by the last theorem in §10 we know
X is bounded above by some y1 ∈ SΩ. Let y2 be the smallest element of the set {y | y1 < y}. This
exists because this set is non-empty and in fact uncountable by the previous part and because SΩ

is well-ordered. Note that (y1, y2) = ∅ since any y ∈ SΩ satisfying y1 < y < y2 would contradict
y2 being the smallest element. We then inductively define a sequence (yn)n∈N ⊂ SΩ by letting
yn be the smallest element of {y | yn−1 < y}, which exists by the same reasoning used for y2.
Likewise, we have (yn−1, yn) = ∅ for all n ∈ N. Now, B := {yn | n ∈ N} is a countable subset
of SΩ and is therefore bounded above by the last theorem in §10. Since SΩ is well-ordered, the
supremum of B exists, which we denote by y∞.

y1 < y2 < y3 < · · · < yn < yn+1 · · · ≤ y∞.

Consequently, yn < y∞ for all n ∈ N. We claim that y∞ ∈ X. Indeed, if y∞ 6∈ X then there exists
a < y∞ with (a, y∞) = ∅. Since y∞ is the smallest upper bound for B, it must be that a ≤ yn for
some n ∈ N. Since yn < y∞ and (a, y∞) = ∅, we must have a = yn. But then a = yn < yn+1 < y∞
contradicts (a, y∞) = ∅. Thus we must have y∞ ∈ X. However, this contradicts y1 being an upper
bound for X. Thus X cannot be bounded above in SΩ and is therefore uncountable. �

4. (a) Suppose, towards a contradiction, that A ∪ {v} is not independent. Then there exist distinct
vectors v1, . . . , vn ∈ A∪{v} and non-zero scalars c1, . . . , cn such that c1v1 + · · ·+ cnvn = 0. Since
A is independent, we cannot have v1, . . . , vn ∈ A. Thus one of v1, . . . , vn equals v, say vn = v.
But then

v = − c1

cn
v1 + · · ·+−cn−1

cn
vn−1,

which contradicts v not being in the span of A. Thus A ∪ {v} is independent. �

(b) Let I denote the collection of independent subsets of V . Zorn’s lemma will give us the existence
of a maximal element if we can show that every chain in I has an upperbound. Let C ⊂ I be a
chain (i.e. a totally ordered subset). Consider the union

B :=
⋃
A∈C

A.
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Since A ⊂ B for all C, if we can show that B ∈ I (i.e. that B is independent) then it will be
an upper bound for C. Let v1, . . . , vn ∈ B and suppose c1, . . . , cn are non-zero scalars. We must
show c1v1 + · · · + cnvn 6= 0. By definition of B, for each j = 1 . . . , n there is some Aj ∈ C with
vj ∈ Aj . Since C is a chain, we have Ai ⊂ Aj or Aj ⊂ Ai for each 1 ≤ i, j ≤ n. Consequently,
there exists 1 ≤ j ≤ n such that Ai ⊂ Aj for all 1 ≤ i ≤ n. (To find this j, start with j = 1, then
if A1 ⊂ A2 take j = 2 otherwise leave j = 1, and proceed in this way through all the indices.) So
we therefore have v1, . . . , vn ∈ Aj and since Aj is independent we obtain c1v1 + · · · + cnvn 6= 0.
Thus B is independent (i.e. B ∈ I) and is an upper bound for the chain C. Zorn’s lemma then
completes the proof. �

(c) Using the notation from the previous part, let B ∈ I be a maximal element, which exists by the
previous part. We claim that B is a basis for V . Indeed, B ∈ I implies B is independent. If the
span of B is not all V , then there exists v ∈ V not in the span of B. By part (a), B ∪ {v} is
an independent set and it is strictly larger than B, contradicting the maximality of B. Thus we
must have that the span of B is all of V , and therefore B is a basis for V as claimed. �

5. For x ∈ A, let Ux be the open set satisfying x ∈ Ux ⊂ A. Observe

A =
⋃
x∈A
{x} ⊂

⋃
x∈A

Ux ⊂ A.

Thus the above inclusions must in fact be equalities. In particular, A =
⋃

x∈A Ux is open as a union of
open sets. �
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