
Math 461 Homework 1 Solutions 9/11/2020

Exercises: (§2, 3, 6, 7)

1. Let f : A→ B be a function.

(a) For A0 ⊂ A and B0 ⊂ B, show that A0 ⊂ f−1(f(A0)) and f(f−1(B0)) ⊂ B0.

(b) Show that f is injective if and only if A0 = f−1(f(A0)) for all subsets A0 ⊂ A.

(c) Show that f is surjective if and only if f(f−1(B0)) = B0 for all subsets B0 ⊂ B.

2. Let C be a relation on a set A. For a subset A0 ⊂ A, the restriction of C to A0 is the relation defined
by the subset D := C ∩ (A0 ×A0).

(a) For a, b ∈ A, show that aDb if and only if a, b ∈ A0 and aCb.

(b) Show that if C is an equivalence relation on A, then D is an equivalence relation on A0.

(c) Show that if C is an order relation on A, then D is an order relation on A0.

(d) Show that if C is a partial order relation on A, then D is a partial order relation on A0.

3. Let A and B be non-empty sets.

(a) Prove that A×B is finite if and only if A and B are both finite.

(b) Let BA denote the set of functions f : A→ B. Show that if A and B are finite, then so is BA.

(c) Suppose BA is finite and B has at least two elements. Show that A and B are finite.

4. We say two sets A and B have the same cardinality if there is a bijection of A with B. In this exercise,
you will prove the Schröder–Bernstein Theorem: if there exist injections f : A → B and g : B → A,
then A and B have the same cardinality.

(a) Suppose C ⊂ A and that there is an injection f : A→ C. Define A1 := A, C1 := C, and for n > 1
recursively define An := f(An−1) and Cn := f(Cn−1). Show that

A1 ⊃ C1 ⊃ A2 ⊃ C2 ⊃ A3 ⊃ · · ·

and that f(An \ Cn) = An+1 \ Cn+1 for all n ∈ N.

(b) Using the notation from the previous part, show that h : A→ C defined by

h(x) :=

{
f(x) if x ∈ An \ Cn for some n ∈ N
x otherwise

is a bijection. [Hint: draw a picture.]

(c) Prove the Schröder–Bernstein Theorem.

5. Let {0, 1}N denote the set of functions f : N→ {0, 1}.

(a) Show that {0, 1}N and P(N) have the same cardinality.

(b) Let C be the collection of countable subsets of {0, 1}N. Show that C and {0, 1}N have the same
cardinality. [Hint: first construct an injection from C to ({0, 1}N)N then use Exercise 4.]

———————————————————————————————————————————–

Solutions:

1. (a) Let a ∈ A0. Then f(a) ∈ f(A0) and therefore a ∈ f−1(f(A0)). Since a ∈ A0 was arbitrary,
we have A0 ⊂ f−1(f(A0)). Next, let b ∈ f(f−1(B0)). Then there exists a ∈ f−1(B0) such that
f(a) = b. But a ∈ f−1(B0) implies b = f(a) ∈ B0. Since b ∈ f(f−1(B0)) was arbitrary, we have
f(f−1(B0)) ⊂ B0. �

1 c©Brent Nelson 2020



Math 461 Homework 1 Solutions 9/11/2020

(b) (=⇒) : Suppose f is injective and let A0 ⊂ A. By the previous part, it suffices to show
f−1(f(A0)) ⊂ A0. If a ∈ f−1(f(A0)), then f(x) ∈ f(A0) and so there is some a1 ∈ A0 with
f(a) = f(a1). Since f is injective, we must have a = a1 ∈ A0. Thus f−1(f(A0)) ⊂ A0.

(⇐=) : We will proceed by contrapositive. Suppose f is not injective. Then there exists a1, a2 ∈ A
with a1 6= a2 and f(a1) = f(a2). Consider A0 := {a1}. Then f({a1}) = {f(a1)} and so
a1, a2 ∈ f−1(f({a1})). Consequently, {a1} does not equal f−1(f({a1})) (it is a strict subset). �

(c) (=⇒) : Suppose f is surjective and let B0 ⊂ B. By part (a) it suffices to show B0 ⊂ f(f−1(B0)).
Let b ∈ B0. Since f is surjective, we can find some a ∈ A with f(a) = b. Consequently,
a ∈ f−1(B0) and b = f(a) ∈ f(f−1(B0)). Thus B0 ⊂ f(f−1(B0)).

(⇐=) : We will again proceed by contrapositive. Suppose f is not surjective. Then there exists
b ∈ B so that f(a) 6= b for all a ∈ A. Consider B0 := {b}. Since nothing in A is mapped to b by
f , we have f−1({b}) = ∅. Thus f(f−1({b})) = ∅ 6= {b}. �

2. (a) If aDb, then this means (a, b) ∈ D = C ∩ (A0 × A0). In particular, (a, b) ∈ C so that aCb, and
(a, b) ∈ A0 × A0 so that a, b ∈ A0. Conversely, if a, b ∈ A0 and aCb, then the former implies
(a, b) ∈ A0 ×A0 and the latter implies (a, b) ∈ C. Thus (a, b) is in their intersection, which is D,
and consequently aDb. �

(b) Let C be an equivalence relation on A and let D be its restriction to a subset A0 ⊂ A. So C
satisfies reflexivity, symmetry, and transitivity and we must show D inherits these properties. For
a ∈ A0, we have aCa by reflexivity and consequently aDa by part (a). Thus D is reflexive. For
a, b ∈ A0, if aDb, then aCb by part (a). By symmetry of C we have bCa and since we still have
a, b ∈ A0, we obtain bDa by part (a). Thus D is symmetric. Finally, for a, b, c ∈ A0, if aDb and
bDc, then we have aCb and bCc, and so aCc by transitivity of C. Using part (a) again we obtain
aDc whence D is transitive. �

(c) Let C be an order relation on A and let D be its restriction to a subset A0 ⊂ A. So C satisfies
comparability, non-reflexivity, and transitivity and we must show D inherits these properties. Let
a, b ∈ A0 with a 6= b. Then aCb by comparability, and consequently aDb by part (a); that is, D
has comparability. Let a ∈ A0. If aDa, then aCa by part (a), which contradicts non-reflexivity
of C. Thus aDa holds for no a ∈ A0, which means D has non-reflexivity. Finally, the proof of
transitivity follows by exactly the same argument as in part (b). �

(d) Let C be a partial order relation on A and let D be its restriction to a subset A0 ⊂ A. So C
satisfies reflexivity, antisymmetry, and transitivity and we must show D inherits these properties.
Reflexivity and transitivity follows by the same arguments as in part (b), so it suffices show D is
antisymmetric. If a, b ∈ A0 satisfy aDb and bDa, then we have aCb and bCa by part (a). Since
C is antisymmetric, we must have a = b. Thus D is antisymmetric. �

3. (a) (=⇒) : Suppose A×B is finite. Then by Corollary 6.7, there is an injective function f : A×B →
{1, 2, . . . , n} for some n ∈ N. Let a0 ∈ A and b0 ∈ B (which exist since A and B are assumed to
be non-empty), and note that the maps

ιA : A 3 a 7→ (a, b0) ∈ A×B
ιB : B 3 b 7→ (a0, b) ∈ A×B

are injective. Consequently, f ◦ ιA : A→ {1, 2, . . . , 2} and f ◦ ιB : B → {1, 2, . . . , n} are injective
maps as compositions of injective maps. Thus A and B are finite by Corollary 6.7.

(⇐=) : Suppose A and B are finite. By Corollary 6.7, there are injective functions f : A →
{1, 2, . . . , n} and g : B → {1, 2, . . . ,m}. Note that n,m ≥ 1 since A and B are both non-empty.
Observe that the map

h : {1, 2, . . . , n} × {1, 2, . . . ,m} → {1, 2, . . . , nm}
(i, j) 7→ (i− 1)m+ j

is injective. Indeed, if h(i, j) = h(i′, j′) then (i − i′)m = j′ − j, which implies j′ − j is divisible
by m. Since j′ − j ∈ {−m + 1,−m + 2, . . . ,−1, 0, 1, . . . ,m − 2,m − 1}, this is only possible if
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j′ − j = 0 in which case (i − i′)m = 0. Thus j = j′ and i = i′ and h is injective. Consider the
map k : A × B → {1, 2, . . . , nm} defined by k(a, b) := h(f(a), g(b)). We claim this is injective,
in which case A × B is finite by Corollary 6.7. Suppose k(a, b) = k(a′, b′). Then h(f(a), g(b)) =
h(f(a′), g(b′)). Since h is injective, we must have (f(a), g(b)) = (f(a′), g(b′)). So f(a) = f(a′)
and g(b) = g(b′), but since each of these functions is injective we obtain a = a′ and b = b′. Thus
k is injective. �

(b) Let n be the cardinality of A and m the cardinality of B. We will show that there is a bijection
between BA and Bn, and then use the previous part (and induction) to show Bn is finite. Since A
has cardinality n, there is a bijection σ : {1, 2, . . . , n} → A. So we can define a map φ : BA → Bn

by φ(f) := (f(σ(1)), . . . , f(σ(n))) for f ∈ BA. Suppose φ(f) = φ(f ′) for f, f ′ ∈ BA. Then
f(σ(j)) = f ′(σ(j)) for each j = 1, . . . , n. This implies f = f ′ because each a ∈ A occurs in the
set {σ(1), . . . , σ(n)}. Thus φ is injective. Also, given any (b1, . . . , bn) ∈ Bn the function f ∈ BA
defined by f(a) := bσ−1(a) satisfies φ(f) = (b1, . . . , bn). Thus φ is also surjective. So it now suffices
to show Bn is finite, and we will proceed by induction on n. If n = 1, then this is immediate from
the finiteness of B. So suppose we know Bn−1 is finite. Then Bn = Bn−1 ×B, and consequently
Bn is finite by part (a). Induction then concludes the proof. �

(c) We will first show A is finite. Let b1, b2 ∈ B be distinct elements. For a fixed a ∈ A, define
fa : A→ B by fa(a) = b1 and fa(a′) = b2 for a′ 6= a.Then a 7→ fa is an injection from A into BA.
Since BA is finite, there is an injection from BA to {1, . . . , n} for some n ∈ N. The composition
of these injections, along with Corollary 6.7 shows A is finite. Next, we show B is finite. For each
b ∈ B, define gb : A→ B by gb(a) := b for all a ∈ B. Then b 7→ gb is an injection from B to BA.
By the same argument as with A, this implies B is finite. �

4. (a) We will establish this series of containments by proving “An ⊃ Cn ⊃ An+1” via induction on n.
For n = 1, we have A1 = A, C1 = C, and A2 = f(A). So the inclusion A1 ⊃ C1 follows from the
fact that C is a subset of A, and the inclusion C1 ⊃ A2 follows from the fact that the C is the range
of f . Now assume An−1 ⊃ Cn−1 ⊃ An. Then appllying f yields f(An−1) ⊃ f(Cn−1) ⊃ f(An),
but this is precisely the series of inclusions An ⊃ Cn ⊃ An+1. Thus the full series of inclusions
holds by induction.

Now, we must show f(An\Cn) = An+1\Cn+1 for each n ∈ N. Fix n ∈ N and let a ∈ An\Cn. Then
f(a) ∈ An+1 by definition of An+1. We also cannot have f(a) ∈ Cn+1 because Cn+1 = f(Cn)
would imply that f(a) = f(c) for some c ∈ Cn and hence a = c ∈ Cn since f is injective, a
contradiction. Thus f(a) ∈ An+1 \ Cn+1, and so f(An \ Cn) ⊂ An+1 \ Cn+1. Conversely, let
b ∈ An+1 \Cn+1. Then An+1 = f(An) implies there is some a ∈ An with f(a) = b. We must also
have a 6∈ Cn because otherwise b = f(a) ∈ Cn+1, a contradiction. Thus An+1 \Cn+1 ⊂ f(An \Cn)
and so the sets are equal.

(b) We first show h is injective. Suppose h(x) = h(y). If x ∈ An \ Cn for some n ∈ N, then
h(y) = h(x) = f(x) ∈ An+1 \ Cn+1 by part (a). We cannot have h(y) = y because this would
require (by definition of h) that y 6∈ An \ Cn for any n, and yet y = h(y) = f(x) ∈ An+1 \ Cn+1.
Thus we must have h(y) = f(y), and so f(y) = f(x). Since f is injective, this implies x = y. If
x 6∈ An \ Cn for all n ∈ N, then h(x) = x by definition of h. By the same reasoning as above, we
cannot have y ∈ Am \ Cm for any m, and so we have y = h(y) = h(x) = x. Thus h is injective.

Next we show h is surjective. Let y ∈ C. If y 6∈ An \Cn for any n ∈ N, then h(y) = y and so y is
in the image of h. If y ∈ An \ Cn for some n, then we must have n > 1 since y ∈ C = C1. Thus,
by part (a), An \ Cn = f(An−1 \ Cn−1). So there is some x ∈ An−1 \ Cn1

with f(x) = y. Since
x ∈ An−1 \ Cn−1, we have h(x) = f(x) = y. Thus h is surjective.

(c) Suppose f : A → B and g : B → A are injections. Consider C := g(B) ⊂ A and note that
g ◦ f : A → C is an injection. So by part (b), there is a bijection h : A → C. Since g is an
injection, by changing the range of g we get that g : B → g(B) = C is a bijection. Hence
g−1 ◦ h : A→ B is a bijection and so A and B have the same cardinality. �

5. (a) Given f ∈ {0, 1}N, define a subset a subset of the natural numbers by Af := {n ∈ N | f(n) = 1}.
We claim that f 7→ Af is a bijection {0, 1}N → P(N). If Af = Af ′ , then for each n ∈ N we have
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f(n) = f ′(n) = 1 if n ∈ Af = Af ′ and f(n) = f ′(n) = 0 otherwise. Thus f 7→ Af is injective.
Given A ∈ P(N), define f : N → {0, 1} by f(n) = 1 if n ∈ A and f(n) = 0 otherwise. Then
Af = A and so the map is also surjective. Thus {0, 1}N and P(N) have the same cardinality. �

(b) We will show there are injections C → {0, 1}N and {0, 1}N → C and then use the Schröder–
Bernstein Theorem. The latter is easy to define: simply send f ∈ {0, 1}N to {f} ∈ C. For the the
former, we will actually define intermediate injections C → ({0, 1}N)N → {0, 1}N.

If C ∈ C, then by Theorem 7.1 there is a surjective function fC : N → C. Changing the range
of fC to all of {0, 1}N, we can view fC ∈ ({0, 1}N)N where C is the image of f . Then for
C,C ′ ∈ C, if fC = fC′ then in particular the image of fC (which is C) equals the image of
fC′ (which is C ′). Thus C 7→ fC is an injection C → ({0, 1}N)N. It remains to show there is
an injection ({0, 1}N)N → {0, 1}N. First recall that since N × N is countably infinite, there is a
bijection g : N → N → N. Now, given f ∈ ({0, 1}N)N, we view it as a function f : N → {0, 1}N.
That is, for each n ∈ N, f(n) ∈ {0, 1}N and so f(n) : N → {0, 1}. Thus (f(n))(m) ∈ {0, 1} for
each n,m ∈ N, which means we can view f as a function f : N × N → {0, 1}. Consequently,
f ◦ g : N → {0, 1}, or f ◦ g ∈ {0, 1}N. We claim f 7→ f ◦ g is the desired injection. Indeed, if
f ◦ g = f ′ ◦ g for f, f ′ ∈ ({0, 1}N)N, then for any (n,m) ∈ N × N let k = g−1(n, ). We have
f(n,m) = f(g(k)) = f ′(g(k)) = f ′(n,m). Since (n,m) ∈ N × N was arbitrary, we obtain f = f ′

and so f 7→ f ◦ g is injective. �
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