Exercises: $(\S 2,3,6,7)$

1. Let $f: A \rightarrow B$ be a function.
(a) For $A_{0} \subset A$ and $B_{0} \subset B$, show that $A_{0} \subset f^{-1}\left(f\left(A_{0}\right)\right)$ and $f\left(f^{-1}\left(B_{0}\right)\right) \subset B_{0}$.
(b) Show that f is injective if and only if $A_{0}=f^{-1}\left(f\left(A_{0}\right)\right)$ for all subsets $A_{0} \subset A$.
(c) Show that f is surjective if and only if $f\left(f^{-1}\left(B_{0}\right)\right)=B_{0}$ for all subsets $B_{0} \subset B$.
2. Let C be a relation on a set A. For a subset $A_{0} \subset A$, the restriction of C to A_{0} is the relation defined by the subset $D:=C \cap\left(A_{0} \times A_{0}\right)$.
(a) For $a, b \in A$, show that $a D b$ if and only if $a, b \in A_{0}$ and $a C b$.
(b) Show that if C is an equivalence relation on A, then D is an equivalence relation on A_{0}.
(c) Show that if C is an order relation on A, then D is an order relation on A_{0}.
(d) Show that if C is a partial order relation on A, then D is a partial order relation on A_{0}.
3. Let A and B be non-empty sets.
(a) Prove that $A \times B$ is finite if and only if A and B are both finite.
(b) Let B^{A} denote the set of functions $f: A \rightarrow B$. Show that if A and B are finite, then so is B^{A}.
(c) Suppose B^{A} is finite and B has at least two elements. Show that A and B are finite.
4. We say two sets A and B have the same cardinality if there is a bijection of A with B. In this exercise, you will prove the Schröder-Bernstein Theorem: if there exist injections $f: A \rightarrow B$ and $g: B \rightarrow A$, then A and B have the same cardinality.
(a) Suppose $C \subset A$ and that there is an injection $f: A \rightarrow C$. Define $A_{1}:=A, C_{1}:=C$, and for $n>1$ recursively define $A_{n}:=f\left(A_{n-1}\right)$ and $C_{n}:=f\left(C_{n-1}\right)$. Show that

$$
A_{1} \supset C_{1} \supset A_{2} \supset C_{2} \supset A_{3} \supset \cdots
$$

and that $f\left(A_{n} \backslash C_{n}\right)=A_{n+1} \backslash C_{n+1}$ for all $n \in \mathbb{N}$.
(b) Using the notation from the previous part, show that $h: A \rightarrow C$ defined by

$$
h(x):= \begin{cases}f(x) & \text { if } x \in A_{n} \backslash C_{n} \text { for some } n \in \mathbb{N} \\ x & \text { otherwise }\end{cases}
$$

is a bijection. [Hint: draw a picture.]
(c) Prove the Schröder-Bernstein Theorem.
5. Let $\{0,1\}^{\mathbb{N}}$ denote the set of functions $f: \mathbb{N} \rightarrow\{0,1\}$.
(a) Show that $\{0,1\}^{\mathbb{N}}$ and $\mathcal{P}(\mathbb{N})$ have the same cardinality.
(b) Let \mathcal{C} be the collection of countable subsets of $\{0,1\}^{\mathbb{N}}$. Show that \mathcal{C} and $\{0,1\}^{\mathbb{N}}$ have the same cardinality. [Hint: first construct an injection from \mathcal{C} to $\left(\{0,1\}^{\mathbb{N}}\right)^{\mathbb{N}}$ then use Exercise 4.]

Solutions:

1. (a) Let $a \in A_{0}$. Then $f(a) \in f\left(A_{0}\right)$ and therefore $a \in f^{-1}\left(f\left(A_{0}\right)\right)$. Since $a \in A_{0}$ was arbitrary, we have $A_{0} \subset f^{-1}\left(f\left(A_{0}\right)\right)$. Next, let $b \in f\left(f^{-1}\left(B_{0}\right)\right)$. Then there exists $a \in f^{-1}\left(B_{0}\right)$ such that $f(a)=b$. But $a \in f^{-1}\left(B_{0}\right)$ implies $b=f(a) \in B_{0}$. Since $b \in f\left(f^{-1}\left(B_{0}\right)\right)$ was arbitrary, we have $f\left(f^{-1}\left(B_{0}\right)\right) \subset B_{0}$.
(b) (\Longrightarrow) : Suppose f is injective and let $A_{0} \subset A$. By the previous part, it suffices to show $f^{-1}\left(f\left(A_{0}\right)\right) \subset A_{0}$. If $a \in f^{-1}\left(f\left(A_{0}\right)\right)$, then $f(x) \in f\left(A_{0}\right)$ and so there is some $a_{1} \in A_{0}$ with $f(a)=f\left(a_{1}\right)$. Since f is injective, we must have $a=a_{1} \in A_{0}$. Thus $f^{-1}\left(f\left(A_{0}\right)\right) \subset A_{0}$.
(\Longleftarrow) : We will proceed by contrapositive. Suppose f is not injective. Then there exists $a_{1}, a_{2} \in A$ with $a_{1} \neq a_{2}$ and $f\left(a_{1}\right)=f\left(a_{2}\right)$. Consider $A_{0}:=\left\{a_{1}\right\}$. Then $f\left(\left\{a_{1}\right\}\right)=\left\{f\left(a_{1}\right)\right\}$ and so $a_{1}, a_{2} \in f^{-1}\left(f\left(\left\{a_{1}\right\}\right)\right)$. Consequently, $\left\{a_{1}\right\}$ does not equal $f^{-1}\left(f\left(\left\{a_{1}\right\}\right)\right)$ (it is a strict subset).
(c) (\Longrightarrow) : Suppose f is surjective and let $B_{0} \subset B$. By part (a) it suffices to show $B_{0} \subset f\left(f^{-1}\left(B_{0}\right)\right)$. Let $b \in B_{0}$. Since f is surjective, we can find some $a \in A$ with $f(a)=b$. Consequently, $a \in f^{-1}\left(B_{0}\right)$ and $b=f(a) \in f\left(f^{-1}\left(B_{0}\right)\right)$. Thus $B_{0} \subset f\left(f^{-1}\left(B_{0}\right)\right)$.
(\Longleftarrow) : We will again proceed by contrapositive. Suppose f is not surjective. Then there exists $b \in B$ so that $f(a) \neq b$ for all $a \in A$. Consider $B_{0}:=\{b\}$. Since nothing in A is mapped to b by f, we have $f^{-1}(\{b\})=\emptyset$. Thus $f\left(f^{-1}(\{b\})\right)=\emptyset \neq\{b\}$.
2. (a) If $a D b$, then this means $(a, b) \in D=C \cap\left(A_{0} \times A_{0}\right)$. In particular, $(a, b) \in C$ so that $a C b$, and $(a, b) \in A_{0} \times A_{0}$ so that $a, b \in A_{0}$. Conversely, if $a, b \in A_{0}$ and $a C b$, then the former implies $(a, b) \in A_{0} \times A_{0}$ and the latter implies $(a, b) \in C$. Thus (a, b) is in their intersection, which is D, and consequently $a D b$.
(b) Let C be an equivalence relation on A and let D be its restriction to a subset $A_{0} \subset A$. So C satisfies reflexivity, symmetry, and transitivity and we must show D inherits these properties. For $a \in A_{0}$, we have $a C a$ by reflexivity and consequently $a D a$ by part (a). Thus D is reflexive. For $a, b \in A_{0}$, if $a D b$, then $a C b$ by part (a). By symmetry of C we have $b C a$ and since we still have $a, b \in A_{0}$, we obtain $b D a$ by part (a). Thus D is symmetric. Finally, for $a, b, c \in A_{0}$, if $a D b$ and $b D c$, then we have $a C b$ and $b C c$, and so $a C c$ by transitivity of C. Using part (a) again we obtain $a D c$ whence D is transitive.
(c) Let C be an order relation on A and let D be its restriction to a subset $A_{0} \subset A$. So C satisfies comparability, non-reflexivity, and transitivity and we must show D inherits these properties. Let $a, b \in A_{0}$ with $a \neq b$. Then $a C b$ by comparability, and consequently $a D b$ by part (a); that is, D has comparability. Let $a \in A_{0}$. If $a D a$, then $a C a$ by part (a), which contradicts non-reflexivity of C. Thus $a D a$ holds for no $a \in A_{0}$, which means D has non-reflexivity. Finally, the proof of transitivity follows by exactly the same argument as in part (b).
(d) Let C be a partial order relation on A and let D be its restriction to a subset $A_{0} \subset A$. So C satisfies reflexivity, antisymmetry, and transitivity and we must show D inherits these properties. Reflexivity and transitivity follows by the same arguments as in part (b), so it suffices show D is antisymmetric. If $a, b \in A_{0}$ satisfy $a D b$ and $b D a$, then we have $a C b$ and $b C a$ by part (a). Since C is antisymmetric, we must have $a=b$. Thus D is antisymmetric.
3. (a) (\Longrightarrow) : Suppose $A \times B$ is finite. Then by Corollary 6.7, there is an injective function $f: A \times B \rightarrow$ $\{1,2, \ldots, n\}$ for some $n \in \mathbb{N}$. Let $a_{0} \in A$ and $b_{0} \in B$ (which exist since A and B are assumed to be non-empty), and note that the maps

$$
\begin{aligned}
& \iota_{A}: A \ni a \mapsto\left(a, b_{0}\right) \in A \times B \\
& \iota_{B}: B \ni b \mapsto\left(a_{0}, b\right) \in A \times B
\end{aligned}
$$

are injective. Consequently, $f \circ \iota_{A}: A \rightarrow\{1,2, \ldots, 2\}$ and $f \circ \iota_{B}: B \rightarrow\{1,2, \ldots, n\}$ are injective maps as compositions of injective maps. Thus A and B are finite by Corollary 6.7.
(\Longleftarrow) : Suppose A and B are finite. By Corollary 6.7, there are injective functions $f: A \rightarrow$ $\{1,2, \ldots, n\}$ and $g: B \rightarrow\{1,2, \ldots, m\}$. Note that $n, m \geq 1$ since A and B are both non-empty. Observe that the map

$$
\begin{aligned}
h:\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} & \rightarrow\{1,2, \ldots, n m\} \\
(i, j) & \mapsto(i-1) m+j
\end{aligned}
$$

is injective. Indeed, if $h(i, j)=h\left(i^{\prime}, j^{\prime}\right)$ then $\left(i-i^{\prime}\right) m=j^{\prime}-j$, which implies $j^{\prime}-j$ is divisible by m. Since $j^{\prime}-j \in\{-m+1,-m+2, \ldots,-1,0,1, \ldots, m-2, m-1\}$, this is only possible if
$j^{\prime}-j=0$ in which case $\left(i-i^{\prime}\right) m=0$. Thus $j=j^{\prime}$ and $i=i^{\prime}$ and h is injective. Consider the map $k: A \times B \rightarrow\{1,2, \ldots, n m\}$ defined by $k(a, b):=h(f(a), g(b))$. We claim this is injective, in which case $A \times B$ is finite by Corollary 6.7. Suppose $k(a, b)=k\left(a^{\prime}, b^{\prime}\right)$. Then $h(f(a), g(b))=$ $h\left(f\left(a^{\prime}\right), g\left(b^{\prime}\right)\right)$. Since h is injective, we must have $(f(a), g(b))=\left(f\left(a^{\prime}\right), g\left(b^{\prime}\right)\right)$. So $f(a)=f\left(a^{\prime}\right)$ and $g(b)=g\left(b^{\prime}\right)$, but since each of these functions is injective we obtain $a=a^{\prime}$ and $b=b^{\prime}$. Thus k is injective.
(b) Let n be the cardinality of A and m the cardinality of B. We will show that there is a bijection between B^{A} and B^{n}, and then use the previous part (and induction) to show B^{n} is finite. Since A has cardinality n, there is a bijection $\sigma:\{1,2, \ldots, n\} \rightarrow A$. So we can define a map $\phi: B^{A} \rightarrow B^{n}$ by $\phi(f):=(f(\sigma(1)), \ldots, f(\sigma(n)))$ for $f \in B^{A}$. Suppose $\phi(f)=\phi\left(f^{\prime}\right)$ for $f, f^{\prime} \in B^{A}$. Then $f(\sigma(j))=f^{\prime}(\sigma(j))$ for each $j=1, \ldots, n$. This implies $f=f^{\prime}$ because each $a \in A$ occurs in the set $\{\sigma(1), \ldots, \sigma(n)\}$. Thus ϕ is injective. Also, given any $\left(b_{1}, \ldots, b_{n}\right) \in B^{n}$ the function $f \in B^{A}$ defined by $f(a):=b_{\sigma^{-1}(a)}$ satisfies $\phi(f)=\left(b_{1}, \ldots, b_{n}\right)$. Thus ϕ is also surjective. So it now suffices to show B^{n} is finite, and we will proceed by induction on n. If $n=1$, then this is immediate from the finiteness of B. So suppose we know B^{n-1} is finite. Then $B^{n}=B^{n-1} \times B$, and consequently B^{n} is finite by part (a). Induction then concludes the proof.
(c) We will first show A is finite. Let $b_{1}, b_{2} \in B$ be distinct elements. For a fixed $a \in A$, define $f_{a}: A \rightarrow B$ by $f_{a}(a)=b_{1}$ and $f_{a}\left(a^{\prime}\right)=b_{2}$ for $a^{\prime} \neq a$. Then $a \mapsto f_{a}$ is an injection from A into B^{A}. Since B^{A} is finite, there is an injection from B^{A} to $\{1, \ldots, n\}$ for some $n \in \mathbb{N}$. The composition of these injections, along with Corollary 6.7 shows A is finite. Next, we show B is finite. For each $b \in B$, define $g_{b}: A \rightarrow B$ by $g_{b}(a):=b$ for all $a \in B$. Then $b \mapsto g_{b}$ is an injection from B to B^{A}. By the same argument as with A, this implies B is finite.
4. (a) We will establish this series of containments by proving " $A_{n} \supset C_{n} \supset A_{n+1}$ " via induction on n. For $n=1$, we have $A_{1}=A, C_{1}=C$, and $A_{2}=f(A)$. So the inclusion $A_{1} \supset C_{1}$ follows from the fact that C is a subset of A, and the inclusion $C_{1} \supset A_{2}$ follows from the fact that the C is the range of f. Now assume $A_{n-1} \supset C_{n-1} \supset A_{n}$. Then appllying f yields $f\left(A_{n-1}\right) \supset f\left(C_{n-1}\right) \supset f\left(A_{n}\right)$, but this is precisely the series of inclusions $A_{n} \supset C_{n} \supset A_{n+1}$. Thus the full series of inclusions holds by induction.
Now, we must show $f\left(A_{n} \backslash C_{n}\right)=A_{n+1} \backslash C_{n+1}$ for each $n \in \mathbb{N}$. Fix $n \in \mathbb{N}$ and let $a \in A_{n} \backslash C_{n}$. Then $f(a) \in A_{n+1}$ by definition of A_{n+1}. We also cannot have $f(a) \in C_{n+1}$ because $C_{n+1}=f\left(C_{n}\right)$ would imply that $f(a)=f(c)$ for some $c \in C_{n}$ and hence $a=c \in C_{n}$ since f is injective, a contradiction. Thus $f(a) \in A_{n+1} \backslash C_{n+1}$, and so $f\left(A_{n} \backslash C_{n}\right) \subset A_{n+1} \backslash C_{n+1}$. Conversely, let $b \in A_{n+1} \backslash C_{n+1}$. Then $A_{n+1}=f\left(A_{n}\right)$ implies there is some $a \in A_{n}$ with $f(a)=b$. We must also have $a \notin C_{n}$ because otherwise $b=f(a) \in C_{n+1}$, a contradiction. Thus $A_{n+1} \backslash C_{n+1} \subset f\left(A_{n} \backslash C_{n}\right)$ and so the sets are equal.
(b) We first show h is injective. Suppose $h(x)=h(y)$. If $x \in A_{n} \backslash C_{n}$ for some $n \in \mathbb{N}$, then $h(y)=h(x)=f(x) \in A_{n+1} \backslash C_{n+1}$ by part (a). We cannot have $h(y)=y$ because this would require (by definition of h) that $y \notin A_{n} \backslash C_{n}$ for any n, and yet $y=h(y)=f(x) \in A_{n+1} \backslash C_{n+1}$. Thus we must have $h(y)=f(y)$, and so $f(y)=f(x)$. Since f is injective, this implies $x=y$. If $x \notin A_{n} \backslash C_{n}$ for all $n \in \mathbb{N}$, then $h(x)=x$ by definition of h. By the same reasoning as above, we cannot have $y \in A_{m} \backslash C_{m}$ for any m, and so we have $y=h(y)=h(x)=x$. Thus h is injective.
Next we show h is surjective. Let $y \in C$. If $y \notin A_{n} \backslash C_{n}$ for any $n \in \mathbb{N}$, then $h(y)=y$ and so y is in the image of h. If $y \in A_{n} \backslash C_{n}$ for some n, then we must have $n>1$ since $y \in C=C_{1}$. Thus, by part (a), $A_{n} \backslash C_{n}=f\left(A_{n-1} \backslash C_{n-1}\right)$. So there is some $x \in A_{n-1} \backslash C_{n_{1}}$ with $f(x)=y$. Since $x \in A_{n-1} \backslash C_{n-1}$, we have $h(x)=f(x)=y$. Thus h is surjective.
(c) Suppose $f: A \rightarrow B$ and $g: B \rightarrow A$ are injections. Consider $C:=g(B) \subset A$ and note that $g \circ f: A \rightarrow C$ is an injection. So by part (b), there is a bijection $h: A \rightarrow C$. Since g is an injection, by changing the range of g we get that $g: B \rightarrow g(B)=C$ is a bijection. Hence $g^{-1} \circ h: A \rightarrow B$ is a bijection and so A and B have the same cardinality.
5. (a) Given $f \in\{0,1\}^{\mathbb{N}}$, define a subset a subset of the natural numbers by $A_{f}:=\{n \in \mathbb{N} \mid f(n)=1\}$. We claim that $f \mapsto A_{f}$ is a bijection $\{0,1\}^{\mathbb{N}} \rightarrow \mathcal{P}(\mathbb{N})$. If $A_{f}=A_{f^{\prime}}$, then for each $n \in \mathbb{N}$ we have
$f(n)=f^{\prime}(n)=1$ if $n \in A_{f}=A_{f^{\prime}}$ and $f(n)=f^{\prime}(n)=0$ otherwise. Thus $f \mapsto A_{f}$ is injective. Given $A \in \mathcal{P}(\mathbb{N})$, define $f: \mathbb{N} \rightarrow\{0,1\}$ by $f(n)=1$ if $n \in A$ and $f(n)=0$ otherwise. Then $A_{f}=A$ and so the map is also surjective. Thus $\{0,1\}^{\mathbb{N}}$ and $\mathcal{P}(\mathbb{N})$ have the same cardinality.
(b) We will show there are injections $\mathcal{C} \rightarrow\{0,1\}^{\mathbb{N}}$ and $\{0,1\}^{\mathbb{N}} \rightarrow \mathcal{C}$ and then use the SchröderBernstein Theorem. The latter is easy to define: simply send $f \in\{0,1\}^{\mathbb{N}}$ to $\{f\} \in \mathcal{C}$. For the the former, we will actually define intermediate injections $\mathcal{C} \rightarrow\left(\{0,1\}^{\mathbb{N}}\right)^{\mathbb{N}} \rightarrow\{0,1\}^{\mathbb{N}}$.
If $C \in \mathcal{C}$, then by Theorem 7.1 there is a surjective function $f_{C}: \mathbb{N} \rightarrow C$. Changing the range of f_{C} to all of $\{0,1\}^{\mathbb{N}}$, we can view $f_{C} \in\left(\{0,1\}^{\mathbb{N}}\right)^{\mathbb{N}}$ where C is the image of f. Then for $C, C^{\prime} \in \mathcal{C}$, if $f_{C}=f_{C^{\prime}}$ then in particular the image of f_{C} (which is C) equals the image of $f_{C^{\prime}}$ (which is C^{\prime}). Thus $C \mapsto f_{C}$ is an injection $\mathcal{C} \rightarrow\left(\{0,1\}^{\mathbb{N}}\right)^{\mathbb{N}}$. It remains to show there is an injection $\left(\{0,1\}^{\mathbb{N}}\right)^{\mathbb{N}} \rightarrow\{0,1\}^{\mathbb{N}}$. First recall that since $\mathbb{N} \times \mathbb{N}$ is countably infinite, there is a bijection $g: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}$. Now, given $f \in\left(\{0,1\}^{\mathbb{N}}\right)^{\mathbb{N}}$, we view it as a function $f: \mathbb{N} \rightarrow\{0,1\}^{\mathbb{N}}$. That is, for each $n \in \mathbb{N}, f(n) \in\{0,1\}^{\mathbb{N}}$ and so $f(n): \mathbb{N} \rightarrow\{0,1\}$. Thus $(f(n))(m) \in\{0,1\}$ for each $n, m \in \mathbb{N}$, which means we can view f as a function $f: \mathbb{N} \times \mathbb{N} \rightarrow\{0,1\}$. Consequently, $f \circ g: \mathbb{N} \rightarrow\{0,1\}$, or $f \circ g \in\{0,1\}^{\mathbb{N}}$. We claim $f \mapsto f \circ g$ is the desired injection. Indeed, if $f \circ g=f^{\prime} \circ g$ for $f, f^{\prime} \in\left(\{0,1\}^{\mathbb{N}}\right)^{\mathbb{N}}$, then for any $(n, m) \in \mathbb{N} \times \mathbb{N}$ let $k=g^{-1}(n$,$) . We have$ $f(n, m)=f(g(k))=f^{\prime}(g(k))=f^{\prime}(n, m)$. Since $(n, m) \in \mathbb{N} \times \mathbb{N}$ was arbitrary, we obtain $f=f^{\prime}$ and so $f \mapsto f \circ g$ is injective.

