Exercises:

§27, 28, 31

1. Let X be a compact topological space and (Y, d) a metric space. Let $C(X, Y)$ denote the set of all continuous functions $f: X \rightarrow Y$.
(a) For $f, g \in C(X, Y)$, show that $h: X \rightarrow \mathbb{R}$ defined by $h(x):=d(f(x), g(x))$ is continuous.
(b) Show that $D(f, g):=\sup _{x \in X} d(f(x), g(x))$ exists and defines a metric on $C(X, Y)$.
(c) Let $\varphi: X \rightarrow X$ be a continuous function. Show that the map $\Phi: C(X, Y) \rightarrow C(X, Y)$ defined by $\Phi(f):=f \circ \varphi$ is uniformly continuous with respect to the metric D.
2. Let (X, d) be a metric space. For $x \in X$ and nonempty $A \subset X$, recall that $d(x, A):=\inf _{a \in A} d(x, a)$.
(a) Show that $d(x, A)=0$ if and only if $x \in \bar{A}$.
(b) Suppose $A \subset V$ for A compact and V open. Show that there exists $\epsilon>0$ so that

$$
\bigcup_{a \in A} B_{d}(a, \epsilon) \subset V
$$

[Hint: consider the function $f(x)=d(x, X \backslash V)$.]
3. Let (X, d) be a compact metric space and let $f: X \rightarrow X$ be a function satisfying $d(f(x), f(y))=d(x, y)$ for all $x, y \in X$. (We call such a function an isometry.) Show that f is a homeomorphism.
4. Let X be a normal topological space and let $A, B \subset X$ be disjoint closed subsets of X. Show that there are open subsets $U, V \subset X$ satisfying $A \subset U, B \subset V$, and $\bar{U} \cap \bar{V}=\emptyset$.
5. Let X be a normal topological space. We say $A \subset X$ is a G_{δ} set if it is a countable intersection of open sets. Show that $A \subset X$ is a closed G_{δ} set if and only if there exists a continuous function $f: X \rightarrow[0,1]$ with $f(x)=0$ for all $x \in A$ and $f(x)>0$ for all $x \notin A$. [Hint: use Urysohn's Lemma.]
6^{*}. For $d \in \mathbb{N}$ and $a=0,1, \ldots, d-1$ define

$$
U_{d, a}:=\{d n+a \mid n \in \mathbb{Z}\} \subset \mathbb{Z}
$$

In this exercise you will use topology to show that there are infinitely many prime numbers.
(a) Show that the collection $\mathcal{B}:=\left\{U_{d, a} \mid d \in \mathbb{N}, a=0,1, \ldots, d-1\right\}$ forms a basis for a topology on \mathbb{Z}.
(b) Show that $U_{d, a}$ is clopen in this topology.
(c) Show that if $U \subset \mathbb{Z}$ is nonempty and open in this topology, then U is infinite.
(d) Let $P \subset \mathbb{N}$ be the subset of prime numbers. Consider

$$
A:=\bigcup_{p \in P} U_{p, 0}
$$

Show that $\mathbb{Z} \backslash A$ is finite.
(e) Deduce that P is infinite.

Solutions:

1. (a) Observe that h is the composition of the functions $f \times g: X \rightarrow Y \times Y$ and $d: Y \times Y \rightarrow \mathbb{R}$. The former is continuous by Exercise 1 on Homework 6, and the latter is continuous by Exercise 4 on Homework 7. Hence h is continuous.
(b) By the previous part, $x \mapsto d(f(x), g(x))$ is continuous. Since X is compact, the extreme value theorem implies the supremum $D(f, g)$ is achieved, and in particular exists. Now, $D(f, g) \geq 0$ since $d(f(x), g(x)) \geq 0$ for all $x \in X$. If $f=g$, then $d(f(x), g(x))=0$ for all $x \in X$ and hence $D(f, g)=0$. Conversely, if $D(f, g)=0$, then $d(f(x), g(x))=0$ for all $x \in X$, which means $f(x)=g(x)$ for all $x \in X$. That is, $f=g$. The symmetry $D(f, g)=D(g, f)$ follows from the corresponding symmetry of d. Finally, for $f, g, h \in C(X, Y)$ and each $x \in X$ we have

$$
d(f(x), h(x)) \leq d(f(x), g(x))+d(g(x), h(x)) \leq D(f, g)+D(g, h)
$$

Taking a supremum over $x \in X$ on the left yields $D(f, h) \leq D(f, g)+D(g, h)$. Hence D is a metric.
(c) Let $\epsilon>0$. Set $\delta=\epsilon$, and suppose $f, g \in C(X, Y)$ satisfy $D(f, g)<\delta=\epsilon$, then $d(f(x), g(x)) \leq$ $D(f, g)$ for all $x \in X$. In particular, this holds for all $x \in \varphi(X): d(f(\varphi(x)), g(\varphi(x))) \leq D(f, g)$ for all $x \in X$. Therefore

$$
D(\Phi(f), \Phi(g))=\sup _{x \in X} d(f \circ \varphi(x), g \circ \varphi(x)) \leq D(f, g)<\delta=\epsilon
$$

Hence Φ is uniformly continuous.
2. (a) We know $x \in \bar{A}$ if and only if $B_{d}(x, \epsilon) \cap A \neq \emptyset$ for all $\epsilon>0$. The latter is equivalent to $d(x, A)<\epsilon$ for all $\epsilon>0$. Since $d(x, A) \geq 0$, this is equivalent to $d(x, A)=0$.
(b) Define $f: X \rightarrow \mathbb{R}$ by $f(x):=d(x, X \backslash V)$, which is continuuous by a lemma from lecture. For each $a \in A \subset V$, there exists $\delta>0$ so that $B_{d}(a, \delta) \subset V$ and hence $d(a, y) \geq \epsilon$ for all $y \in X \backslash B_{d}(x, \epsilon) \supset$ $X \backslash V$. Consequently, $f(a)>0$ for all $a \in A$. Since A is compact, the extreme value theorem implies f attains a smallest value on A, say at $a_{0} \in A: f\left(a_{0}\right) \leq f(a)$ for all $a \in A$. Set $\epsilon:=f\left(a_{0}\right)$, which is strictly positive by our above argument. We claim

$$
\bigcup_{a \in A} B_{d}(a, \epsilon) \subset V .
$$

Indeed, otherwise $B_{d}(a, \epsilon) \cap(X \backslash V) \neq \emptyset$ for some $a \in A$. Thus $d(a, y)<\epsilon$ for some $y \in X \backslash V$ and therefore

$$
f(a)=d(a, X \backslash V) \leq d(a, y)<\epsilon=f\left(a_{0}\right)
$$

contradicting $f\left(a_{0}\right)$ being the smallest element.
3. If $f(x)=f(y)$, then

$$
d(x, y)=d(f(x), f(y))=0
$$

so that $x=y$. Thus f is injective. We also note that f is continuous according to the $\epsilon-\delta$ definition of continuity for metric spaces by simply choosing $\delta=\epsilon$.
Suppose, towards a contradiction, that f is not surjective. Then there exists $y \in X \backslash f(X)$. Since X is compact and f is continuous, $f(X)$ is compact and in particular closed (since metric spaces are Hausdorff). Consequently, $X \backslash f(X)$ is open and so there exists $\epsilon>0$ so that $B_{d}(y, \epsilon) \subset X \backslash f(X)$. For each $n \in \mathbb{N}$, define $x_{n}:=\underbrace{f \circ \cdots \circ f}_{n \text { times }}(y)$. Thus $\left(x_{n}\right)_{n \in \mathbb{N}} \subset X$ is a sequence and for $m<n$ we have
$d\left(x_{n}, x_{m}\right)=d\left(f\left(x_{n-1}\right), f\left(x_{m-1}\right)\right)=d\left(x_{n-1}, x_{m-1}\right)=\cdots=d\left(x_{n-m+1}, x_{1}\right)=d\left(f\left(x_{n-m}\right), f(y)\right)=d\left(x_{n-m}, y\right)$.
Since $x_{n-m}=f\left(x_{n-m-1}\right) \in f(X)$, the above distance is at least ϵ. Thus $d\left(x_{n}, x_{m}\right)>\epsilon$ for all distinct $n, m \in \mathbb{N}$. Now, since X is compact, the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ necessarily has a convergent subsequence $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$, say converging to $x \in X$. Thus there exists $K \in \mathbb{N}$ so that $k \geq K$ implies

$$
d\left(x_{n_{k}}, x\right)<\frac{\epsilon}{2} .
$$

But then for $k, \ell \geq K$ we have

$$
d\left(x_{n_{k}}, x_{n_{\ell}}\right) \leq d\left(x_{n_{k}}, x\right)+d\left(x, x_{n_{\ell}}\right)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon,
$$

contradicting $d\left(x_{n}, x_{m}\right) \geq \epsilon$ for all $n, m \in \mathbb{N}$. Thus f must be surjective, and therefore bijective.
It remains to show $f^{-1}: X \rightarrow X$ is continuous. But if $f(x)=a$ and $f(y)=b$ then

$$
d\left(f^{-1}(a), f^{-1}(a)\right)=d(x, y)=d(f(x), f(y))=d(a, b)
$$

Thus f^{-1} is an isometry and is therefore continuous by the same argument as above.
4. Since X is normal, there exists disjoint open sets $U_{1}, V_{1} \subset X$ with $A \subset U_{1}$ and $B \subset V_{1}$. By a proposition from the lecture on $\S 31$, there exists a neighborhood U of A satisfying $\bar{U} \subset U_{1}$. Set $V:=V_{1}$, and note that $V \subset X \backslash U_{1}$, which is a closed set. Hence $\bar{V} \subset X \backslash U_{1} \subset X \backslash \bar{U}$. Consequently, $\bar{U} \cap \bar{V}=\emptyset$.
5. (\Longrightarrow) : Suppose A is a closed G_{δ} set. Let $\left\{U_{n}: n \in \mathbb{N}\right\}$ be open subsets of X with

$$
\bigcap_{n \in \mathbb{N}} U_{n}=A
$$

Using Urysohn's Lemma, for each $n \in \mathbb{N}$ we can find a continuous function $f_{n}: X \rightarrow[0,1]$ with $\left.f_{n}\right|_{A} \equiv 0$ and $\left.f_{n}\right|_{X \backslash U_{n}} \equiv 1$. Define $f: X \rightarrow[0,1]$ by

$$
f(x)=\sum_{n=1}^{\infty} 2^{-n} f_{n}(x)
$$

Note that $0 \leq f_{n}(x) \leq 1$ implies

$$
0 \leq f(x) \leq \sum_{n=1}^{\infty} 2^{-n}=1
$$

so f is well-defined. Also, $f(x)=0$ for all $x \in A$ since $f_{n}(x)=0$. On the other hand, if $x \notin A$ then there must be some $n \in \mathbb{N}$ such that $x \notin U_{n}$. Consequently, $f_{n}(x)=1$ and so $f(x) \geq 2^{-n}>0$. It remains to show that f is continuous. We will show that the partial sums

$$
S_{N}(x):=\sum_{n=1}^{N} 2^{-n} f_{n}(x)
$$

converge uniformly to f. Since each S_{N} is continuous (as a finite sum of continuous functions), the Uniform Limit Theorem will imply f is continuous. Let $\epsilon>0$. Let $N_{0} \in \mathbb{N}$ be large enough so that $2^{-N_{0}}<\epsilon$. Then for all $N \geq N_{0}$

$$
\sum_{n=N+1} 2^{-n}=2^{-N} \sum_{n=1}^{\infty} 2^{-n}=2^{-N}<\epsilon
$$

Consequently, for all $x \in X$ and all $N \geq N_{0}$ we have

$$
0 \leq f(x)-S_{N}(x)=\sum_{n=N+1}^{\infty} 2^{-n} f_{n}(x) \leq \sum_{n=N+1}^{\infty} 2^{-n}<\epsilon
$$

Thus

$$
\sup _{x \in X}\left|f(x)-S_{N}(x)\right| \leq \epsilon
$$

for all $N \geq N_{0}$, and so $\left(S_{N}\right)_{N \in \mathbb{N}}$ converges uniformly to f.
(\Longleftarrow) : Suppose there is a continuous function $f: X \rightarrow[0,1]$ satisfying $f(x)=0$ for all $x \in A$ and $f(x)>0$ for all $x \notin A$. First note that $A=f^{-1}(\{0\})$ is closed since f is continuous. Next, for each $n \in \mathbb{N}$ set $U_{n}:=f^{-1}\left(\left[0, \frac{1}{n}\right)\right)$, which is open since f is continuous. Then $A \subset U_{n}$ for all $n \in \mathbb{N}$, and if $x \in \bigcap U_{n}$ then $f(x)<\frac{1}{n}$ for all $n \in \mathbb{N}$, which means $f(x)=0$ and so $x \in A$. Thus

$$
A \subset \bigcap_{n \in \mathbb{N}} U_{n} \subset A
$$

Therefore A is the intersection of the U_{n} 's and therefore G_{δ}.

6*. (a) First note that $U_{1,0}=\mathbb{Z}$, and so every element of \mathbb{Z} is contained in a set in the collection \mathcal{B}. Next, suppose $x \in U_{d, a} \cap U_{e, b}$. Then $x=d n+a=e m+b$ for some $n, m \in \mathbb{Z}$. Let f be the least common multiple of d and e and let c be the remainder one gets after dividing x by $f: x=f m+c$ for some multiple $m \in \mathbb{Z}$. Then $x \in U_{f, c}$, and in fact $U_{f, c}=\{x+f n: n \in \mathbb{Z}\}$. Observe that $f n$ is a multiple of both d and e since f is the least common multiple, and therefore $x+f n \in U_{d, a} \cap U_{e, b}$ for all $n \in \mathbb{Z}$. Hence $U_{f, c} \subset U_{d, a} \cap U_{e, b}$, and therefore \mathcal{B} is a basis for a topology on \mathbb{Z}.
(b) $U_{d, a}$ is certainly open. To see that it is closed, observe that

$$
\mathbb{Z} \backslash U_{d, a}=\bigcup_{b \neq a} U_{d, b}
$$

Indeed, $x \in U_{d, b}$ if and only if $x=d n+b$ for some $n \in \mathbb{Z}$. So if $x \in U_{d, a} \cap U_{d, b}$, then $d n+b=d m+a$ for some $n, m \in \mathbb{Z}$, and therefore $a-b=d(n-m)$. This implies $a-b$ is divisible by d, but $a-b \in\{-(d-1), \ldots,-1,0,1, \ldots, d-1\}$ and so this is only possible if $a=b$. This shows $U_{d, a}$ is disjoint from $U_{d, b}$ for all $b \neq a$ and so

$$
\bigcup_{b \neq a} U_{d, b} \subset \mathbb{Z} \backslash U_{d, a}
$$

Conversely, if $x \in \mathbb{Z} \backslash U_{d, a}$, let $b \in\{0, \ldots, d-1\}$ be the remainder one gets after dividing x by d : $x=d n+b$ for some $n \in \mathbb{N}$. So $x \in U_{d, b}$, and since $x \notin U_{d, a}$, we must have $b \neq a$. This yields the other inclusion and establishes the desired equality.
(c) Suppose $U \subset \mathbb{Z}$ is nonempty and open. Let $x \in U$. Since \mathcal{B} is a basis, there exists $d \in \mathbb{N}$ and $a \in\{0,1, \ldots, d-1\}$ such that $x \in U_{d, a} \subset U$. Define $f: \mathbb{N} \rightarrow U$ by $f(n):=d n+a$. This is injective, and hence U is infinite.
(d) If $x \in \mathbb{Z} \backslash A$, this means $x \notin U_{p, 0}$ for any prime number p. Consequently, x is not divisible by p for any prime p. There are only two numbers not divisible by any prime number: ± 1. Thus $\mathbb{Z} \backslash A=\{-1,1\}$, which is of course finite.
(e) Suppose, towards a contradiction that P is finite. Then A from the previous part is a finite union of closed sets (recall that $U_{p, 0}$ is closed by part (b)), and thus is closed. Therefore its complement $\mathbb{Z} \backslash A$ is open. However, in the previous part we showed $\mathbb{Z} \backslash A$ is finite and nonempty, which contradicts part (c). Thus P must be infinite.

