
Math 461 Homework 12 Solutions 12/4/2020

Exercises:
§27, 28, 31

1. Let X be a compact topological space and (Y, d) a metric space. Let C(X,Y ) denote the set of all
continuous functions f : X → Y .

(a) For f, g ∈ C(X,Y ), show that h : X → R defined by h(x) := d(f(x), g(x)) is continuous.

(b) Show that D(f, g) := supx∈X d(f(x), g(x)) exists and defines a metric on C(X,Y ).

(c) Let ϕ : X → X be a continuous function. Show that the map Φ: C(X,Y )→ C(X,Y ) defined by
Φ(f) := f ◦ ϕ is uniformly continuous with respect to the metric D.

2. Let (X, d) be a metric space. For x ∈ X and nonempty A ⊂ X, recall that d(x,A) := infa∈A d(x, a).

(a) Show that d(x,A) = 0 if and only if x ∈ A.

(b) Suppose A ⊂ V for A compact and V open. Show that there exists ε > 0 so that⋃
a∈A

Bd(a, ε) ⊂ V.

[Hint: consider the function f(x) = d(x,X \ V ).]

3. Let (X, d) be a compact metric space and let f : X → X be a function satisfying d(f(x), f(y)) = d(x, y)
for all x, y ∈ X. (We call such a function an isometry.) Show that f is a homeomorphism.

4. Let X be a normal topological space and let A,B ⊂ X be disjoint closed subsets of X. Show that
there are open subsets U, V ⊂ X satisfying A ⊂ U , B ⊂ V , and U ∩ V = ∅.

5. Let X be a normal topological space. We say A ⊂ X is a Gδ set if it is a countable intersection of open
sets. Show that A ⊂ X is a closed Gδ set if and only if there exists a continuous function f : X → [0, 1]
with f(x) = 0 for all x ∈ A and f(x) > 0 for all x 6∈ A. [Hint: use Urysohn’s Lemma.]

6*. For d ∈ N and a = 0, 1, . . . , d− 1 define

Ud,a := {dn+ a | n ∈ Z} ⊂ Z.

In this exercise you will use topology to show that there are infinitely many prime numbers.

(a) Show that the collection B := {Ud,a | d ∈ N, a = 0, 1, . . . , d− 1} forms a basis for a topology on
Z.

(b) Show that Ud,a is clopen in this topology.

(c) Show that if U ⊂ Z is nonempty and open in this topology, then U is infinite.

(d) Let P ⊂ N be the subset of prime numbers. Consider

A :=
⋃
p∈P

Up,0.

Show that Z \A is finite.

(e) Deduce that P is infinite.

———————————————————————————————————————————–

Solutions:

1. (a) Observe that h is the composition of the functions f × g : X → Y × Y and d : Y × Y → R. The
former is continuous by Exercise 1 on Homework 6, and the latter is continuous by Exercise 4 on
Homework 7. Hence h is continuous. �
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(b) By the previous part, x 7→ d(f(x), g(x)) is continuous. Since X is compact, the extreme value
theorem implies the supremum D(f, g) is achieved, and in particular exists. Now, D(f, g) ≥ 0
since d(f(x), g(x)) ≥ 0 for all x ∈ X. If f = g, then d(f(x), g(x)) = 0 for all x ∈ X and hence
D(f, g) = 0. Conversely, if D(f, g) = 0, then d(f(x), g(x)) = 0 for all x ∈ X, which means
f(x) = g(x) for all x ∈ X. That is, f = g. The symmetry D(f, g) = D(g, f) follows from the
corresponding symmetry of d. Finally, for f, g, h ∈ C(X,Y ) and each x ∈ X we have

d(f(x), h(x)) ≤ d(f(x), g(x)) + d(g(x), h(x)) ≤ D(f, g) +D(g, h).

Taking a supremum over x ∈ X on the left yields D(f, h) ≤ D(f, g) + D(g, h). Hence D is a
metric.

(c) Let ε > 0. Set δ = ε, and suppose f, g ∈ C(X,Y ) satisfy D(f, g) < δ = ε, then d(f(x), g(x)) ≤
D(f, g) for all x ∈ X. In particular, this holds for all x ∈ ϕ(X): d(f(ϕ(x)), g(ϕ(x))) ≤ D(f, g)
for all x ∈ X. Therefore

D(Φ(f),Φ(g)) = sup
x∈X

d(f ◦ ϕ(x), g ◦ ϕ(x)) ≤ D(f, g) < δ = ε

Hence Φ is uniformly continuous. �

2. (a) We know x ∈ A if and only if Bd(x, ε)∩A 6= ∅ for all ε > 0. The latter is equivalent to d(x,A) < ε
for all ε > 0. Since d(x,A) ≥ 0, this is equivalent to d(x,A) = 0. �

(b) Define f : X → R by f(x) := d(x,X \V ), which is continuuous by a lemma from lecture. For each
a ∈ A ⊂ V , there exists δ > 0 so that Bd(a, δ) ⊂ V and hence d(a, y) ≥ ε for all y ∈ X \Bd(x, ε) ⊃
X \ V . Consequently, f(a) > 0 for all a ∈ A. Since A is compact, the extreme value theorem
implies f attains a smallest value on A, say at a0 ∈ A: f(a0) ≤ f(a) for all a ∈ A. Set ε := f(a0),
which is strictly positive by our above argument. We claim⋃

a∈A
Bd(a, ε) ⊂ V.

Indeed, otherwise Bd(a, ε) ∩ (X \ V ) 6= ∅ for some a ∈ A. Thus d(a, y) < ε for some y ∈ X \ V
and therefore

f(a) = d(a,X \ V ) ≤ d(a, y) < ε = f(a0),

contradicting f(a0) being the smallest element. �

3. If f(x) = f(y), then
d(x, y) = d(f(x), f(y)) = 0,

so that x = y. Thus f is injective. We also note that f is continuous according to the ε-δ definition of
continuity for metric spaces by simply choosing δ = ε.

Suppose, towards a contradiction, that f is not surjective. Then there exists y ∈ X \ f(X). Since
X is compact and f is continuous, f(X) is compact and in particular closed (since metric spaces are
Hausdorff). Consequently, X \ f(X) is open and so there exists ε > 0 so that Bd(y, ε) ⊂ X \ f(X).
For each n ∈ N, define xn := f ◦ · · · ◦ f︸ ︷︷ ︸

n times

(y). Thus (xn)n∈N ⊂ X is a sequence and for m < n we have

d(xn, xm) = d(f(xn−1), f(xm−1)) = d(xn−1, xm−1) = · · · = d(xn−m+1, x1) = d(f(xn−m), f(y)) = d(xn−m, y).

Since xn−m = f(xn−m−1) ∈ f(X), the above distance is at least ε. Thus d(xn, xm) > ε for all distinct
n,m ∈ N. Now, since X is compact, the sequence (xn)n∈N necessarily has a convergent subsequence
(xnk

)k∈N, say converging to x ∈ X. Thus there exists K ∈ N so that k ≥ K implies

d(xnk
, x) <

ε

2
.

But then for k, ` ≥ K we have

d(xnk
, xn`

) ≤ d(xnk
, x) + d(x, xn`

) <
ε

2
+
ε

2
= ε,
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contradicting d(xn, xm) ≥ ε for all n,m ∈ N. Thus f must be surjective, and therefore bijective.

It remains to show f−1 : X → X is continuous. But if f(x) = a and f(y) = b then

d(f−1(a), f−1(a)) = d(x, y) = d(f(x), f(y)) = d(a, b).

Thus f−1 is an isometry and is therefore continuous by the same argument as above. �

4. Since X is normal, there exists disjoint open sets U1, V1 ⊂ X with A ⊂ U1 and B ⊂ V1. By a proposition
from the lecture on §31, there exists a neighborhood U of A satisfying U ⊂ U1. Set V := V1, and note
that V ⊂ X \ U1, which is a closed set. Hence V ⊂ X \ U1 ⊂ X \ U . Consequently, U ∩ V = ∅. �

5. (=⇒): Suppose A is a closed Gδ set. Let {Un : n ∈ N} be open subsets of X with⋂
n∈N

Un = A.

Using Urysohn’s Lemma, for each n ∈ N we can find a continuous function fn : X → [0, 1] with fn |A≡ 0
and fn |X\Un

≡ 1. Define f : X → [0, 1] by

f(x) =

∞∑
n=1

2−nfn(x).

Note that 0 ≤ fn(x) ≤ 1 implies

0 ≤ f(x) ≤
∞∑
n=1

2−n = 1,

so f is well-defined. Also, f(x) = 0 for all x ∈ A since fn(x) = 0. On the other hand, if x 6∈ A then
there must be some n ∈ N such that x 6∈ Un. Consequently, fn(x) = 1 and so f(x) ≥ 2−n > 0. It
remains to show that f is continuous. We will show that the partial sums

SN (x) :=

N∑
n=1

2−nfn(x)

converge uniformly to f . Since each SN is continuous (as a finite sum of continuous functions), the
Uniform Limit Theorem will imply f is continuous. Let ε > 0. Let N0 ∈ N be large enough so that
2−N0 < ε. Then for all N ≥ N0 ∑

n=N+1

2−n = 2−N
∞∑
n=1

2−n = 2−N < ε.

Consequently, for all x ∈ X and all N ≥ N0 we have

0 ≤ f(x)− SN (x) =

∞∑
n=N+1

2−nfn(x) ≤
∞∑

n=N+1

2−n < ε.

Thus
sup
x∈X
|f(x)− SN (x)| ≤ ε

for all N ≥ N0, and so (SN )N∈N converges uniformly to f .

(⇐=): Suppose there is a continuous function f : X → [0, 1] satisfying f(x) = 0 for all x ∈ A and
f(x) > 0 for all x 6∈ A. First note that A = f−1({0}) is closed since f is continuous. Next, for each
n ∈ N set Un := f−1([0, 1

n )), which is open since f is continuous. Then A ⊂ Un for all n ∈ N, and if
x ∈

⋂
Un then f(x) < 1

n for all n ∈ N, which means f(x) = 0 and so x ∈ A. Thus

A ⊂
⋂
n∈N

Un ⊂ A.

Therefore A is the intersection of the Un’s and therefore Gδ. �
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6*. (a) First note that U1,0 = Z, and so every element of Z is contained in a set in the collection B. Next,
suppose x ∈ Ud,a∩Ue,b. Then x = dn+a = em+b for some n,m ∈ Z. Let f be the least common
multiple of d and e and let c be the remainder one gets after dividing x by f : x = fm + c for
some multiple m ∈ Z. Then x ∈ Uf,c, and in fact Uf,c = {x+ fn : n ∈ Z}. Observe that fn is a
multiple of both d and e since f is the least common multiple, and therefore x+ fn ∈ Ud,a ∩Ue,b
for all n ∈ Z. Hence Uf,c ⊂ Ud,a ∩ Ue,b, and therefore B is a basis for a topology on Z. �

(b) Ud,a is certainly open. To see that it is closed, observe that

Z \ Ud,a =
⋃
b6=a

Ud,b.

Indeed, x ∈ Ud,b if and only if x = dn+b for some n ∈ Z. So if x ∈ Ud,a∩Ud,b, then dn+b = dm+a
for some n,m ∈ Z, and therefore a − b = d(n − m). This implies a − b is divisible by d, but
a− b ∈ {−(d− 1), . . . ,−1, 0, 1, . . . , d− 1} and so this is only possible if a = b. This shows Ud,a is
disjoint from Ud,b for all b 6= a and so ⋃

b 6=a

Ud,b ⊂ Z \ Ud,a.

Conversely, if x ∈ Z \ Ud,a, let b ∈ {0, . . . , d− 1} be the remainder one gets after dividing x by d:
x = dn+ b for some n ∈ N. So x ∈ Ud,b, and since x 6∈ Ud,a, we must have b 6= a. This yields the
other inclusion and establishes the desired equality. �

(c) Suppose U ⊂ Z is nonempty and open. Let x ∈ U . Since B is a basis, there exists d ∈ N and
a ∈ {0, 1, . . . , d − 1} such that x ∈ Ud,a ⊂ U . Define f : N → U by f(n) := dn + a. This is
injective, and hence U is infinite. �

(d) If x ∈ Z \ A, this means x 6∈ Up,0 for any prime number p. Consequently, x is not divisible by
p for any prime p. There are only two numbers not divisible by any prime number: ±1. Thus
Z \A = {−1, 1}, which is of course finite. �

(e) Suppose, towards a contradiction that P is finite. Then A from the previous part is a finite union
of closed sets (recall that Up,0 is closed by part (b)), and thus is closed. Therefore its complement
Z \ A is open. However, in the previous part we showed Z \ A is finite and nonempty, which
contradicts part (c). Thus P must be infinite. �
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