Exercises:

 $\S{27}, 28, 31$

- 1. Let X be a compact topological space and (Y,d) a metric space. Let C(X,Y) denote the set of all continuous functions $f: X \to Y$.
 - (a) For $f, g \in C(X, Y)$, show that $h: X \to \mathbb{R}$ defined by h(x) := d(f(x), g(x)) is continuous.
 - (b) Show that $D(f,g) := \sup_{x \in X} d(f(x), g(x))$ exists and defines a metric on C(X, Y).
 - (c) Let $\varphi \colon X \to X$ be a continuous function. Show that the map $\Phi \colon C(X,Y) \to C(X,Y)$ defined by $\Phi(f) := f \circ \varphi$ is uniformly continuous with respect to the metric D.
- 2. Let (X, d) be a metric space. For $x \in X$ and nonempty $A \subset X$, recall that $d(x, A) := \inf_{a \in A} d(x, a)$.
 - (a) Show that d(x, A) = 0 if and only if $x \in \overline{A}$.
 - (b) Suppose $A \subset V$ for A compact and V open. Show that there exists $\epsilon > 0$ so that

$$\bigcup_{a \in A} B_d(a, \epsilon) \subset V.$$

[Hint: consider the function $f(x) = d(x, X \setminus V)$.]

- 3. Let (X, d) be a compact metric space and let $f: X \to X$ be a function satisfying d(f(x), f(y)) = d(x, y) for all $x, y \in X$. (We call such a function an **isometry**.) Show that f is a homeomorphism.
- 4. Let X be a normal topological space and let $A, B \subset X$ be disjoint closed subsets of X. Show that there are open subsets $U, V \subset X$ satisfying $A \subset U, B \subset V$, and $\overline{U} \cap \overline{V} = \emptyset$.
- 5. Let X be a normal topological space. We say $A \subset X$ is a G_{δ} set if it is a countable intersection of open sets. Show that $A \subset X$ is a closed G_{δ} set if and only if there exists a continuous function $f: X \to [0, 1]$ with f(x) = 0 for all $x \in A$ and f(x) > 0 for all $x \notin A$. [Hint: use Urysohn's Lemma.]
- 6*. For $d \in \mathbb{N}$ and $a = 0, 1, \ldots, d-1$ define

$$U_{d,a} := \{ dn + a \mid n \in \mathbb{Z} \} \subset \mathbb{Z}.$$

In this exercise you will use topology to show that there are infinitely many prime numbers.

- (a) Show that the collection $\mathcal{B} := \{U_{d,a} \mid d \in \mathbb{N}, a = 0, 1, \dots, d-1\}$ forms a basis for a topology on \mathbb{Z} .
- (b) Show that $U_{d,a}$ is clopen in this topology.
- (c) Show that if $U \subset \mathbb{Z}$ is nonempty and open in this topology, then U is infinite.
- (d) Let $P \subset \mathbb{N}$ be the subset of prime numbers. Consider

$$A := \bigcup_{p \in P} U_{p,0}$$

Show that $\mathbb{Z} \setminus A$ is finite.

(e) Deduce that P is infinite.

Solutions:

1. (a) Observe that h is the composition of the functions $f \times g \colon X \to Y \times Y$ and $d \colon Y \times Y \to \mathbb{R}$. The former is continuous by Exercise 1 on Homework 6, and the latter is continuous by Exercise 4 on Homework 7. Hence h is continuous.

(b) By the previous part, x → d(f(x), g(x)) is continuous. Since X is compact, the extreme value theorem implies the supremum D(f,g) is achieved, and in particular exists. Now, D(f,g) ≥ 0 since d(f(x), g(x)) ≥ 0 for all x ∈ X. If f = g, then d(f(x), g(x)) = 0 for all x ∈ X and hence D(f,g) = 0. Conversely, if D(f,g) = 0, then d(f(x), g(x)) = 0 for all x ∈ X, which means f(x) = g(x) for all x ∈ X. That is, f = g. The symmetry D(f,g) = D(g,f) follows from the corresponding symmetry of d. Finally, for f, g, h ∈ C(X, Y) and each x ∈ X we have

$$d(f(x), h(x)) \le d(f(x), g(x)) + d(g(x), h(x)) \le D(f, g) + D(g, h).$$

Taking a supremum over $x \in X$ on the left yields $D(f,h) \leq D(f,g) + D(g,h)$. Hence D is a metric.

(c) Let $\epsilon > 0$. Set $\delta = \epsilon$, and suppose $f, g \in C(X, Y)$ satisfy $D(f, g) < \delta = \epsilon$, then $d(f(x), g(x)) \leq D(f, g)$ for all $x \in X$. In particular, this holds for all $x \in \varphi(X)$: $d(f(\varphi(x)), g(\varphi(x))) \leq D(f, g)$ for all $x \in X$. Therefore

$$D(\Phi(f), \Phi(g)) = \sup_{x \in X} d(f \circ \varphi(x), g \circ \varphi(x)) \le D(f, g) < \delta = \epsilon$$

Hence Φ is uniformly continuous.

- 2. (a) We know $x \in \overline{A}$ if and only if $B_d(x, \epsilon) \cap A \neq \emptyset$ for all $\epsilon > 0$. The latter is equivalent to $d(x, A) < \epsilon$ for all $\epsilon > 0$. Since $d(x, A) \ge 0$, this is equivalent to d(x, A) = 0.
 - (b) Define $f: X \to \mathbb{R}$ by $f(x) := d(x, X \setminus V)$, which is continuous by a lemma from lecture. For each $a \in A \subset V$, there exists $\delta > 0$ so that $B_d(a, \delta) \subset V$ and hence $d(a, y) \ge \epsilon$ for all $y \in X \setminus B_d(x, \epsilon) \supset X \setminus V$. Consequently, f(a) > 0 for all $a \in A$. Since A is compact, the extreme value theorem implies f attains a smallest value on A, say at $a_0 \in A$: $f(a_0) \le f(a)$ for all $a \in A$. Set $\epsilon := f(a_0)$, which is strictly positive by our above argument. We claim

$$\bigcup_{a \in A} B_d(a, \epsilon) \subset V$$

Indeed, otherwise $B_d(a, \epsilon) \cap (X \setminus V) \neq \emptyset$ for some $a \in A$. Thus $d(a, y) < \epsilon$ for some $y \in X \setminus V$ and therefore

$$f(a) = d(a, X \setminus V) \le d(a, y) < \epsilon = f(a_0),$$

contradicting $f(a_0)$ being the smallest element.

3. If f(x) = f(y), then

$$d(x, y) = d(f(x), f(y)) = 0,$$

so that x = y. Thus f is injective. We also note that f is continuous according to the ϵ - δ definition of continuity for metric spaces by simply choosing $\delta = \epsilon$.

Suppose, towards a contradiction, that f is not surjective. Then there exists $y \in X \setminus f(X)$. Since X is compact and f is continuous, f(X) is compact and in particular closed (since metric spaces are Hausdorff). Consequently, $X \setminus f(X)$ is open and so there exists $\epsilon > 0$ so that $B_d(y, \epsilon) \subset X \setminus f(X)$. For each $n \in \mathbb{N}$, define $x_n := \underbrace{f \circ \cdots \circ f(y)}_{n \text{ times}}$. Thus $(x_n)_{n \in \mathbb{N}} \subset X$ is a sequence and for m < n we have

$$d(x_n, x_m) = d(f(x_{n-1}), f(x_{m-1})) = d(x_{n-1}, x_{m-1}) = \dots = d(x_{n-m+1}, x_1) = d(f(x_{n-m}), f(y)) = d(x_{n-m}, y).$$

Since $x_{n-m} = f(x_{n-m-1}) \in f(X)$, the above distance is at least ϵ . Thus $d(x_n, x_m) > \epsilon$ for all distinct $n, m \in \mathbb{N}$. Now, since X is compact, the sequence $(x_n)_{n \in \mathbb{N}}$ necessarily has a convergent subsequence $(x_{n_k})_{k \in \mathbb{N}}$, say converging to $x \in X$. Thus there exists $K \in \mathbb{N}$ so that $k \geq K$ implies

$$d(x_{n_k}, x) < \frac{\epsilon}{2}$$

But then for $k, \ell \geq K$ we have

$$d(x_{n_k}, x_{n_\ell}) \le d(x_{n_k}, x) + d(x, x_{n_\ell}) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

contradicting $d(x_n, x_m) \ge \epsilon$ for all $n, m \in \mathbb{N}$. Thus f must be surjective, and therefore bijective.

It remains to show $f^{-1} \colon X \to X$ is continuous. But if f(x) = a and f(y) = b then

$$d(f^{-1}(a), f^{-1}(a)) = d(x, y) = d(f(x), f(y)) = d(a, b).$$

Thus f^{-1} is an isometry and is therefore continuous by the same argument as above.

- 4. Since X is normal, there exists disjoint open sets $U_1, V_1 \subset X$ with $A \subset U_1$ and $B \subset V_1$. By a proposition from the lecture on §31, there exists a neighborhood U of A satisfying $\overline{U} \subset U_1$. Set $V := V_1$, and note that $V \subset X \setminus U_1$, which is a closed set. Hence $\overline{V} \subset X \setminus U_1 \subset X \setminus \overline{U}$. Consequently, $\overline{U} \cap \overline{V} = \emptyset$. \Box
- 5. (\Longrightarrow) : Suppose A is a closed G_{δ} set. Let $\{U_n : n \in \mathbb{N}\}$ be open subsets of X with

$$\bigcap_{n \in \mathbb{N}} U_n = A$$

Using Urysohn's Lemma, for each $n \in \mathbb{N}$ we can find a continuous function $f_n \colon X \to [0, 1]$ with $f_n \mid_A \equiv 0$ and $f_n \mid_{X \setminus U_n} \equiv 1$. Define $f \colon X \to [0, 1]$ by

$$f(x) = \sum_{n=1}^{\infty} 2^{-n} f_n(x).$$

Note that $0 \le f_n(x) \le 1$ implies

$$0 \le f(x) \le \sum_{n=1}^{\infty} 2^{-n} = 1,$$

so f is well-defined. Also, f(x) = 0 for all $x \in A$ since $f_n(x) = 0$. On the other hand, if $x \notin A$ then there must be some $n \in \mathbb{N}$ such that $x \notin U_n$. Consequently, $f_n(x) = 1$ and so $f(x) \ge 2^{-n} > 0$. It remains to show that f is continuous. We will show that the partial sums

$$S_N(x) := \sum_{n=1}^N 2^{-n} f_n(x)$$

converge uniformly to f. Since each S_N is continuous (as a finite sum of continuous functions), the Uniform Limit Theorem will imply f is continuous. Let $\epsilon > 0$. Let $N_0 \in \mathbb{N}$ be large enough so that $2^{-N_0} < \epsilon$. Then for all $N \ge N_0$

$$\sum_{n=N+1} 2^{-n} = 2^{-N} \sum_{n=1}^{\infty} 2^{-n} = 2^{-N} < \epsilon.$$

Consequently, for all $x \in X$ and all $N \ge N_0$ we have

$$0 \le f(x) - S_N(x) = \sum_{n=N+1}^{\infty} 2^{-n} f_n(x) \le \sum_{n=N+1}^{\infty} 2^{-n} < \epsilon.$$

Thus

$$\sup_{x \in X} |f(x) - S_N(x)| \le \epsilon$$

for all $N \ge N_0$, and so $(S_N)_{N \in \mathbb{N}}$ converges uniformly to f.

(\Leftarrow): Suppose there is a continuous function $f: X \to [0,1]$ satisfying f(x) = 0 for all $x \in A$ and f(x) > 0 for all $x \notin A$. First note that $A = f^{-1}(\{0\})$ is closed since f is continuous. Next, for each $n \in \mathbb{N}$ set $U_n := f^{-1}([0, \frac{1}{n}))$, which is open since f is continuous. Then $A \subset U_n$ for all $n \in \mathbb{N}$, and if $x \in \bigcap U_n$ then $f(x) < \frac{1}{n}$ for all $n \in \mathbb{N}$, which means f(x) = 0 and so $x \in A$. Thus

$$A \subset \bigcap_{n \in \mathbb{N}} U_n \subset A.$$

Therefore A is the intersection of the U_n 's and therefore G_{δ} .

- 6*. (a) First note that $U_{1,0} = \mathbb{Z}$, and so every element of \mathbb{Z} is contained in a set in the collection \mathcal{B} . Next, suppose $x \in U_{d,a} \cap U_{e,b}$. Then x = dn + a = em + b for some $n, m \in \mathbb{Z}$. Let f be the least common multiple of d and e and let c be the remainder one gets after dividing x by f: x = fm + c for some multiple $m \in \mathbb{Z}$. Then $x \in U_{f,c}$, and in fact $U_{f,c} = \{x + fn : n \in \mathbb{Z}\}$. Observe that fn is a multiple of both d and e since f is the least common multiple, and therefore $x + fn \in U_{d,a} \cap U_{e,b}$ for all $n \in \mathbb{Z}$. Hence $U_{f,c} \subset U_{d,a} \cap U_{e,b}$, and therefore \mathcal{B} is a basis for a topology on \mathbb{Z} .
 - (b) $U_{d,a}$ is certainly open. To see that it is closed, observe that

$$\mathbb{Z}\setminus U_{d,a}=\bigcup_{b\neq a}U_{d,b}.$$

Indeed, $x \in U_{d,b}$ if and only if x = dn+b for some $n \in \mathbb{Z}$. So if $x \in U_{d,a} \cap U_{d,b}$, then dn+b = dm+a for some $n, m \in \mathbb{Z}$, and therefore a - b = d(n - m). This implies a - b is divisible by d, but $a - b \in \{-(d-1), \ldots, -1, 0, 1, \ldots, d-1\}$ and so this is only possible if a = b. This shows $U_{d,a}$ is disjoint from $U_{d,b}$ for all $b \neq a$ and so

$$\bigcup_{b\neq a} U_{d,b} \subset \mathbb{Z} \setminus U_{d,a}.$$

Conversely, if $x \in \mathbb{Z} \setminus U_{d,a}$, let $b \in \{0, \ldots, d-1\}$ be the remainder one gets after dividing x by d: x = dn + b for some $n \in \mathbb{N}$. So $x \in U_{d,b}$, and since $x \notin U_{d,a}$, we must have $b \neq a$. This yields the other inclusion and establishes the desired equality.

- (c) Suppose $U \subset \mathbb{Z}$ is nonempty and open. Let $x \in U$. Since \mathcal{B} is a basis, there exists $d \in \mathbb{N}$ and $a \in \{0, 1, \ldots, d-1\}$ such that $x \in U_{d,a} \subset U$. Define $f \colon \mathbb{N} \to U$ by f(n) := dn + a. This is injective, and hence U is infinite. \Box
- (d) If $x \in \mathbb{Z} \setminus A$, this means $x \notin U_{p,0}$ for any prime number p. Consequently, x is not divisible by p for any prime p. There are only two numbers not divisible by any prime number: ± 1 . Thus $\mathbb{Z} \setminus A = \{-1, 1\}$, which is of course finite.
- (e) Suppose, towards a contradiction that P is finite. Then A from the previous part is a finite union of closed sets (recall that $U_{p,0}$ is closed by part (b)), and thus is closed. Therefore its complement $\mathbb{Z} \setminus A$ is open. However, in the previous part we showed $\mathbb{Z} \setminus A$ is finite and nonempty, which contradicts part (c). Thus P must be infinite. \Box