Exercises:

§24, 26

1. Recall that $S^{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}$.
(a) Show that S^{1} is connected.
(b) Show that $a(x, y):=(-x,-y)$ defines a homeomorphism $a: S^{1} \rightarrow S^{1}$.
(c) Show that if $f: S^{1} \rightarrow \mathbb{R}$ is continuous, then there exists $(x, y) \in S^{1}$ satisfying $f(x, y)=f(-x,-y)$.
2. Let $U \subset \mathbb{R}^{n}$ be open and connected. Show that U is path connected.
[Hint: for $\mathbf{x}_{0} \in U$ show that the set of points $\mathbf{x} \in U$ that are connected to \mathbf{x}_{0} by a path in U is clopen.]
3. Equip \mathbb{R} with the finite complement topology. Show that every subset is compact.
4. Let X be a Hausdorff space. If $A, B \subset X$ are compact with $A \cap B=\emptyset$, show that there are open sets $U \supset A$ and $V \supset B$ with $U \cap V=\emptyset$.
5. Let $p: X \rightarrow Y$ be a closed continuous surjective map.
(a) For $U \subset X$ open, show that $p^{-1}(\{y\}) \subset U$ for $y \in Y$ implies there is a neighborhood V of y with $p^{-1}(V) \subset U$.
(b) Show that if Y is compact and $p^{-1}(\{y\})$ is compact for each $y \in Y$, then X is compact.
6^{*}. Let G be a topological group with identity $e \in G$.
(a) For $U \subset G$ a neighborhood of e, show that there exists a neighborhood V of e satisfying $V V \subset U$.
(b) For $A \subset G$ closed and $B \subset G$ compact with $A \cap B=\emptyset$, show that there exists a neighborhood V of e satisfying $A \cap V B=\emptyset$.
(c) For $A \subset G$ closed and $B \subset G$ compact, show that $A B$ is closed.
(d) For $H<G$ a compact subgroup, show that the quotient map $p: G \rightarrow G / H$ is closed.
(e) Show that if $H<G$ is a compact subgroup with G / H compact, then G is compact.

Solutions:

1. (a) We have seen in lecture that $f:[0,1] \rightarrow S^{1}$ defined by $f(t)=(\sin (2 \pi t), \cos (2 \pi t))$ is a continuous bijection. Since $[0,1]$ is connected, it follows that S^{1} is connected.
(b) We first show a is valued in S^{1}. If $(x, y) \in S^{1}$, then $x^{2}+y^{2}=1$. Consequently, $(-x)^{2}+(-y)^{2}=$ $x^{2}+y^{2}=1$ and so $a(x, y)=(-x,-y) \in S^{1}$. Next, observe that $a(a(x, y))=a(-x,-y)=(x, y)$. Thus a is its own inverse and hence is bijective. Therefore it suffices to show a is continuous. This follows from the fact that its coordinate functions $a_{1}(x, y)=-x$ and $a_{2}(x, y)=-y$ are continuous: they are the coordinate projections, which we know are continuous, times the constant function -1 .
(c) Define $g: S^{1} \rightarrow \mathbb{R}$ by $g:=f-f \circ a$. This since f and $f \circ a$ are both continuous, their difference-g-is continuous. Now take any $\mathbf{x} \in S^{1}$. If $g(\mathbf{x})=0$ then we have $f(\mathbf{x})=f \circ a(\mathbf{x})=f(-\mathbf{x})$ and so are done. Otherwise, we have either $g(\mathbf{x})>0$ or $g(\mathbf{x})<0$. Without loss of generality, assume the former. Observe that, since $a \circ a$ is the identity map, we have

$$
g(-\mathbf{x})=g \circ a(\mathbf{x})=f \circ a(\mathbf{x})-f \circ a \circ a(\mathbf{x})=f \circ a(\mathbf{x})-f(\mathbf{x})=-g(\mathbf{x}) .
$$

Thus $g(\mathbf{x})>0$ implies $g(-\mathbf{x})<0$. Since S^{1} is connected by an example from lecture, the intermediate value theorem implies there exists some $\mathbf{y} \in S^{1}$ satisfying $g(\mathbf{y})=0$. Hence $f(\mathbf{y})=$ $f(-\mathbf{y})$.
2. As per the hint, we fix $\mathbf{x}_{0} \in U$ and let A be the set of all points $\mathbf{x} \in U$ for which there is a path connecting \mathbf{x}_{0} and \mathbf{x}. If $A=U$, then we are done. Indeed, let $\mathbf{x}, \mathbf{y} \in U=A$ so that there exists continuous functions $f_{1}:[a, b] \rightarrow U$ and $f_{2}:[c, d] \rightarrow U$ such that $f_{1}(a)=\mathbf{x}_{0}=f_{2}(c), f_{1}(b)=\mathbf{x}$, and $f_{2}(d)=\mathbf{y}$. Then we can concatenate these two paths to form a path from \mathbf{x} to \mathbf{y} as follows. Define $f:[a, b+(d-c)] \rightarrow U$ by

$$
f(t)= \begin{cases}f_{1}(a+b-t) & \text { if } a \leq t \leq b \\ f_{2}(t+c-b) & \text { if } b<t \leq b+(d-c)\end{cases}
$$

Then $f(a)=f_{1}(b)=\mathbf{x}$ and $f(b+(d-c))=f_{2}(b+(d-c)+c-b)=f_{2}(d)=\mathbf{y}$. Note that $f_{1}(a+b-t)$ is continuous as the composition of continuous functions: $a+b-t$ and f_{1}. Similarly, $f_{2}(t+c-b)$ is continuous. Also note that $f_{1}(a+b-t)$ and $f_{2}(t+c-b)$ agree on $[a, b] \cap[b,+b+(d-c)]=\{b\}$ since

$$
f_{1}(a+b-b)=f_{1}(a)=\mathbf{x}_{0}=f_{2}(c)=f_{2}(b+c-b)
$$

Thus f is continuous by the pasting lemma. Since $\mathbf{x}, \mathbf{y} \in U$ were arbitrary, U is path-connected. Thus it suffices to show $A=U$.
We will show A is clopen in U. Since U is connected, this will imply either $A=\emptyset$ or $A=U$. Note that $A \neq \emptyset$ since $\mathbf{x}_{0} \in A: \mathbf{x}_{0}$ is connected to itself via the constant path $f(t)=\mathbf{x}_{0}$ for all $0 \leq t \leq 1$. Thus if A is clopen we have $A=U$ and so the proof is complete by the above argument.
We first show that A is open in U. Let $\mathbf{x} \in A$. Since U is open, we can find $\epsilon>0$ such that $B_{d}(\mathbf{x}, \epsilon) \subset U$, where d is the euclidean metric on \mathbb{R}^{n}. Recall that we showed in lecture that $B_{d}(\mathbf{x}, \epsilon)$ is path connected. Thus for any $\mathbf{y} \in B_{d}(\mathbf{x}, \epsilon)$ there is a path from \mathbf{x} to \mathbf{y} contained in $B_{d}(\mathbf{x}, \epsilon) \subset U$. Concatenating this path with the one from \mathbf{x}_{0} to \mathbf{x} (which exists since $\mathbf{x} \in A$) as above, we obtain a path from \mathbf{x}_{0} to \mathbf{y} in U. Hence $\mathbf{y} \in A$ and therefore $B_{d}(\mathbf{x}, \epsilon) \subset A$. It follows that A is open in U.
Finally we show A is closed in U. Suppose $\left(\mathbf{x}_{n}\right)_{n \in \mathbb{N}} \subset A$ is a sequence which converges to some $\mathbf{x} \in U$. Using that U is open, we can find $\epsilon>0$ so that $B_{d}(x, \epsilon) \subset U$. Then, there exists $N \in \mathbb{N}$ such that for all $n \geq N, \mathbf{x}_{n} \in B_{d}(\mathbf{x}, \epsilon)$. In particular, $\mathbf{x}_{N} \in B_{d}(\mathbf{x}, \epsilon)$. But since \mathbf{x}_{N} can be connected to \mathbf{x}_{0} by a path, and $B_{d}(\mathbf{x}, \epsilon)$ is path-connected, we can as above find a path connecting \mathbf{x}_{0} and \mathbf{x}. Hence $\mathbf{x} \in A$ and so A is closed in U by the sequence lemma.
3. Fix $A \subset \mathbb{R}$ and let \mathcal{C} be an open cover for A. If A is empty, then $\{U\}$ is a finite subcover for any $U \in \mathcal{U}$. If A is nonempty, let $x \in A$ and let $U \in \mathcal{C}$ be such that $x \in U$. Thus U is nonempty and open, and hence $\mathbb{R} \backslash U$ is finite. Consequently, $A \cap(R \backslash U)$ is finite, and let $\left\{a_{1}, \ldots, a_{n}\right\}$ be the elements in this intersection. Thus $U \subset A \backslash\left\{a_{1}, \ldots, a_{n}\right\}$. Since $a_{j} \in A$ for each $j=1, \ldots, n$, there exists $U_{j} \in \mathcal{C}$ with $a_{j} \in U_{j}$. Consequently,

$$
U \cup U_{1} \cup \cdots \cup U_{n} \supset\left(A \backslash\left\{a_{1}, \ldots, a_{n}\right\}\right) \cup\left\{a_{1}\right\} \cup \cdots \cup\left\{a_{n}\right\}=A
$$

That is, $\left\{U, U_{1}, \ldots, U_{n}\right\} \subset \mathcal{C}$ is a finite subcover. Since \mathcal{C} was arbitrary, we see that A is compact.
4. By a lemma from lecture, for each $b \in B$ there exists disjoint open sets $U_{b}, V_{b} \subset X$ with $A \subset U_{b}$ and $b \in V_{b}$. Observe that $\left\{V_{b} \mid b \in B\right\}$ is an open cover of B, so compactness yields a finite subcover $\left\{V_{b_{1}}, \ldots, V_{b_{n}}\right\}$. Define

$$
U:=\bigcap_{j=1}^{n} U_{b_{j}} \quad \text { and } \quad V:=V_{b_{1}} \cup \cdots \cup V_{b_{n}}
$$

Then U is open since it is the finite intersection of open sets, and V is open since it is the union of open sets. Since $A \subset U_{b_{j}}$ for each $j=1, \ldots, n$ we have $A \subset U$. We also have $B \subset V$ since $\left\{V_{b_{1}}, \ldots, V_{b_{n}}\right\}$ is a subcover. Finally,

$$
U \cap V=\left(U \cap V_{b_{1}}\right) \cup \cdots \cup\left(U \cap V_{b_{n}}\right) \subset\left(U_{b_{1}} \cap V_{b_{1}}\right) \cup \cdots \cup\left(U_{b_{n}} \cap V_{b_{n}}\right)=\emptyset
$$

5. (a) Suppose $U \subset X$ is open with $p^{-1}(\{y\}) \subset U$ for $y \in Y$. Then $X \backslash U$ is closed and since p is a closed map we have that $p(X \backslash U)$ is closed in Y. Thus $V:=Y \backslash p(X \backslash U)$ is open. Note that $y \in V$, since otherwise $y \in p(X \backslash U)$ and so there exists $x \in X \backslash U$ with $p(x)=y$, but this contradicts $p^{-1}(\{y\}) \subset U$. Thus V is a neighborhood of y. If $x \in p^{-1}(V)$, then $p(x) \notin p(X \backslash U)$. Thus we must have $x \notin X \backslash U$ and therefore $x \in U$. That is, $p^{-1}(V) \subset U$.
(b) Let \mathcal{C} be an open cover for X. Then \mathcal{C} is an open cover for $p^{-1}(\{y\})$ for each $y \in Y$. The compactness of $p^{-1}(\{y\})$ implies there is a finite subcover $\mathcal{S}_{y} \subset \mathcal{C}$. Using part (a), there exists a neighborhood V_{y} of y with

$$
p^{-1}\left(V_{y}\right) \subset \bigcup_{U \in \mathcal{S}_{y}} U
$$

Now, $\left\{V_{y} \mid y \in Y\right\}$ is an open cover of Y. Since Y is compact, there is a finite subcover $\left\{V_{y_{1}}, \ldots, V_{y_{n}}\right\}$. Note that

$$
\mathcal{S}:=\bigcup_{j=1}^{n} \mathcal{S}_{y_{j}} \subset \mathcal{C}
$$

is finite since each $\mathcal{S}_{y_{j}}$ is finite. Also we have

$$
X=p^{-1}(Y) \subset p^{-1}\left(\bigcup_{j=1}^{n} V_{y_{j}}\right)=\bigcup_{j=1}^{n} p^{-1}\left(V_{y_{j}}\right) \subset \bigcup_{j=1}^{n} \bigcup_{U \in S_{y_{j}}} U=\bigcup_{U \in \mathcal{S}} U
$$

Thus $\mathcal{S} \subset \mathcal{C}$ is a finite subcover and X is compact.
6^{*}. (a) Let $m: G \times G \rightarrow G$ be the multiplication map. Since this is continuous, $m^{-1}(U)$ is a neighborhood of $(e, e) \in G \times G$. Since cartesian products of open sets form a basis for the topology on $G \times G$, there exists open subsets $V_{1}, V_{2} \subset G$ with $(e, e) \in V_{1} \times V_{2} \subset m^{-1}(U)$. If we let $V:=V_{1} \cap V_{2}$, then V is a neighborhood of e and

$$
V V=m(V \times V) \subset m\left(V_{1} \times V_{2}\right) \subset m\left(m^{-1}(U)\right) \subset U
$$

(b) Let $x \in B$ so that $x \in G \backslash A$. Since $G \backslash A$ is open, $(G \backslash A) x^{-1}$ is a neighborhood of e. By part (a), there exists V_{x} a neighborhood of e satisfying $V_{x} V_{x} \subset(G \backslash A) x^{-1}$. Then $V_{x} x$ is a neighborhood of x and thus $\left\{V_{x} x \mid x \in B\right\}$ is an open cover of B. By compactness we have a finite subcover $\left\{V_{x_{1}} x_{1}, \ldots, V_{x_{n}} x_{n}\right\}$. Define

$$
V:=\bigcap_{j=1}^{n} V_{x_{j}}
$$

which is a neighborhood of e. For each $x \in B$ we have $x \in V_{x_{k}} x_{k}$ for some $k \in\{1, \ldots, n\}$. Thus

$$
V x \subset V_{x_{k}} x \subset V_{x_{k}} V_{x_{k}} x_{k} \subset(G \backslash A) x_{k}^{-1} x_{k}=G \backslash A .
$$

Since $x \in B$ was arbitrary, we have $V B \subset G \backslash A$, or $A \cap V G=\emptyset$.
(c) We will show the complement of $A B$ is open. Let $x \notin A B$. Since taking inverses is continuous, B^{-1} is compact. Also $x B^{-1}$ is compact since multiplying by x is continuous. Now $A \cap x B^{-1}=\emptyset$ since otherwise $x b^{-1}=a$ or $x=a b$ for some $a \in A$ and $b \in B$, contradicting $x \notin A B$. So A is a closed subset disjoint from the compact subset $x B^{-1}$. The previous part implies there is an open neighborhood V of e such that $A \cap V x B^{-1}=\emptyset$. This is equivalent to $A B \cap V x=\emptyset$, or $V x \subset G \backslash(A B)$. Since V is a neighborhood of $e, V x$ is a neighborhood of x. Thus the complement of $A B$ is open and therefore $A B$ is closed.
(d) Let $A \subset G$ be closed. Then by part (c), $A H$ is closed. We also note that $A H$ is saturated: if $x \in p^{-1}(p(A H))$ then $x H \in p(A H)=\{y H \mid y \in A H\}$. Thus $x H=y H$ for some $y \in \mathcal{H}$, which implies $x=y h$ for some $h \in \mathcal{H}$. Since $y \in A H$ and H is a subgroup, it follows that $x \in A H$. Thus $p^{-1}(p(A H))=A H$. Since $A H$ is saturated and p is the quotient map, $p(A H)$ is closed. But $p(A)=p(A H)$ and so p is closed.
(e) By part (d), $p: G \rightarrow G / H$ is closed. It is also continuous and surjective. Note that $p^{-1}(\{g H\})=$ $g H$, which is compact since H is compact. Since G / H is also assumed to be compact, Exercise 5 implies G is compact.

