
Math 461 Homework 11 Solutions 11/20/2020

Exercises:
§24, 26

1. Recall that S1 = {(x, y) ∈ R2 | x2 + y2 = 1}.

(a) Show that S1 is connected.

(b) Show that a(x, y) := (−x,−y) defines a homeomorphism a : S1 → S1.

(c) Show that if f : S1 → R is continuous, then there exists (x, y) ∈ S1 satisfying f(x, y) = f(−x,−y).

2. Let U ⊂ Rn be open and connected. Show that U is path connected.

[Hint: for x0 ∈ U show that the set of points x ∈ U that are connected to x0 by a path in U is clopen.]

3. Equip R with the finite complement topology. Show that every subset is compact.

4. Let X be a Hausdorff space. If A,B ⊂ X are compact with A ∩B = ∅, show that there are open sets
U ⊃ A and V ⊃ B with U ∩ V = ∅.

5. Let p : X → Y be a closed continuous surjective map.

(a) For U ⊂ X open, show that p−1({y}) ⊂ U for y ∈ Y implies there is a neighborhood V of y with
p−1(V ) ⊂ U .

(b) Show that if Y is compact and p−1({y}) is compact for each y ∈ Y , then X is compact.

6*. Let G be a topological group with identity e ∈ G.

(a) For U ⊂ G a neighborhood of e, show that there exists a neighborhood V of e satisfying V V ⊂ U .

(b) For A ⊂ G closed and B ⊂ G compact with A ∩B = ∅, show that there exists a neighborhood V
of e satisfying A ∩ V B = ∅.

(c) For A ⊂ G closed and B ⊂ G compact, show that AB is closed.

(d) For H < G a compact subgroup, show that the quotient map p : G→ G/H is closed.

(e) Show that if H < G is a compact subgroup with G/H compact, then G is compact.

———————————————————————————————————————————–

Solutions:

1. (a) We have seen in lecture that f : [0, 1]→ S1 defined by f(t) = (sin(2πt), cos(2πt)) is a continuous
bijection. Since [0, 1] is connected, it follows that S1 is connected. �

(b) We first show a is valued in S1. If (x, y) ∈ S1, then x2 + y2 = 1. Consequently, (−x)2 + (−y)2 =
x2 + y2 = 1 and so a(x, y) = (−x,−y) ∈ S1. Next, observe that a(a(x, y)) = a(−x,−y) = (x, y).
Thus a is its own inverse and hence is bijective. Therefore it suffices to show a is continuous. This
follows from the fact that its coordinate functions a1(x, y) = −x and a2(x, y) = −y are continuous:
they are the coordinate projections, which we know are continuous, times the constant function
−1. �

(c) Define g : S1 → R by g := f − f ◦a. This since f and f ◦a are both continuous, their difference—
g—is continuous. Now take any x ∈ S1. If g(x) = 0 then we have f(x) = f ◦ a(x) = f(−x) and
so are done. Otherwise, we have either g(x) > 0 or g(x) < 0. Without loss of generality, assume
the former. Observe that, since a ◦ a is the identity map, we have

g(−x) = g ◦ a(x) = f ◦ a(x)− f ◦ a ◦ a(x) = f ◦ a(x)− f(x) = −g(x).

Thus g(x) > 0 implies g(−x) < 0. Since S1 is connected by an example from lecture, the
intermediate value theorem implies there exists some y ∈ S1 satisfying g(y) = 0. Hence f(y) =
f(−y). �
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2. As per the hint, we fix x0 ∈ U and let A be the set of all points x ∈ U for which there is a path
connecting x0 and x. If A = U , then we are done. Indeed, let x,y ∈ U = A so that there exists
continuous functions f1 : [a, b] → U and f2 : [c, d] → U such that f1(a) = x0 = f2(c), f1(b) = x, and
f2(d) = y. Then we can concatenate these two paths to form a path from x to y as follows. Define
f : [a, b+ (d− c)]→ U by

f(t) =

{
f1(a+ b− t) if a ≤ t ≤ b
f2(t+ c− b) if b < t ≤ b+ (d− c)

.

Then f(a) = f1(b) = x and f(b+ (d− c)) = f2(b+ (d− c) + c− b) = f2(d) = y. Note that f1(a+ b− t)
is continuous as the composition of continuous functions: a + b − t and f1. Similarly, f2(t + c − b) is
continuous. Also note that f1(a+ b− t) and f2(t+ c− b) agree on [a, b] ∩ [b,+b+ (d− c)] = {b} since

f1(a+ b− b) = f1(a) = x0 = f2(c) = f2(b+ c− b).

Thus f is continuous by the pasting lemma. Since x,y ∈ U were arbitrary, U is path-connected. Thus
it suffices to show A = U .

We will show A is clopen in U . Since U is connected, this will imply either A = ∅ or A = U . Note
that A 6= ∅ since x0 ∈ A: x0 is connected to itself via the constant path f(t) = x0 for all 0 ≤ t ≤ 1.
Thus if A is clopen we have A = U and so the proof is complete by the above argument.

We first show that A is open in U . Let x ∈ A. Since U is open, we can find ε > 0 such that
Bd(x, ε) ⊂ U , where d is the euclidean metric on Rn. Recall that we showed in lecture that Bd(x, ε)
is path connected. Thus for any y ∈ Bd(x, ε) there is a path from x to y contained in Bd(x, ε) ⊂ U .
Concatenating this path with the one from x0 to x (which exists since x ∈ A) as above, we obtain a
path from x0 to y in U . Hence y ∈ A and therefore Bd(x, ε) ⊂ A. It follows that A is open in U .

Finally we show A is closed in U . Suppose (xn)n∈N ⊂ A is a sequence which converges to some x ∈ U .
Using that U is open, we can find ε > 0 so that Bd(x, ε) ⊂ U . Then, there exists N ∈ N such that for
all n ≥ N , xn ∈ Bd(x, ε). In particular, xN ∈ Bd(x, ε). But since xN can be connected to x0 by a
path, and Bd(x, ε) is path-connected, we can as above find a path connecting x0 and x. Hence x ∈ A
and so A is closed in U by the sequence lemma. �

3. Fix A ⊂ R and let C be an open cover for A. If A is empty, then {U} is a finite subcover for any
U ∈ U . If A is nonempty, let x ∈ A and let U ∈ C be such that x ∈ U . Thus U is nonempty and open,
and hence R \ U is finite. Consequently, A ∩ (R \ U) is finite, and let {a1, . . . , an} be the elements in
this intersection. Thus U ⊂ A \ {a1, . . . , an}. Since aj ∈ A for each j = 1, . . . , n, there exists Uj ∈ C
with aj ∈ Uj . Consequently,

U ∪ U1 ∪ · · · ∪ Un ⊃ (A \ {a1, . . . , an}) ∪ {a1} ∪ · · · ∪ {an} = A.

That is, {U,U1, . . . , Un} ⊂ C is a finite subcover. Since C was arbitrary, we see that A is compact. �

4. By a lemma from lecture, for each b ∈ B there exists disjoint open sets Ub, Vb ⊂ X with A ⊂ Ub and
b ∈ Vb. Observe that {Vb | b ∈ B} is an open cover of B, so compactness yields a finite subcover
{Vb1 , . . . , Vbn}. Define

U :=

n⋂
j=1

Ubj and V := Vb1 ∪ · · · ∪ Vbn .

Then U is open since it is the finite intersection of open sets, and V is open since it is the union of open
sets. Since A ⊂ Ubj for each j = 1, . . . , n we have A ⊂ U . We also have B ⊂ V since {Vb1 , . . . , Vbn} is
a subcover. Finally,

U ∩ V = (U ∩ Vb1) ∪ · · · ∪ (U ∩ Vbn) ⊂ (Ub1 ∩ Vb1) ∪ · · · ∪ (Ubn ∩ Vbn) = ∅

�
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5. (a) Suppose U ⊂ X is open with p−1({y}) ⊂ U for y ∈ Y . Then X \U is closed and since p is a closed
map we have that p(X \ U) is closed in Y . Thus V := Y \ p(X \ U) is open. Note that y ∈ V ,
since otherwise y ∈ p(X \ U) and so there exists x ∈ X \ U with p(x) = y, but this contradicts
p−1({y}) ⊂ U . Thus V is a neighborhood of y. If x ∈ p−1(V ), then p(x) 6∈ p(X \ U). Thus we
must have x 6∈ X \ U and therefore x ∈ U . That is, p−1(V ) ⊂ U . �

(b) Let C be an open cover for X. Then C is an open cover for p−1({y}) for each y ∈ Y . The
compactness of p−1({y}) implies there is a finite subcover Sy ⊂ C. Using part (a), there exists a
neighborhood Vy of y with

p−1(Vy) ⊂
⋃

U∈Sy

U.

Now, {Vy | y ∈ Y } is an open cover of Y . Since Y is compact, there is a finite subcover
{Vy1 , . . . , Vyn}. Note that

S :=

n⋃
j=1

Syj
⊂ C

is finite since each Syj
is finite. Also we have

X = p−1(Y ) ⊂ p−1
 n⋃

j=1

Vyj

 =

n⋃
j=1

p−1(Vyj ) ⊂
n⋃

j=1

⋃
U∈Syj

U =
⋃
U∈S

U.

Thus S ⊂ C is a finite subcover and X is compact. �

6*. (a) Let m : G×G→ G be the multiplication map. Since this is continuous, m−1(U) is a neighborhood
of (e, e) ∈ G×G. Since cartesian products of open sets form a basis for the topology on G×G,
there exists open subsets V1, V2 ⊂ G with (e, e) ∈ V1×V2 ⊂ m−1(U). If we let V := V1 ∩V2, then
V is a neighborhood of e and

V V = m(V × V ) ⊂ m(V1 × V2) ⊂ m(m−1(U)) ⊂ U.

�

(b) Let x ∈ B so that x ∈ G \A. Since G \A is open, (G \A)x−1 is a neighborhood of e. By part (a),
there exists Vx a neighborhood of e satisfying VxVx ⊂ (G \ A)x−1. Then Vxx is a neighborhood
of x and thus {Vxx | x ∈ B} is an open cover of B. By compactness we have a finite subcover
{Vx1x1, . . . , Vxnxn}. Define

V :=

n⋂
j=1

Vxj ,

which is a neighborhood of e. For each x ∈ B we have x ∈ Vxk
xk for some k ∈ {1, . . . , n}. Thus

V x ⊂ Vxk
x ⊂ Vxk

Vxk
xk ⊂ (G \A)x−1k xk = G \A.

Since x ∈ B was arbitrary, we have V B ⊂ G \A, or A ∩ V G = ∅. �

(c) We will show the complement of AB is open. Let x 6∈ AB. Since taking inverses is continuous,
B−1 is compact. Also xB−1 is compact since multiplying by x is continuous. Now A∩ xB−1 = ∅
since otherwise xb−1 = a or x = ab for some a ∈ A and b ∈ B, contradicting x 6∈ AB. So A
is a closed subset disjoint from the compact subset xB−1. The previous part implies there is an
open neighborhood V of e such that A ∩ V xB−1 = ∅. This is equivalent to AB ∩ V x = ∅, or
V x ⊂ G\(AB). Since V is a neighborhood of e, V x is a neighborhood of x. Thus the complement
of AB is open and therefore AB is closed. �

(d) Let A ⊂ G be closed. Then by part (c), AH is closed. We also note that AH is saturated: if
x ∈ p−1(p(AH)) then xH ∈ p(AH) = {yH | y ∈ AH}. Thus xH = yH for some y ∈ H, which
implies x = yh for some h ∈ H. Since y ∈ AH and H is a subgroup, it follows that x ∈ AH.
Thus p−1(p(AH)) = AH. Since AH is saturated and p is the quotient map, p(AH) is closed. But
p(A) = p(AH) and so p is closed. �
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(e) By part (d), p : G→ G/H is closed. It is also continuous and surjective. Note that p−1({gH}) =
gH, which is compact since H is compact. Since G/H is also assumed to be compact, Exercise 5
implies G is compact. �
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