Exercises:

§22, 23

1. Recall that for $\mathbf{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$, its norm is $\|\mathbf{x}\|=\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2}$. Consider $X:=\mathbf{R}^{2} \backslash\{(0,0)\}$ and $S^{1}:=\left\{\mathbf{x} \in \mathbb{R}^{2} \mid\|\mathbf{x}\|=1\right\}$ equipped with their subspace topologies, where \mathbb{R}^{2} has its standard topology.
(a) Show that $p(\mathbf{x}):=\frac{1}{\|\mathbf{x}\|} \mathbf{x}$ defines a continuous map $p: X \rightarrow S^{1}$.
(b) Show that p is a quotient map.
(c) Define an equivalence relation \sim on X so that the quotient space X / \sim is homeomorphic to S^{1}. Give a geometric description of the equivalence classes.
2. Prove whether or each of the following spaces is connected or disconnected.
(a) \mathbb{R} equipped with the lower limit topology.
(b) \mathbb{R} equipped with the finite complement topology.
(c) $\mathbb{R}^{\mathbb{N}}$ equipped with the uniform topology.
3. Let X be a topological space and let $\left\{Y_{j} \mid j \in J\right\}$ be an indexed family of connected subspaces of X. Suppose there exists a connected subspace $Y \subset X$ satisfying $Y \cap Y_{j} \neq \emptyset$ for all $j \in J$. Show that $Y \cup \bigcup_{j \in J} Y_{j}$ is connected.
4. Let X and Y be connected spaces and let $A \subsetneq X$ and $B \subsetneq Y$ be proper subsets. Show that $(X \times Y) \backslash$ $(A \times B)$ is connected.
5. Let $p: X \rightarrow Y$ be a quotient map. Suppose that Y is connected and $p^{-1}(\{y\})$ is connected for every $y \in Y$. Show that X is connected.
6^{*}. Let $C_{0}:=[0,1] \subset \mathbb{R}$ and for each $n \in \mathbb{N}$ recursively define

$$
C_{n}:=C_{n-1} \backslash \bigcup_{k=0}^{3^{n-1}-1}\left(\frac{1+3 k}{3^{n}}, \frac{2+3 k}{3^{n}}\right)
$$

Then $C:=\bigcap_{n=0}^{\infty} C_{n}$ is called the Cantor set. Equip $C \subset \mathbb{R}$ with the subspace topology.
(a) Show $C=\bar{C} \backslash C^{\circ}$.
(b) Show that every $x \in C$ is a limit point of C.
(c) Show that C is totally disconnected: singleton sets are the only connected subsets.

Solutions:

1. (a) First note that $\|p(\mathbf{x})\|=\left\|\frac{1}{\|\mathbf{x}\|} \mathbf{x}\right\|=\frac{1}{\|\mathbf{x}\|}\|\mathbf{x}\|=1$, so p is indeed valued in S^{1}.

We will show that p is continuous by showing its coordinate functions are continuous. The coordinate functions are:

$$
p_{1}\left(x_{1}, x_{2}\right)=\frac{x_{1}}{\sqrt{x_{1}^{2}+x_{2}^{2}}} \quad \text { and } \quad p_{2}\left(x_{1}, x_{2}\right)=\frac{x_{2}}{\sqrt{x_{1}^{2}+x_{2}^{2}}}
$$

Observe that $\sqrt{x_{1}^{2}+x_{2}^{2}}=d\left(\left(x_{1}, x_{2}\right),(0,0)\right)$ where d is the euclidean metric. Thus this function is continuous by Exercise 3 on Homework 8. Moreover, since d is a metric this function is equal to zero if and only if $\left(x_{1}, x_{2}\right)=0$. Hence $\sqrt{x_{1}^{2}+x_{2}^{2}}$ is continuous and non-zero on X. The functions $\left(x_{1}, x_{2}\right) \mapsto x_{1}$ and $\left(x_{1}, x_{2}\right) \mapsto x_{2}$ are the coordinate projections and hence continuous. Using a theorem from $\S 21$, we see that p_{1} and p_{2} are continuous as the quotients of the coordinate functions by the non-zero continuous function $\sqrt{x_{1}^{2}+x_{2}^{2}}$.
(b) Note that for $\mathbf{x} \in S^{1}, p(\mathbf{x})=\frac{1}{1} \mathbf{x}=\mathbf{x}$. Thus p is a retraction of X onto S^{1} and therefore is a quotient map by Exercise 2.(b) on Homework 9.
(c) Define an equivalence relation \sim on X by $\mathbf{x} \sim \mathbf{x}^{\prime}$ iff $p(\mathbf{x})=p\left(\mathbf{x}^{\prime}\right)$. Then a corollary from $\S 22$ implies the map $[\mathbf{x}] \mapsto p(\mathbf{x})$ is a homemorphism from X / \sim to S^{1}. We claim that $[\mathbf{x}]=\{c \mathbf{x} \mid c>0\}$. Indeed, if $\mathbf{x}^{\prime} \in[\mathbf{x}]$ then $\mathbf{x}^{\prime} \sim \mathbf{x}$ and therefore $\frac{1}{\|\mathbf{x}\|} \mathbf{x}=\frac{1}{\left\|\mathbf{x}^{\prime}\right\|} \mathbf{x}^{\prime}$. This implies $\mathbf{x}^{\prime}=\frac{\left\|\mathbf{x}^{\prime}\right\|}{\|\mathbf{x}\|} \mathbf{x}$ and $\frac{\left\|\mathbf{x}^{\prime}\right\|}{\|\mathbf{x}\|}>0$. Conversely, for $c>0$ we have

$$
p(c \mathbf{x})=\frac{1}{\|c \mathbf{x}\|} c \mathbf{x}=\frac{1}{c\|\mathbf{x}\|} c \mathbf{x}=\frac{1}{\|\mathbf{x}\|} \mathbf{x}=p(\mathbf{x})
$$

and so $c \mathbf{x} \sim \mathbf{x}$ and $c \mathbf{x} \in[\mathbf{x}]$. This proves the claim, and so we see that $[\mathbf{x}]$ consists of the ray starting at the origin (but not including it), passing through \mathbf{x}, and then extending off to infinity.
2. (a) We claim that this space is disconnected with separation $U=(-\infty, 0)$ and $V=[0, \infty)$. Indeed, recall that the half open intervals $[a, b)$ form a basis for the lower limit topology. Thus U and V are open since

$$
U=\bigcup_{n=1}^{\infty}[-n, 0) \quad \text { and } V=\bigcup_{n=1}^{\infty}[0, n)
$$

Both sets are clearly non-empty and satisfy $U \cap V=\emptyset$ and $U \cup V=\mathbb{R}$. So U and V do indeed form a separation for \mathbb{R} with this topology.
(b) We claim that this space is connected. Suppose, towards a contradiction, that $U, V \subset \mathbb{R}$ are a separation for \mathbb{R}. Then U and V are non-empty and open, and so $\mathbb{R} \backslash U$ and $\mathbb{R} \backslash V$ are both finite. However $U \cap V=\emptyset$ implies $U \subset \mathbb{R} \backslash V$ and thus U is finite. But then $\mathbb{R}=U \cup \mathbb{R} \backslash U$ is a finite union of finite sets, contradiction \mathbb{R} being infinite. Thus no separation of \mathbb{R} exists and therefore \mathbb{R} is connected.
(c) We claim that this space is disconnected with separation $U, V \subset \mathbb{R}^{\mathbb{N}}$ where U consists of all the bounded sequences and V consists of all the unbounded sequences. These sets are non-empty and satisfy $U \cap V=\emptyset$ and $U \cup V=\mathbb{R}^{\mathbb{N}}$. Thus it suffices to show these sets are open. Let $\mathbf{x} \in U$. Then we claim $B_{\bar{\rho}}(\mathbf{x}, 1) \subset U$, where $\bar{\rho}$ is the uniform metric. Indeed, for $\mathbf{y} \in B_{\bar{\rho}}(\mathbf{x}, 1)$ we have

$$
\bar{d}\left(y_{n}, x_{n}\right) \leq \bar{\rho}(\mathbf{y}, \mathbf{x})<1
$$

for all $n \in \mathbb{N}$. This implies $\left|y_{n}-x_{n}\right|=\bar{d}\left(y_{n}, x_{n}\right)<1$. Since \mathbf{x} is bounded, there exists $R>0$ so that $\left|x_{n}\right| \leq R$ for all $n \in \mathbb{N}$, and so

$$
\left|y_{n}\right|=\left|y_{n}-x_{n}+x_{n}\right| \leq\left|y_{n}-x_{n}\right|+\left|x_{n}\right|<1+R .
$$

Thus \mathbf{y} is bounded by $1+R$ and so $\mathbf{y} \in U$. Since $\mathbf{x} \in U$ was arbitrary, this shows U is open in the uniform topology. Now let $\mathbf{x} \in V$. We again claim $B_{\bar{\rho}}(\mathbf{x}, 1) \subset V$. By the same estimate as above, for $\mathbf{y} \in B_{\bar{\rho}}(\mathbf{x}, 1)$ we have $\left|y_{n}-x_{n}\right|<1$ for all $n \in \mathbb{N}$. Since \mathbf{x} is unbounded, for each $k \in \mathbb{N}$ there exists $n_{k} \in \mathbb{N}$ with $\left|x_{n_{k}}\right| \geq k$. Using the reverse triangle inequality we have for each $k \in \mathbb{N}$

$$
\left|y_{n_{k}}\right|=\left|x_{n_{k}}+\left(y_{n_{k}}-x_{n_{k}}\right)\right| \geq\left|\left|x_{n_{k}}\right|-\left|y_{n_{k}}-x_{n_{k}}\right|\right| \geq\left|x_{n_{k}}\right|-\left|y_{n_{k}}-x_{n_{k}}\right| \geq k-1
$$

Thus \mathbf{y} is unbounded and therefore $\mathbf{y} \in V$. Thus V is open and therefore U, V is a separation of $\mathbb{R}^{\mathbb{N}}$.
3. For each $j \in J, Y \cap Y_{j} \neq \emptyset$ implies $Y \cup Y_{j}$ is connected. Then since

$$
Y \subset \bigcap_{j \in J}\left(Y \cup Y_{j}\right) \neq \emptyset
$$

it follows that

$$
\bigcup_{j \in J}\left(Y \cup Y_{j}\right)=Y \cup \bigcup_{j \in J} Y_{j}
$$

is connected.
4. Fix $x_{0} \in X \backslash A$, which exists since A is a proper subset. Then $\left\{x_{0}\right\} \times Y$ is connected since it is homeomorphic to Y. Similarly, for any $y \in Y \backslash B, X \times\{y\}$ is homeomorphic to X and therefore is connected. Note that

$$
\left\{x_{0}, y\right\} \ni\left(\left\{x_{0}\right\} \times Y\right) \cap(X \times\{y\}) \neq \emptyset
$$

for all $y \in Y \backslash B$. Thus the previous exercise implies

$$
\left(\left\{x_{0}\right\} \times Y\right) \cup \bigcup_{y \in Y \backslash B}(X \times\{y\})=\left(\left\{x_{0}\right\} \times Y\right) \cup(X \times Y \backslash B)
$$

is connected. Denote this set by $Z\left(x_{0}\right)$, and define the set similarly for all $x \in X \backslash A$. We have

$$
X \times Y \backslash B \subset \bigcap_{x \in X \backslash A} Z(x) \neq \emptyset
$$

and thus

$$
\bigcup_{x \in X \backslash A} Z(x)=\bigcup_{x \in X \backslash A}(\{x\} \times Y) \cup(X \times Y \backslash B)=(X \backslash A \times Y) \cup(X \times Y \backslash B)=(X \times Y) \backslash(A \times B)
$$

is connected.
5. Suppose, towards a contradiction, that $U, V \subset X$ is a separation. We first claim U and V are saturated with respect to p. We know $U \subset p^{-1}(p(U))$ by Exercise 1 on Homework 1. Conversely, for $x \in$ $p^{-1}(p(U))$ we have $y:=p(x) \in p(U)$. Thus $p^{-1}(\{y\}) \cap U$ is non-empty. Since $p^{-1}(\{y\})$ is connected and U, V is a separation, we must have $p^{-1}(\{y\}) \subset U$. In particular, $x \in U$. Thus $U=p^{-1}(p(U))$ and so is saturated. Similarly V is identical. Since p is a quotient map, it follows that $p(U)$ and $p(V)$ are open in Y. Moreover, their union is all of Y since $U \cap V=X$ and p is surjective. They are also non-empty since U and V are non-empty and they are disjoint since p is surjective and

$$
p^{-1}(p(U) \cap p(V))=p^{-1}(p(U)) \cap p^{-1}(p(V))=U \cap V=\emptyset
$$

Hence $p(U), p(V)$ is a separation for Y, contradicting Y being connected. Thus X is connected.
6^{*}. (a) We first use induction on n to show each C_{n} is closed. Indeed, $C_{0}=[0,1]$ is closed so suppose we know C_{n-1} is closed for some $n \in \mathbb{N}$. Then

$$
C_{n}=C_{n-1} \backslash \bigcup_{k=0}^{3^{n-1}-1}=C_{n-1} \cap\left[\bigcup_{k=0}^{3^{n-1}-1}\left(\frac{1+3 k}{3^{n}}, \frac{2+3 k}{3^{n}}\right)\right]^{c}
$$

The union of open intervals is open and thus its complement is closed. Therefore C_{n} is closed since it is the intersection of C_{n-1} and a closed set. Thus all of the C_{n} are closed by induction. Now, C is therefore closed as the intersection of the closed sets C_{n}. This implies $C=\bar{C}$. We will obtain the desired equality if we show $C^{\circ}=\emptyset$. Let $x \in C$. In order to show $x \notin C^{\circ}$, we must show $(x-\epsilon, x+\epsilon) \notin C$ for any $\epsilon>0$. Fix some $\epsilon>0$ and let $n \in \mathbb{N}$ be large enough so that $\frac{1}{3^{n}}<\epsilon$. We have $x \in C_{n}$ and let $k=0, \ldots, 3^{n-1}-1$ be such that

$$
x \in\left[\frac{3 k}{3^{n}}, \frac{1+3 k}{3^{n}}\right] \cup\left[\frac{2+3 k}{3^{n}}, \frac{3+3 k}{3^{n}}\right] .
$$

The condition $\frac{1}{3^{n}}<\epsilon$ implies

$$
(x-\epsilon, x+\epsilon) \cap\left(\frac{1+3 k}{3^{n}}, \frac{2+3 k}{3^{n}}\right) \neq \emptyset
$$

and thus $(x-\epsilon, x+\epsilon)$ is not contained in C_{n}. Consequently, $(x-\epsilon, x+\epsilon)$ fails to be contained in C. Since $\epsilon>0$ was arbitrary we see that $x \notin C^{\circ}$, and since $x \in C$ was arbitrary we see that $C^{\circ}=\emptyset$.
(b) Let $x \in C$. Recall that x is a limit point if and only if $x \in \overline{C \backslash\{x\}}$. Thus it suffices to show for each $\epsilon>0$ that $(x-\epsilon, x+\epsilon)$ contains some $y \in C$ with $y \neq x$. Fix $\epsilon>0$ and let $n \in \mathbb{N}$ be large enough so that $\frac{1}{3^{n}}<\epsilon$. Since $x \in C \subset C_{n}$, there exists $k=0, \ldots, 3^{n-1}-1$ so that

$$
x \in\left[\frac{3 k}{3^{n}}, \frac{1+3 k}{3^{n}}\right] \cup\left[\frac{2+3 k}{3^{n}}, \frac{3+3 k}{3^{n}}\right] .
$$

Define $y=\frac{1+3 k}{3^{n}}$ if $x \in\left[\frac{3 k}{3^{n}}, \frac{1+3 k}{3^{n}}\right) \cup\left\{\frac{2+3 k}{3^{n}}\right\}$, and otherwise let $y=\frac{2+3 k}{3^{n}}$. Then $y \in C_{n}$ and the choice of n then ensures $|x-y|<\epsilon$, or $y \in(x-\epsilon, x+\epsilon)$. We also note that for $d \in \mathbb{N}$

$$
\frac{1+3 k}{3^{n}}=\frac{3^{d}(1+3 k)}{3^{n+d}}<\frac{3\left(3^{d-1}+3^{d} k\right)+1}{3^{n+d}}
$$

and

$$
\frac{1+3 k}{3^{n}}=\frac{3^{d}(1+3 k)}{3^{n+d}}>\frac{3^{d}(1+3 k)-3+2}{3^{n+d}}=\frac{3\left(3^{d-1}+3^{d} k-1\right)+2}{3^{n+d}}
$$

This implies $\frac{1+3 k}{3^{n}} \notin\left(\frac{1+3 \ell}{3^{m}}, \frac{2+3 \ell}{3^{m}}\right)$ for any $m>n$ and $\ell=0, \ldots, 3^{m-1}-1$. Similarly for $\frac{2+3 k}{3^{n}}$. Consequently $y \in C_{m}$ for all $m>n$ and thus $y \in C$.
(c) Singleton sets are connected since they cannot have two disjoint non-empty subsets, let alone open ones. Now suppose $A \subset C$ is connected, and suppose, towards a contradiction, that $x, y \in A$ are distinct. Without loss of generality $x<y$. Let $n \in \mathbb{N}$ be large enough so that $\frac{2}{3^{n}}<|x-y|$, Consequently if $k=0, \ldots, 3^{n-1}-1$ is such that

$$
x \in\left[\frac{3 k}{3^{n}}, \frac{1+3 k}{3^{n}}\right] \cup\left[\frac{2+3 k}{3^{n}}, \frac{3+3 k}{3^{n}}\right],
$$

then x and y cannot belong to the same subinterval. In particular, since $x<y$, if x is in the first interval then there exists $z \in\left(\frac{1+3 k}{3^{n}}, \frac{2+3 k}{3^{n}}\right)$ with $x<z<y$, and if x is in the second interval then there exists $z \in\left(\frac{4+3 k}{3^{n}}, \frac{5+3 k}{3^{n}}\right)$ with $x<z<y$. In either case $z \notin C_{n}$ and thus $z \notin C$. But then $U:=(-\infty, z) \cap A$ and $V:=(z, \infty) \cap A$ are open in A, non-empty since $x \in U$ and $y \in V$, and satisfy $U \cap V=\emptyset$ and $U \cup V=A$. Thus U, V is a separation for A, which contradicts A being a connected. Thus A must contain at most one element.

