Exercises:

1. Compute the following products:
(a) $\left(\begin{array}{rrr}1 & 1 & 2 \\ -3 & 0 & 1\end{array}\right)\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right)$
(b) $\left(\begin{array}{rr}-2 & 1 \\ 0 & 1 \\ 3 & 2\end{array}\right)\binom{2}{1}$
(c) $\left(\begin{array}{rrr}1 & 1 & 2 \\ -3 & 0 & 1 \\ 4 & 0 & 0 \\ 0 & -1 & 5\end{array}\right)\left(\begin{array}{l}5 \\ 0 \\ 1 \\ 3\end{array}\right)$
2. For each of the following linear transformations T, find their matrix representations $[T]$.
(a) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is the linear transformation defined by $T(x, y)^{T}=(2 x-y, y-3 x, 4 x)^{T}$.
(b) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the linear transformation that sends a vector $\mathbf{v} \in \mathbb{R}^{2}$ to its reflection over the line $y=x$.
(c) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ projects every vector onto the x - y plane.
(d) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ reflects every vector through the $x-y$ plane.
(e) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ rotates the x - y plane $\frac{\pi}{6}$ radians counterclockwise, but leaves the z-axis fixed.
3. Consider the following matrices

$$
A=\left(\begin{array}{rr}
1 & 2 \\
3 & 1
\end{array}\right), \quad B=\left(\begin{array}{rrr}
1 & 0 & 2 \\
3 & 1 & -2
\end{array}\right), \quad C=\left(\begin{array}{rrr}
1 & -2 & 3 \\
-2 & 1 & -1
\end{array}\right), \quad D=\left(\begin{array}{r}
-2 \\
2 \\
1
\end{array}\right)
$$

(a) Determine which of the following products are defined and give the dimension of the result: $A B$, $B A, A B C, A B D, B C, B C^{T}, B^{T} C, D C$, and $D^{T} C^{T}$.
(b) Compute the following matrices: $A B, A(3 B+C), B^{T} A$, and $A^{T} B$.
4. Recall that for an angle θ, the linear transformation $R_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that rotates the plane by θ radians counterclockwise is given by

$$
R_{\theta}=\left(\begin{array}{rr}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right) .
$$

Let ϕ be another angle. Use the fact $R_{\theta} R_{\phi}=R_{\theta+\phi}$ to derive the well-known trigonometric formulas for $\sin (\theta+\phi)$ and $\cos (\theta+\phi)$.
5. Find linear transformation $A, B: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $A B=O$ but $B A \neq O$.
6. Let $A \in M_{n \times m}$ matrix. Define transformations $S, T: M_{m \times n} \rightarrow \mathbb{F}$ by $S(B)=\operatorname{tr}(A B)$ and $T(B)=$ $\operatorname{tr}(B A)$. Prove that S and T are linear transformations, and that in fact $S=T$. Finally, use this to conclude that $\operatorname{tr}(B C)=\operatorname{tr}(C B)$ for any matrices $B \in M_{m \times n}$ and $C \in M_{n \times m}$.
7. The following are True/False. Prove the True statements and provide counterexamples for the False statements.
(a) If $T: V \rightarrow W$ is a linear transformation and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly independent in V, then $T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)$ are linearly independent in W.
(b) If $T: V \rightarrow W$ is a linear transformation and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in V$ are such that $T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)$ are linearly independent in W, then $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly independent in V.
(c) Given $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathbb{R}^{2}$ and $\mathbf{w}_{1}, \mathbf{w}_{2} \in \mathbb{R}^{2}$ such that $\mathbf{v}_{1} \neq \mathbf{v}_{2}$, there exists a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $T\left(\mathbf{v}_{1}\right)=\mathbf{w}_{1}$ and $T\left(\mathbf{v}_{2}\right)=\mathbf{w}_{2}$.

Solutions:

1. (a) $\binom{9}{-3}$
(b) $\left(\begin{array}{r}-3 \\ 1 \\ 8\end{array}\right)$
(c) Does not exist.
2. (a) $[T]=\left(\begin{array}{rr}2 & -1 \\ -3 & 1 \\ 4 & 0\end{array}\right)$
(b) $[T]=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
(c) $[T]=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$
(d) $[T]=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$
(e) $[T]=\left(\begin{array}{ccc}\cos \left(\frac{\pi}{6}\right) & -\sin \left(\frac{\pi}{6}\right) & 0 \\ \sin \left(\frac{\pi}{6}\right) & \cos \left(\frac{\pi}{6}\right) & 0 \\ 0 & 0 & 1\end{array}\right)=\left(\begin{array}{ccc}\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ 0 & 0 & 1\end{array}\right)$
3. (a) $A B$ is $2 \times 3, B A$ DNE, $A B C$ DNE, $A B D$ is $2 \times 1, B C$ DNE, $B C^{T}$ is $2 \times 2, B^{T} C$ is $3 \times 3, D C$ $\mathrm{DNE}, D^{T} C^{T}$ is 1×2.
(b)

$$
\begin{aligned}
A B & =\left(\begin{array}{rrr}
7 & 2 & -2 \\
6 & 1 & 4
\end{array}\right) \\
A(3 B+C) & =\left(\begin{array}{rrr}
18 & 6 & 5 \\
19 & -2 & 20
\end{array}\right) \\
A^{T} B & =\left(\begin{array}{rrr}
10 & 3 & -4 \\
5 & 1 & 2
\end{array}\right)
\end{aligned}
$$

4. We first compute the matrix product $R_{\theta} R_{\phi}$:

$$
\left(\begin{array}{rr}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right)\left(\begin{array}{rr}
\cos (\phi) & -\sin (\phi) \\
\sin (\phi) & \cos (\phi)
\end{array}\right)=\left(\begin{array}{rl}
\cos (\theta) \cos (\phi)-\sin (\theta) \sin (\phi) & -\cos (\theta) \sin (\phi)-\sin (\theta) \cos (\phi) \\
\sin (\theta) \cos (\phi)+\cos (\theta) \sin (\phi) & -\sin (\theta) \sin (\phi)+\cos (\theta) \cos (\phi)
\end{array}\right)
$$

Since rotating first by ϕ radians and then rotating by θ radians is the same as rotating by $\theta+\phi$ radians, the above matrix must equal

$$
R_{\theta+\phi}=\left(\begin{array}{rr}
\cos (\theta+\phi) & -\sin (\theta+\phi) \\
\sin (\theta+\phi) & \cos (\theta+\phi)
\end{array}\right) .
$$

In particular, the $(1,1)$ and $(2,1)$ entries must agree which says

$$
\begin{aligned}
\cos (\theta+\phi) & =\cos (\theta) \cos (\phi)-\sin (\theta) \sin (\phi) \\
\sin (\theta+\phi) & =\sin (\theta) \cos (\phi)+\cos (\theta) \sin (\phi) .
\end{aligned}
$$

5. Note that if $A B=O$, then for every vector $\mathbf{v} \in \mathbb{R}^{2}, A B(\mathbf{v})=A(B \mathbf{v})=\mathbf{0}$. So A must send $B(\mathbf{v})$ to $\mathbf{0}$. Thus we should look for a matrix A that sends lots of vectors to zero. On the other hand, we cannot take $A=O$ since this would imply $B A=B O=O$. A good compromise is letting A be the projection onto the x-axis. Then $A(x, y)^{T}=(x, 0)^{T}$. At this point it is useful to start thinking in terms of matrices. We have

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

since $A(1,0)^{T}=(1,0)$ and $A(0,1)^{T}=(0,0)^{T}$. Suppose

$$
B=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right) .
$$

Then we have

$$
A B=\left(\begin{array}{cc}
b_{11} & b_{12} \\
0 & 0
\end{array}\right) \quad \text { and } \quad B A=\left(\begin{array}{cc}
b_{11} & 0 \\
b_{21} & 0
\end{array}\right) .
$$

Thus if choose $b_{11}=b_{12}=0$ and $b_{21}=b_{22}=1$ (for example). Then $A B=O$ while

$$
B A=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \neq O
$$

6. Let $B, C \in M_{m \times n}$ and let β, γ be scalars. Then using the fact that tr is a linear transformation we have

$$
S(\beta B+\gamma C)=\operatorname{tr}(A(\beta B+\gamma C))=\operatorname{tr}(\beta A B+\gamma A C)=\beta \operatorname{tr}(A B)+\gamma \operatorname{tr}(A C)=\beta S(B)+\gamma S(C)
$$

So S is linear. The proof for T is similar.
As linear transformations, S and T are completely determined by their outputs on a basis. Recall that if $E_{i, j}$ is the matrix with a 1 in its (i, j) th entry and zeros elsewhere, then $\left\{E_{i, j}: i=1, \ldots, m, j=\right.$ $1, \ldots, n\}$ is a basis for $M_{m \times n}$. So to see $S=T$, it suffices to show $S\left(E_{i, j}\right)=T\left(E_{i, j}\right)$ for each $i=1, \ldots, n$ and $j=1, \ldots, m$. Note that the (k, k) entry of $A E_{i, j}$ is

$$
(A)_{k, 1}\left(E_{i, j}\right)_{1, k}+(A)_{k, 2}\left(E_{i, j}\right)_{2, k}+\cdots+(A)_{k, m}\left(E_{i, j}\right)_{k, m}
$$

This is zero unless $k=j$, in which case the above reduces to $(A)_{j, i}\left(E_{i, j}\right)_{i, j}=(A)_{j, i}$. Thus $S\left(E_{i, j}\right)=$ $(A)_{j, i}$. On the other hand, the (k, k) entry of $E_{i, j} A$ is

$$
\left(E_{i, j}\right)_{k, 1}(A)_{1, k}+\left(E_{i, j}\right)_{k, 2}(A)_{2, k}+\cdots+\left(E_{i, j}\right)_{k, n}(A)_{n, k}
$$

This is zero unless $k=i$, in which case the above reduces to $\left(E_{i, j}\right)_{i, j}(A)_{j, i}=(A)_{j, i}$. Thus $T\left(E_{i, j}\right)=$ $(A)_{j, i}$, and so $S=T$.
This implies for any $B \in M_{m \times n}$ that

$$
\operatorname{tr}(A B)=S(B)=T(B)=\operatorname{tr}(B A)
$$

Since $A \in M_{n \times m}$ was arbitrary, the above equality holds for any $C \in M_{n \times m}$.
7. (a) False: Let $V=\mathbb{R}^{n}$ and let $O: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the zero linear transformation. Then $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ are linearly independent since they form a basis for \mathbb{R}^{n}, but $O\left(\mathbf{e}_{1}\right)=\cdots=O\left(\mathbf{e}_{n}\right)=\mathbf{0}$ are linearly dependent:

$$
1 \cdot O\left(\mathbf{e}_{1}\right)+\cdots+1 \cdot O\left(\mathbf{e}_{n}\right)=\mathbf{0}
$$

(b) True: Suppose

$$
\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}=\mathbf{0}
$$

for some scalars $\alpha_{1}, \ldots, \alpha_{n}$. Applying T to both sides and appealing to its linearity yields

$$
\begin{aligned}
T\left(\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}\right) & =T(\mathbf{0}) \\
\alpha_{1} T\left(\mathbf{v}_{1}\right)+\cdots+\alpha_{n} T\left(\mathbf{v}_{n}\right) & =\mathbf{0}
\end{aligned}
$$

Since $T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)$ is a linearly independent system, we must have $\alpha_{1}=\cdots=\alpha_{n}$. Thus $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is linearly independent.
(c) False: Consider

$$
\mathbf{v}_{1}=\binom{1}{0}, \quad \mathbf{v}_{2}=\binom{2}{0}, \quad \mathbf{w}_{1}=\mathbf{w}_{2}=\binom{1}{1}
$$

Observe that $\mathbf{v}_{2}=2 \mathbf{v}_{1}$ while $\mathbf{w}_{2} \neq 2 \mathbf{w}_{1}$. Suppose, towards a contradiction that there is a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ satisfying $T\left(\mathbf{v}_{1}\right)=\mathbf{w}_{1}$ and $T\left(\mathbf{v}_{2}\right)=\mathbf{w}_{2}$. It would then follow that

$$
\mathbf{w}_{2}=T\left(\mathbf{v}_{2}\right)=T\left(2 \mathbf{v}_{1}\right)=2 T\left(\mathbf{v}_{1}\right)=2 \mathbf{w}_{1}
$$

or $\mathbf{w}_{2}=2 \mathbf{w}_{1}$, a contradiction. So no such linear transformation exists.

