# Taylor's Theorem Application 

Brent Nelson

Lemma. For any $x \in \mathbb{R}, \lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0$.
Proof. Let $\epsilon>0$. Let $k_{1}, k_{2} \in \mathbb{N}$ be such that

$$
k_{1}<|x| \leq k_{1}+1 \quad \text { and } \quad k_{2}-1 \leq 2|x|<k_{2} .
$$

Then for any $k \in\left\{k_{1}+1, k_{1}+2, \ldots, k_{2}-1\right\}$ we have $\frac{|x|}{k} \leq 1$, and for any $k \geq k_{2}$ we have $\frac{|x|}{k}<\frac{1}{2}$. Define

$$
M:=\frac{|x|^{k_{1}}}{k_{1}!} .
$$

Let $K \in \mathbb{N}$ be such that for any $k \geq K,\left(\frac{1}{2}\right)^{k}<\frac{\epsilon}{M}$. Then for $N:=K+k_{2}$ if $n \geq N$ we have $n-k_{2} \geq K$ so that:

$$
\left|\frac{x^{n}}{n!}\right|=\frac{|x|^{n}}{n!}=\frac{|x|}{n} \frac{|x|}{n-1} \cdots \frac{|x|}{k_{2}} \frac{|x|}{k_{2}-1} \cdots \frac{|x|}{k_{1}+1} M \leq\left(\frac{1}{2}\right)^{n-k_{2}+1} \cdot 1 \cdot M \leq\left(\frac{1}{2}\right)^{K+1} M<\frac{\epsilon}{M} M=\epsilon
$$

Proposition. Let $U \subset \mathbb{R}$ be an open interval of finite length. Suppose $f: U \rightarrow \mathbb{R}$ is $n$-times differentiable for each $n \in \mathbb{N}$, and that there exists $R>0$ so that

$$
\sup \left\{\left|f^{(n)}(x)\right|: x \in U\right\} \leq R^{n} \quad \forall n \in \mathbb{N} .
$$

Fix any $a \in U$. For each $n \in \mathbb{N}$, define a degree $n$ polynomial $f_{n}$ by

$$
f_{n}(x):=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n} .
$$

Then $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges uniformly to $f$ on $U$.
Proof. Let $\epsilon>0$ and let $r$ be the length of the interval $U$. Then for any $x \in U$ we have $|x-a|<r$. Now, by Taylor's theorem

$$
f(x)-f_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1},
$$

for some $c$ between $a$ and $x$. Thus we have

$$
\left|f(x)-f_{n}(x)\right| \leq \frac{R^{n+1}}{(n+1)!} r^{n+1}=\frac{(R r)^{n+1}}{(n+1)!} .
$$

Since this upper bound holds for all $x \in U$, we have

$$
\sup \left\{\left|f(x)-f_{n}(x)\right|: x \in U\right\} \leq \frac{(R r)^{n+1}}{(n+1)!} .
$$

By the Lemma, the right-hand side tends to zero as $n$ tends to infinity and therefore $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges uniformly to $f$ on $U$.

