Name: _____

Student ID Number:_____

Instructions:

- 1. You will have 50 minutes to complete the exam.
- 2. The exam is a total of 4 questions and each question is worth 10 points.
- 3. Unless stated otherwise, you may use results we proved in class and on the homework.
- 4. No books, notes, calculators, or electronic devices are permitted.
- 5. If you require additional space, please use the reverse side of the pages.
- 6. The exam has a total of 6 pages with the last page left blank for scratch work. Please verify that your copy has all 6 pages.

Question	Score	Points
1.		10
2.		10
3.		10
4.		10
Total		40

- 1. (a) Given a bounded sequence $(x_n)_{n \in \mathbb{N}} \subset \mathbb{R}$, state the definition of the **limit supremum** $\limsup_{n \to \infty} x_n$.
 - (b) Equip \mathbb{R} with the usual metric, let $S \subset \mathbb{R}$ be a closed subset, and let $(x_n)_{n \in \mathbb{N}} \subset S$ be a bounded sequence. Show that $\limsup_{n \to \infty} x_n$ is contained in S.

- 2. (a) For (E, d) a metric space, state what it means for $(x_n)_{n \in \mathbb{N}} \subset E$ to be a **Cauchy sequence**.
 - (b) State what it means for a metric space (E, d) to be **complete**.
 - (c) Let E be an arbitrary set equipped with the trivial metric:

$$d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}.$$

Show that E is complete.

- 3. (a) For (E, d) a metric space, state what it means for a subset $S \subset E$ to be **compact**.
 - (b) Let (E, d) be as in the previous problem. Show that $S \subset E$ is compact if and only if S is finite.

- 4. (a) Let (E, d) and (E', d') be metric spaces, and let $f: E \to E'$ be a function. State what it means for f to be **continuous on** E.
 - (b) Let (\mathbb{R}^2, d_2) and (\mathbb{R}, d) be the two-dimensional and one-dimensional Euclidean metric spaces, respectively. That is,

$$d_2((x_1, y_2), (x_2, y_2)) := \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$
$$d(x_1, x_2) := |x_1 - x_2|.$$

Show that the function $f\colon \mathbb{R}^2\to \mathbb{R}$ defined by

$$f(x,y) = x^2 + y^2$$

is continuous on \mathbb{R} .