Interiors, Closures, and Boundaries

Brent Nelson

Let (E, d) be a metric space, which we will reference throughout. In these exercises, we formalize for a subset $S \subset E$ the notion of its "interior", "closure", and "boundary," and explore the relations between them.

1 Definitions

We state for reference the following definitions:

Definition 1.1. Given a subset $S \subset E$, we say $x \in S$ is an **interior point of** S if there exists r > 0 such that $B(x,r) \subset S$. The **interior of** S, denoted S° , is the subset of S consisting of the interior points of S.

Definition 1.2. Given a subset $S \subset E$, the closure of S, denoted \overline{S} , is the intersection of all closed sets containing S.

Remark 1.3. Note that there is always at least one closed set containing S, namely E, and so \overline{S} always exists and $S \subset \overline{S}$. Moreover, as the intersection of closed sets, \overline{S} is closed.

Definition 1.4. Given a subset $S \subset E$, we say S is **dense in** E if for all $x \in E$ and all r > 0, there exists $s \in S$ with d(x, s) < r. That is, $B(x, r) \cap S \neq \emptyset$.

Definition 1.5. Given a subset $S \subset E$, the **boundary of** S is the set $\partial S := \overline{S} \setminus S^{\circ}$.

2 Exercises

- 1. For the following subsets, determine (without proof) their interiors, closures, and boundaries
 - (a) S = [0, 1] in \mathbb{R} with the usual metric.
 - (b) S = (0, 1) in \mathbb{R} with the usual metric.
 - (c) $S = \mathbb{Z}$ in \mathbb{R} with the usual metric.
 - (d) $S = \mathbb{Q}$ in \mathbb{R} with the usual metric.
 - (e) $S = \mathbb{R}$ in \mathbb{R} with the usual metric.
 - (f) $S = [0,1) \times [0,1)$ in \mathbb{R}^2 with the 2-dimensional Euclidean metric.

2. Let $S \subset E$.

- (a) Show that S° is the union of all open subsets $U \subset S$.
- (b) Show that S° is open.
- (c) Show that ∂S is closed.

3. Let
$$T \subset S \subset E$$
.

- (a) Show that $\overline{T} \subset \overline{S}$.
- (b) Show that $T^{\circ} \subset S^{\circ}$.

- 4. Let $S \subset E$.
 - (a) Show that S is open if and only if $S = S^{\circ}$.
 - (b) Show that S is closed if and only if $S = \overline{S}$.
- 5. Let $S \subset E$.
 - (a) Show that $\overline{S} = ((S^c)^\circ)^c$.
 - (b) Show that $S^{\circ} = \left(\overline{(S^c)}\right)^c$.
 - (c) Show that $\partial S = \overline{S} \cap \overline{S^c}$.
 - (d) Show $\partial S = \partial (S^c)$.
- 6. Let $S \subset E$
 - (a) Show $\overline{S} = \{x \in E : B(x, r) \cap S \neq \emptyset \ \forall r > 0\}.$
 - (b) Show $\partial S = \{x \in E : B(x,r) \cap S \neq \emptyset \text{ and } B(x,r) \cap S^c \neq \emptyset \ \forall r > 0\}.$
- 7. For $S \subset E$ show that the following are equivalent:
 - (i) S is dense in E.
 - (ii) $(S^c)^\circ = \emptyset$.
 - (iii) $\overline{S} = E$.
- 8. For $S \subset E$, show that E is the disjoint union of S° , ∂S , and $(S^{c})^{\circ}$.
- 9. Let $S \subset E$.
 - (a) Show that S is closed if and only if $\partial S \subset S$.
 - (b) Show that S is open if and only if $\partial S \cap S = \emptyset$.
- 10. Let $A, B \subset E$.
 - (a) Show that $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
 - (b) Show that $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$.
 - (c) For $E = \mathbb{R}$ with the usual metric, give examples of subsets $A, B \subset \mathbb{R}$ such that $\overline{A \cap B} \neq \overline{A} \cap \overline{B}$ and $(A \cup B)^{\circ} \neq A^{\circ} \cup B^{\circ}$.
- 11. Let $S \subset E$ be a connected set. Suppose $T \subset E$ satisfies $S \subset T \subset \overline{S}$. Show that T is also connected.