K-theory

Rufus Willett

University of Hawai'i at Mānoa

GOALS, University of Montana, July 27th 2022

A story ...

Several prominent results from the 1970s:

- Classification of AF algebras (Bratelli, Elliott).
- Classification of almost normal operators (Brown-Douglas-Fillmore).
- The covering index theorem (Atiyah-Singer).

None were (explicitly) proved using K-theory originally ... but K-theory made them whole.

This lecture: another example (we'll define the K_0 and K_1 groups along the way).

s: the unilateral shift on $\ell^2(\mathbb{N})$, $s : \delta_n \mapsto \delta_{n+1}$.

 $\mathcal{T} := C^*(s)$, the Toeplitz C*-algebra.

 $1 - ss^*$ is the projection onto span (δ_0) , and for any $n, m \in \mathbb{N}$

$$s^m(1-ss^*)(s^*)^n = e_{m,n}: \delta_n \mapsto \delta_m.$$

So: \mathcal{T} contains $\mathcal{K} = \mathcal{K}(\ell^2(\mathbb{N}))$ (as an ideal), and

$$\mathcal{T}/\mathcal{K} = C^*(\overline{s}) \cong C(E)$$

for some non-empty $E \subseteq S^1$.

For $z \in S^1$, define $u_z \in \mathcal{U}(\ell^2(\mathbb{N}))$ by $u_z : \delta_n \mapsto z^n \delta_n$. Then

$$u_z^* s u_z = z s.$$

Hence $z \cdot E = E$, so $E = S^1$.

We have proved a classical theorem:



In particular: *a* is invertible in \mathcal{T}/\mathcal{K} if and only if $\sigma(a): S^1 \to \mathbb{C}$ takes values in $GL(\mathbb{C})$.

Step back:

Theorem (Atkinson, 1951)

For an operator $a \in \mathcal{B}(H)$, the following are equivalent:

- a is invertible in $\mathcal{B}(H)/\mathcal{K}(H)$;
- ker(a) and $im(a)^{\perp}$ are finite dimensional, and the range of a is closed.

The class of operators in the above theorem are called Fredholm, and the associated index is

$$\mathsf{Index}(a) := \mathsf{dim}(\mathsf{ker}(a)) - \mathsf{dim}(\mathsf{ker}(a^*)) \in \mathbb{Z}.$$

For example, Index(s) = -1, and more generally

 $\operatorname{Index}(s^n) = -n$, $\operatorname{Index}((s^*)^n) = n$.

Theorem (Dieudonné, 1943)

(Dieudonné, 1943) The index of a Fredholm operator a depends only on the path component of a in $GL(\mathcal{B}/\mathcal{K})$.

Back to

$$0 \longrightarrow \mathcal{K} \longrightarrow \mathcal{T} \stackrel{\sigma}{\longrightarrow} \mathcal{C}(S^1) \longrightarrow 0 \; .$$

For Fredholm $a \in \mathcal{T}$, Index(a) only depends on

$$[\sigma(a)] \in \pi_0(C(S^1)^{\times}) = [S^1, \mathbb{C}^{\times}].$$

Theorem ((essentially) Noether, 1921)

For any Fredholm operator $a \in \mathcal{T}$,

$$Index(a) = -(winding number)(\sigma(a)).$$

Proof.

$$[S^1, GL(\mathbb{C})] \xrightarrow{\operatorname{Index}} \mathbb{Z}$$
.
wind-# $\downarrow \cong$ \mathbb{Z}

Computing both compositions on the unilateral shift, "----" is " $\times -1$ ".

(Important point I skipped over: Index is a homomorphism).

Look again at:

$$[S^1, \operatorname{GL}(\mathbb{C})] \xrightarrow{\operatorname{Index}} \mathbb{Z}$$
.

This is a special case of a general map

$$K_1(B) \xrightarrow{\partial} K_0(I)$$

associated to any short exact sequence of C^* -algebras

$$0 \longrightarrow I \longrightarrow A \longrightarrow B \longrightarrow 0$$

Remaining goal of this talk: explain this.

Let A be a unital C*-algebra (or a unital ring; more generally, A could have an approximate unit of projections).

Let $\mathcal{I}_n(A)$ be the set of idempotents in $M_n(A)$, and define

$$\mathcal{I}_{\infty}(A) := \bigsqcup_{n=1}^{\infty} \mathcal{I}_n(A).$$

Let \sim be the equivalence relation on $\mathcal{I}_{\infty}(A)$ generated by

• $e \sim f$ if e and f are in the same path component of some $\mathcal{I}_n(A)$.

•
$$\mathcal{I}_n(A) \ni a \sim \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \in \mathcal{I}_{n+1}(A).$$

Define $V(A) := \mathcal{I}_{\infty}(A) / \sim$.

Define a binary operation \oplus on $I_{\infty}(A)$ by

$$e\oplus f:=\begin{pmatrix}e&0\\0&f\end{pmatrix},$$

so $\mathcal{I}_{\infty}(A)$ becomes a semigroup.

Some basic properties:

- \bigoplus descends to a well-defined binary operation on V(A). This operation makes V(A) a commutative monoid with identity element [0]. (e.g. $[0, \pi/2] \ni t \mapsto \begin{pmatrix} \cos(t) & \sin(t) \\ -\sin(t) & \cos(t) \end{pmatrix} \begin{pmatrix} e & 0 \\ 0 & f \end{pmatrix} \begin{pmatrix} \sin(t) & -\sin(t) \\ \cos(t) & \cos(t) \end{pmatrix}$ shows that $e \oplus f \sim f \oplus e$).
- Every class in V(A) contains a projection. Moreover, for projections, $p \sim q$ if and only if there exists v such that $vv^* = p$ and $v^*v = q$ (partially proved in the problem session). So:

$$V(A) := rac{P_{\infty}(A)}{\mathsf{Murray von Neumann equivalence}}$$

Examples:

• $A = \mathcal{B}(H)$. $p \sim q$ if and only if $\operatorname{rank}(p) = \operatorname{rank}(q)$ (as $p \sim q$ if and only if there is an isometry $v : \operatorname{im}(p) \stackrel{\cong}{\Rightarrow} \operatorname{im}(q)$).

So:

 $V(A)\cong\{0,1,2,...,\}$ if $\dim(H)$ is finite (and throw in all the cardinal numbers up to $\dim(H)$ if not) .

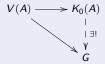
with the usual addition

 $(\operatorname{as} \operatorname{rank}(p \oplus q) = \operatorname{rank}(p) + \operatorname{rank}(q)).$

• Similarly, (for $H \neq 0$) $V(\mathcal{K}(H)) \cong \mathbb{N}$ via $p \mapsto \operatorname{rank}(p)$.

Definition (sort of)

 $K_0(A)$ is the unique abelian group equipped with a monoid homomorphism $V(A) \to K_0(A)$, with the property that for any other monoid homomorphism $V(A) \to G$ to an abelian group, the diagram



can be filled in with a group homomorphism.

(To show this makes sense, take $K_0(A)$ to be e.g. the free abelian group generated by the elements of V(A), modulo the relations $[p \oplus q] = [p] + [q]$).

Examples:

• $\mathcal{K}_0(\mathcal{B}(\mathcal{H})) \cong \begin{cases} \mathbb{Z} & 0 < \dim(\mathcal{H}) < \infty \\ 0 & \text{otherwise } (as \ \alpha + \beta = \beta \text{ for any cardinals } \alpha \leqslant \beta \text{ with } \beta \text{ infinite, so } \alpha = 0 \text{ as we are in a group}. \end{cases}$

• $\mathcal{K}_0(\mathcal{K}(H) \cong \mathbb{Z}.$

If A is non-unital, $\mathcal{K}_0(A)$ is the subgroup of elements of $\mathcal{K}_0(\widetilde{A})$ that go to zero under the canonical map $\mathcal{K}_0(\widetilde{A}) \to \mathcal{K}_0(\mathbb{C})$.

The K_1 -group

For a unital C^* -algebra (or Banach algebra) A, define

$$GL_{\infty}(A) := \bigsqcup_{n=1}^{\infty} GL_n(A)$$

Let \sim be the equivalence relation on $GL_{\infty}(A)$ generated by

• $a \sim b$ if they are in the same path component of some $GL_n(A)$.

•
$$GL_n(A) \ni a \sim \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \in GL_{n+1}(A).$$

Define $K_1(A) := GL_{\infty}(A)/\sim$.

Example:

$$\mathcal{K}_1(\mathcal{C}(S^1)) = \lim_{n \to \infty} \left[\begin{bmatrix} S^1, GL_n(\mathbb{C}) \end{bmatrix}, \ \mathbf{a} \mapsto \begin{pmatrix} \mathbf{a} & \mathbf{0} \\ \mathbf{0} & 1 \end{pmatrix} \right].$$

We already saw that $[S^1, GL_1(\mathbb{C})] \cong \mathbb{Z}$, and geometric topology ("Schubert cells") tells us that all the maps in the limit above are isomorphisms.

As $[S^1, GL_1(\mathbb{C})] \to [S^1, GL_n(\mathbb{C})]$ is split by the determinant map, we have

$$\mathcal{K}_1(\mathcal{C}(\mathcal{S}^1)) \xrightarrow{\cong} \mathbb{Z}, \quad [u] \mapsto \mathsf{wind} \operatorname{-} \#(\mathsf{det} \circ u)$$

Lemma (Whitehead)

Let $\pi : A \to B$ be a surjection of unital C^* -algebras (or rings). Then for any invertible element u of B, there is an invertible element u of $M_2(A)$ lifting $\begin{pmatrix} u & 0 \\ 0 & u^{-1} \end{pmatrix}$.

(u need not lift to an invertible element of A. e.g. A = C (unit disk in \mathbb{C}), B = C (unit circle), π equals restriction, and u(z) = z).

Proof.

In $M_2(B)$

$$\begin{pmatrix} u & 0 \\ 0 & u^{-1} \end{pmatrix} = \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -u^{-1} & 1 \end{pmatrix} \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

The right hand side lifts to an invertible element of $M_2(A)$.

Consider now a short exact sequence

$$0 \longrightarrow I \longrightarrow A \longrightarrow B \longrightarrow 0$$

Given $u \in M_n(B)$ invertible, lift $\begin{pmatrix} u & 0 \\ 0 & u^{-1} \end{pmatrix}$ to invertible $v \in M_{2n}(\mathbb{C})$. The *boundary* of u is

$$\partial(u) := \left[v \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} v^{-1} \right] - \left[\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right]$$

in $K_0(I)$.

This process induces a well-defined boundary homomorphism

$$\partial : K_1(B) \rightarrow K_0(I).$$

It does not depend on the choice of v.

Back to

$$0 \longrightarrow \mathcal{K} \longrightarrow \mathcal{T} \longrightarrow C(S^1) \longrightarrow 0 \; .$$

(what follows generalizes to any C^* -algebra containing \mathcal{K} as an "essential" ideal).

Let $a \in \mathcal{T}$ be Fredholm, and choose $b \in \mathcal{T}$ such that ab = 1 - e and ba = 1 - f with e the projection onto $\ker(a^*) = \operatorname{im}(a)^{\perp}$, and f is projection onto $\ker(a)$.

One computes (exercise!) that with v the "Whitehead lift" defined using a and b

$$v \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} v^{-1} = \begin{pmatrix} 1 - e & 0 \\ 0 & f \end{pmatrix}$$

so we get

$$\partial [\sigma(a)] = \left[v \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} v^{-1} \right] - \left[\begin{matrix} 1 & 0 \\ 0 & 0 \end{matrix} \right] = [f] - [e] " = " \operatorname{Index}(a).$$

K-theoretic picture of $\partial : K_1(C(S^1)) \rightarrow K_0(\mathcal{K})$ immediately lets us deduce

Theorem (Gohberg-Kreĭn, 1958)

Let $a \in M_n(\mathcal{T})$ be a Fredholm Toeplitz operator on $\ell^2(\mathbb{N})^{\bigoplus n}$. Then

 $Index(a) = -(wind-\#)(det \circ \sigma(a)).$

Tying up

In general, we get functors K_0 and K_1

 $(C^*\text{-algebras}, *\text{-hom.s}) \rightarrow (\text{Abelian groups}, \text{hom.s})$

Given a short exact sequence $0 \rightarrow I \rightarrow A \rightarrow B \rightarrow 0$, there is a functorial "six-term exact sequence"

$$\begin{array}{ccc} \mathcal{K}_{0}(I) \longrightarrow \mathcal{K}_{0}(A) \longrightarrow \mathcal{K}_{0}(B) & . \\ & & & & & \\ & & & & & \\ \partial & & & & & \\ \mathcal{K}_{1}(B) \longleftarrow \mathcal{K}_{1}(A) \longleftarrow \mathcal{K}_{1}(I) & & & \\ \end{array}$$

The deepest fact that goes into this is (a slightly stronger version of)

Theorem (Bott, 1956)
$$\lim_{n \to \infty} \left[[S^k, GL_n(\mathbb{C})] , a \mapsto \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \right] \cong \begin{cases} \mathbb{Z} & k \text{ odd} \\ 0 & k \text{ even} \end{cases}$$

(discussed for k = 1 already). This is used to define "exp".