Introduction to Kazhdan's Property (T), I

Rigidity in Von Neumann algebras:

The von Vournam algebra remembers proporties of the object that it's constructed from.

Property (T) is a rigidity property.

First defined for groups in terms of group representations.

(We only consider countable groups here.)

- Def (Kashdan 1967) A group G has property (7) if $\exists F \in G$ finite subject and E > 0, such that for any unitary representation (π, H) of G, if π has a unit (F, E) invariant vector $(\exists E)$ with $|f_3||=1$, max $||\pi(g)|^2-3||< E$) then π has a nonzero invariant vector $(\eta \in H)$ with $\pi(g)\eta = \eta$ for all $g \in G$).
 - (\Leftarrow) Any unitary rep. with G-almost invariant vectors (f(s)) with |f(s)| = 1, |f(s)| = 0, |
- Det (Margulis 1982) H<G. The pair (G, H) has telative property (T) if any unflary representation of G with G-almost invariant vectors has a nonzero H-invariant vector.

Some examples of property (T) groups:

- O Finite groups.
- \bigcirc SIn(Z), $n \ge 3$. (SLn(Z) = $A \in M_n(Z) \mid det(A) = 1$).
 - Remark. 1) Property (T) is inherited by quotient.

 1) Property (T) groups are finitely generated.

Consider the group factor of a property (T) group.

Thm (Connes 1980) The group factor of a property (T) ice group 15 full, has discrete outer automorphism group and Countable fundamental group.

(Misful: Inn(M) = $\{ y \in Aut(M) | g(x) = uxu^4, \forall x \in M \}$ for some $u \in U(M)$ is closed in Aut(M))

- To define property (T) for Walgebras we need the notion of bimodules / Correspondences.
- Det Let M. N be UN algebras. A M-N-bimodule (or a Correspondence from M to N) To a Hilbert space IL with Normal representations of M and NOP, s.t. (x-3)-y=x-(3-y), YXEM, SEH. YEN.

Property (T) (=) L(G) has property (T).

Def (connes, 1982) A II, factor M has property (T) of $\exists (F, E)$ Where $F \subset M$ finite subset and E > 0, sit. for all M-M-bimodule H, if H has a (F, E)-central unit vector $\Im \left(\max_{x \in F} ||x \Im \Im \Im X + \Im X + \Im X + \Im X \right)$ then H has a nonzero M-central vector $\Im \left(\max_{x \in F} ||x \Im \Im \Im X + \Im X + \Im X \right)$

Thm (Connes and Jones, 1985) G is an ita group. Then G has property (T) (>> M = L(G) has property (T).

If =)" Let (F, E) be a kashdan pour of G. For a M-M-bomod H, Define the unitary representation $\Pi: G \to U(H)$ $\Pi(g)(S) = \lambda g S \lambda g^{-1}$. If H has a unit vector S satisfying $\max_{g \in F} \|\lambda_g S - 3 \lambda_g\| < E$, then S is a (F, E)-invariant vector of (π, H) . So $\exists 0 \neq \eta \in H$, sn. $\lambda_g \eta \lambda_{g^+} = \eta$, $\forall g \in G$. Let $\eta \in H$ is a M-central vector in the M-M-bomodule H.

"\(\) Let (\overline{11}, 1+) be a writary representation of G. Construct a M-M-bimodule: $C(G) \otimes H$ with left M-action L(M) $\otimes T$ (for $X = \sum_{s \in G} X_g \lambda_g \in M$, $T(x) = \sum_s X_g T(g)$) and hight M-action $R(M) \otimes Td$. Let (F, G) be from property (T) of M.

We find (F', E') for G such that of π has a unit (F', E')-invariant vector then it has a nonzero invariant vector. For $x \in F$, white $x = \frac{\sum_{g \in G} \chi_g \chi_g}{g \in \mathcal{F}}$. Let $s \in \mathcal{H}$, then for $s \in S \in \mathcal{C}(G) \otimes \mathcal{H}$,

||X(fe&3) - (fe&3) x ||^2 = \frac{2}{9eq} |Xg|^2 ||93-3||^2 =\frac{2}{9eFx} |Xg|^2 ||33-3||^2 + \frac{2}{94Fx} ||Xg|^2 ||93-3||^2.

We can choose a finite subset $F_x \subset G$ so that $\frac{1}{2} f_x |X_g|^2$ is small (so $I \subset E/2$). Then we include F_x in F' and set E' so that if $f' \subseteq I$ is a (F, E')-invariant unit vector then $I \subset E/2$. So if $f' \subseteq I$ is a (F', E')-invariant unit vector. We have that $f \in X$ is a (F, E)-invariant unit vector. M has property $(I) \Longrightarrow$ there is a $f' \subseteq I$ invariant vector $f' \subseteq I$ and $f' \subseteq I$ and $f' \subseteq I$ invariant vector.

Me ≠0? Me will be nonzero if M is close enough to fe@ {.

Continuity constant: the M-central vector is required to be close to the (F, E)-central vector when defining property (T) for tracial VN algebras. But we get this for free for I, factors. See exercise 4.

Amenability and property (T).

Recall a group G to amenable if there is a left invariant mean on $\ell^{6}(G)$ (a state m on $\ell^{6}(G)$ s.1. $\forall f \in \ell^{6}(G)$, $g \in G$, m(f) = m(gf), where $gf \in \ell^{6}(G)$, $gf(h) = fg^{4}h$), $\forall h \in G$)

(the left regular representation of G has almost inversant vectors. See \$13 of C* notes for other equivalent formulations)

Observe that an amenable property (T) group must be finite.

Some examples of amenable groups.

O Finite groups.

D Locally finite groups (G=UGn where Gn forthe). eg, S_{∞} = USn, and this is an ice non property (T) group.

3 Abelian groups.

We also have the notion of amenability for tracked vN algebras. and a group G is amenable \iff L(G) is amenable.

Thun (Classification of Injective factors, Connes, 1976)

All amenable II, factors are isomorphiz to the hyperfinite II factor R.

Conjecture (Connes, 1982) For ice property (T) groups, if G, & Gz, then L(G,) & L(Gz).