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The Setting

H is a Hilbert space

B(H) is the algebra of all bounded operators on H
T (H) is the Banach space of all trace-class operators: all operators in
B(H) that have a finite trace

The convex subset S(H) ⊂ T (H) of all positive (〈ρξ, ξ〉 ≥ 0 ∀ξ ∈ H),
trace-one trace-class operators ρ (called states or density operators)
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Positive, Unital Maps

Definition

Let φ : B(H1)→ B(H2) be a linear transformation. Then φ is

1 positive if it sends positive elements to positive elements:
φ(A) ≥ 0 ∀A ≥ 0;

2 unital, if φ(IB(H1)) = IB(H2) (i.e., φ maps the identity to the identity)
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Completely Positive Maps

Definition

A linear transformation φ : B(H1)→ B(H2) induces a linear
transformation φ(n) : Mn(B(H1))→ Mn(B(H2)) defined by

φ(n)
(

[rij ]
n
i ,j=1

)
= [φ(rij)]ni ,j=1 ,

i.e. φ(n) : Mn(C)⊗B(H1)→ Mn(C)⊗B(H2), φ(n) = idn⊗φ.
We say that φ is

1 n-positive if

φ(n)(X ) is positive in Mn(B(H2)) for every positive X ∈ Mn(B(H1));

2 positive, if φ is n-positive for n = 1;

3 completely positive, if φ is n-positive for every n ∈ N;

4 UCP if φ is unital and completely positive.
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Quantum Channels

Definition

A quantum channel is a completely positive, trace-preserving (CPTP)
linear map Φ : T (H1)→ T (H2).

Notes:

1 trace-preserving means Tr(φ(X )) = Tr(X ) ∀X ∈ T (H1).

2 The adjoint or dual map Φ∗ : B(H2)→ B(H1) is defined via the
Hilbert-Schmidt inner product: it is the unique map Φ∗ satisfying
Tr(B Φ∗(A)) = Tr(Φ(B)A).

3 Quantum channels are completely positive trace-preserving linear
(CPTP) maps. The dual of a CPTP map is a UCP map.
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Stinespring Dilation Theorem

We present the so-called ancilla form of Stinespring’s theorem.

Theorem

Let H1 and H2 be Hilbert spaces. Then for every CP map
φ : B(H1)→ B(H2), there exists a Hilbert space K and an operator
V ∈ B(H2,H1 ⊗K) such that

φ(X ) = V ∗(X ⊗ IB(K))V for all X ∈ B(H1)

and ‖φ(IB(H1))‖ = ‖V ‖2.
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Corresponding Setup in QIT

Theorem

Let Φ : T (H1)→ T (H2) be a CPTP map (quantum channel). Then, for
any state ρ ∈ S(H1), there exists a Hilbert space K, a pure state
ψ ∈ S(K), and a co-isometry V ∈ B(H1 ⊗K,H2 ⊗K) such that

Φ(ρ) = TrK
(
V (ρ⊗ ψ)V ∗

)
.

The operator TrK is the partial trace idB(H1)⊗Tr(·) where Tr is the trace
operator in B(K).
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Conjugate Channel

Let Φ : T (H1)→ T (H2) be a quantum channel with Stinespring dilation
given by

Φ(ρ) = TrK
(
V (ρ⊗ ψ)V ∗

)
∀ρ ∈ S(H1).

The conjugate or complementary channel is ΦC : T (H1)→ T (K) with
Stinespring dilation given by

ΦC (ρ) = TrH2

(
V (ρ⊗ ψ)V ∗

)
∀ρ ∈ S(H1).
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Quantum Error Correction

Definition

A subspace of states C ⊆ S(H) is an error correcting code for a channel E
if there exists a recovery channel R such that R ◦ E(ρ) = ρ for all ρ ∈ C.
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Private Quantum Channels

Motivating example: Random Unitary Channels

Definition

A quantum channel Φ : T (H)→ T (H) is said to be a random unitary
channel if it can be realized as

Φ(X ) =
d∑

i=1

piUiXU
∗
i ∀X ∈ T (H),

where Ui are unitary operators and {pi}di=1 is a probability distribution.
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Private Quantum Channels/Codes

Definition

A subspace of states C ⊆ S(H) is a private code or private subspace for
the channel Φ : T (H)→ T (K) if there is a fixed output state ρ0 such that

Φ(ρ) = ρ0 ∀ρ ∈ C.

The channel φ is called a private channel.

The completely depolarizing channel δ(ρ) = 1
Tr(ρ) I for all ρ is the simplest

example of a quantum channel that is private.

S. Plosker (Brandon U) OA Techniques in QIT 11 / 29



Private Quantum Channels/Codes

Definition

A subspace of states C ⊆ S(H) is a private code or private subspace for
the channel Φ : T (H)→ T (K) if there is a fixed output state ρ0 such that

Φ(ρ) = ρ0 ∀ρ ∈ C.

The channel φ is called a private channel.

The completely depolarizing channel δ(ρ) = 1
Tr(ρ) I for all ρ is the simplest

example of a quantum channel that is private.

S. Plosker (Brandon U) OA Techniques in QIT 11 / 29



Two Sides of a Coin

Theorem (Kretschmann–Kribs–Spekkens (2008))

Given a conjugate pair of CPTP maps φ, φC , a code is an error-correcting
code for one if and only if it is a private code for the other.

Φ(ρ) = TrK
(
V (ρ⊗ ψ)V ∗

)
ΦC (ρ) = TrH2

(
V (ρ⊗ ψ)V ∗

)
The extreme example of this phenomena is given by a unitary channel
paired with the completely depolarizing channel—where the entire Hilbert
space is the code.
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When the Algebraic Bridge Breaks Down

Definition

A subspace of states C ⊆ S(HA) is a private subsystem for the channel
Φ : T (HA)⊗ T (HB)→ T (K) if there is a fixed ancillary state
ρB0 ∈ S(HB) and fixed output state ρ0 such that

Φ(ρA ⊗ ρB0) = ρ0 ∀ρA ∈ C.

The channel φ is called a private channel.

In Jochym-O’Connor–Kribs–Laflamme–P. (2013, 2014), we showed that a
private subsystem can exist in the abscence of a private subspace, and
provided an example of a private channel with a private subsystem, whose
conjugate channel is also private!
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Mathematical Research vs How Papers are Written
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Factorizable Channels

Recall Stinespring’s Dilation Theorem: Let Φ : T (H1)→ T (H2) be a
quantum channel. Then, for any state ρ ∈ S(H1), we have

Φ(ρ) = id⊗Tr
(
V (ρ⊗ ψ)V ∗

)
for some Hilbert space K, pure state ψ, and co-isometry V .

Definition (Theorem, Haagerup–Musat, 2011)

A channel φ : Mn → Mn is factorizable or has an exact factorization if
there exists a finite von Neumann algebra N equipped with a normal
faithful tracial state τN and a unitary operator U ∈ Mn(N) = Mn(C)⊗N
such that

φ(ρ) = (idMn(C) ⊗ τN )(U∗(ρ⊗ IN )U) , ∀ρ ∈ Mn(C) .
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Another Result of Haagerup–Musat (2015)

Definition (Haagerup–Musat, 2015)

Let φ : Mn → Mn be a channel. Then φ is factorizable of degree d if
δd ⊗ φ is a random unitary channel, where δd : Md → Md is the
completely depolarizing channel.

Theorem

A channel is factorizable of degree d if and only if it has an exact
factorization through Md ⊗N , where N = Mk ⊗ L∞[0, 1].
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Schur Multipliers

For any C ∈ Mk , the corresponding Schur multiplier is the map
SC : Mk → Mk given by Schur multiplication: X 7→ C ◦ X . The Schur
multiplier SC is a unital quantum channel if and only if C is a correlation
matrix, i.e., a positive semidefinite matrix whose diagonal elements are all
equal to 1.
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A theorem of O’Meara and Pereira (2013)

For any d , k ∈ N, let

Fk(d) = { 1

d
(Tr(U∗i Uj))ki ,j=1 ∈ Mk : U1, . . . ,Uk ∈ Md unitaries}.

Since the normalized trace 1
d Tr : Md → C is unital and completely

positive, it follows that Fk(d) is a set of correlation matrices.

Theorem

Let k ∈ N and let C ∈ Mk be a correlation matrix. The Schur multiplier
SC : Mk → Mk is a random unitary channel if and only if C lies in the
convex hull of the rank-one correlation matrices in Mk (i.e., iff C is in
conv(Fk(1))).
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Connecting O’Meara–Pereira to Factorizable Channels

Theorem (Harris–Levene–Paulsen–P.–Rahaman, 2018)

Let C ∈ Mk be a correlation matrix and let d ∈ N. The map
δd ⊗ SC : Md ⊗Mk → Md ⊗Mk is a random unitary channel if and only if

C ∈ conv(Fk(d)).
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Mathematical Research vs How Papers are Written
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Quantum Majorization

Definition

Let ρAB ∈ T (HA ⊗HB) and σAC ∈ T (HA ⊗HC ) be two states. We say
that ρAB quantum majorizes σAC , and write σAC ≺q ρAB , if there exists a
quantum channel Φ : T (HB)→ T (HC ) such that id⊗Φ(ρAB) = σAC .

The conditional min-entropy, Hmin(A|B)ρ, of a state ρAB , is defined as

Hmin(A|B)ρ := − log inf
σB≥0
{Tr σB : IA ⊗ σB ≥ ρAB}.
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A Result of Gour et al, 2018, for Finite Dimensions

Theorem

Let ρAB ∈ T (HA ⊗HB) and σAC ∈ T (HA ⊗HC ) be states. The following
are equivalent:

1 The state ρAB quantum majorizes σAC ,

σAC ≺q ρAB .

2 For any quantum channel Φ : T (HA)→ T (HA′), with dimA′ = dimC ,

Hmin(A′|B)Φ⊗id(ρAB) ≤ Hmin(A′|C )Φ⊗id(σAC )
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For Infinite Dimensions

Notice that the conditional min-entropy corresponds to the operator space
tensor norm

Hmin(A|B)ρ = − log ‖ρ‖T (HB)⊗̂B(HA)

where ⊗̂ is the projective tensor product (Pisier 1993).

Using this approach, we characterize quantum majorization using the
projective tensor norm, extending Gour et al’s results to the setting of
tracial von Neumann algebras.
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POVMs

Let X be a locally compact Hausdorff space and O(X ) the σ-algebra of
Borel sets of X . In particular, if X is a finite set (endowed the discrete
topology), then O(X ) is the power set of X .

Definition

A map ν : O(X )→ B(H)+ is a positive operator-valued measure
(POVM) if it is ultraweakly countably additive: for every countable
collection {Ek}k∈N ⊆ O(X ) with Ei ∩ Ej = ∅ for i 6= j we have

ν

(⋃
k∈N

Ek

)
=
∑
k∈N

ν(Ek) ,

and if ν(X ) = IB(H).
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Clean Partial Order

Definition (Pellonpää 2011)

Let ν1 and ν2 be POVMs on (X ,O(X )) with values in B(H1) and B(H2)
respectively.

1 ν1 is cleaner than ν2 if ν2 = Φ∗ ◦ ν1 for some quantum channel
Φ : T (H2)→ T (H1);

2 ν1 and ν2 are cleanly equivalent if ν1 and µ2 are mutually cleaner
than each other;

3 ν1 is clean if there is no quantum probability measure cleaner than ν1,
without ν1 being cleaner than it.
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Approximate Clean Partial Order

Given a quantum channel Φ, the adjoint map φ∗ is normal. However, the
set of normal maps is not closed in the topology of interest—namely, the
point-ultraweak topology—and for this reason we consider approximately
normal unital completely positive linear maps.

Definition (Farenick–Floricel–P., 2013)

Let ν1 and ν2 be POVMs.

1 ν1 is approximately cleaner than ν2 if ν2 = φ ◦ ν1 for some
approximately normal ucp map.

2 ν1 and ν2 are approximately cleanly equivalent if are mutually cleaner
than each other;

3 ν1 is approximately clean if there is no quantum probability measure
approximately cleaner than ν1, without ν1 being approximately
cleaner than it.
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COIs and Operator Systems

Definition

An operator system is a linear subspace S of a unital C∗-algebra A such
that S contains the identity and is closed under adjoints.

Definition

Let S and T be operator systems. A linear transformation φ : S → T is a
unital complete order isomorphism if φ is a unital, linear bijection in which
both φ and φ−1 are completely positive.

We characterized approximate cleaner than and approximate cleanness via
some norm inequalities and the existence of a complete order isomorphism
between operator systems corresponding to the respective quantum
probability measures (Farenick–Floricel–P., 2013).
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Mathematical Research vs How Papers are Written
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The End

Thank you!
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