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Introduction to Coarse Geometry

I Studying the topology of metric spaces tells us about their
’small scale’ structure, e.g. convergence properties...

I ... but doesn’t see ‘large scale’ properties.

I For example, the usual metric on Z and the metric given by
d(z , z ′) = 1 if z 6= z ′ give the same topology on Z, but only
one metric is bounded.

I There are also natural situations where a metric space is only
defined ”coarsely” (e.g. finitely-generated groups)



Organization of this talk

I develop the basic theory of coarse geometry in which metric
spaces are studied according to an equivalence relation which
only sees large scale structure (although coarse structures can
be defined without a metric, we won’t worry about that here)

I discuss properties which are preserved by this equivalence
relation and how they relate to each other

I see how coarse geometry relates to C ∗-algebras

I time permitting, discuss some of my work in coarse geometry,
dynamics, and operator algebras



Coarse equivalence – definitions

I Suppose φ : X → Y is a map of metric spaces.

I We say φ is uniformly expansive if there exists a
non-decreasing function ρ+ : [0,∞)→ [0,∞) such that
dY (φ(x), φ(x ′)) ≤ ρ+(dX (x , x ′)).

I We say φ is effectively proper if there exists a proper
nondecreasing function ρ− : [0,∞)→ [0,∞) such that
dY (φ(x), φ(x ′)) ≥ ρ−(dX (x , x ′)).

I If φ is both uniformly expansive and effectively proper, it’s
called a coarse embedding.

I Moreover, we say φ is coarsely onto if there is R > 0 such that
for all y ∈ Y there exists x ∈ X such that dY (φ(x), y) ≤ R.

I A coarse embedding which is coarsely onto is called a coarse
equivalence. This will be our notion of equivalence (this is an
equivalence relation).



Examples

I any bounded metric space is coarsely equivalent to a point

I Zn (with its usual metric as a subspace of Rn) is coarsely
equivalent to Rn.



Alternative definitions

I Other references may develop the definition of coarse
equivalence in different ways.

I For instance, a map φ is called coarse if it is uniformly
expansive, and a map ψ : X → Y is called a coarse
equivalence if there is a coarse map φ : Y → X such that
ψ ◦ φ and φ ◦ ψ are both a bounded distance away from the
identity maps on X and Y respectively (so ψ has a ’coarse
inverse’).

I Note: These definitions of coarse equivalence are equivalent,
but a coarse map is not in general a coarse embedding
(Exercise: find an example showing this).

I Think the about analogy with topology, homeomorphism =
topological embedding + surjective = continuous +
continuous inverse



quasi-isometry – definition

I When the control functions ρ+ and ρ− have a specific form,
we have different terminology for this stronger condition:

I A map of metric spaces φ : X → Y is a quasi-isometric
embedding if there are constants C and D such that
1
C dX (x , x ′)− D ≤ dY (φ(x), φ(x ′)) ≤ CdX (x , x ′) + D. If it is
also coarsely-surjective, we call φ a quasi-isometry.



More examples (graphs and Cayley graphs)

I If G = (V ,E ) is a connected graph, we can give V a metric
by defining d(v , v ′) to be the least number of edges that must
be traversed in a path from v to v ′. In this case, any two
n-regular trees with n ≥ 3 are quasi-isometric.

I If Γ is a finitely-generated group, we can think of Γ as having
the metric coming from a Cayley graph with respect to some
finite generating set, and any choice of finite generating sets
gives rise to quasi-isometric spaces, so we can talk about Γ as
a coarse space without specifying a metric.

I Exercise: for graphs with metrics defined above, coarse
equivalence and quasi-isometry are equivalent.



Coarse properties

I In topology, we first defined a notion of equivalence
(homeomorphism) and then studied properties which were
preserved by that equivalence (e.g. connectedness,
compactness, simple-connectedness, etc.)

I We will now discuss some properties of metric spaces which
are preserved by coarse equivalence. Some will be familiar,
and many will be related to the study of operator algebras.



Asymptotic dimension

I There are many equivalent definitions of the asymptotic
dimension first introduced by Gromov.

I Here is one: We say a metric space X has asymptotic
dimension at most d if for all R > 0 there exists M > 0 and a
cover U of X such that U = U0 t . . .tUd where d(U,V ) > R
for all U,V ∈ Ui with U 6= V and all 0 ≤ i ≤ d , and
diam(U) < M for all U ∈ Ui and all 0 ≤ i ≤ d .

I Other equivalent definitions make it clear that this is a
large-scale version of covering dimension (see for example [2,
Theorem 1])

I Exercise: show asdimX is a coarse property



Examples

I asdimRn = asdimZn = n. The picture below shows one of the
covers showing that Z has asymptotic dimension ≤ 1.

I Exercise: draw a picture for n = 2.

I (with the metric it gets as a subset of R)
asdim{n2 : n ∈ N} = 0



(some) Properties of asdim

I [3, Theorem 37] Asdim acts like a dimension theory in that it
is subadditive on products asdim(X ×Y ) ≤ asdimX + asdimY
(Note: this is not obvious using the definition given in this
talk – it can be proved from the theorem above or using an
alternative definition. It is more straightforward to see that
asdim(X × Y ) ≤ (asdimX + 1)(asdimY + 1)− 1. )

I [8] Suppose asdimX ≤ n, then there exists a coarse
embedding of X into a product of n + 1 trees.



Amenability

I Amenability of groups is also a coarse property

I Exercise: Show this (I recommend using the Reiter condition)



Finite presentability

I if Γ and Λ are finitely generated and quasi-isometric, then Γ is
finitely presented iff Λ is (so in particular a finite index
subgroup of a finitely presented group is finitely presented).

I This can be proved by showing that a group is
finitely-presented iff it is ‘coarsely simply connected’, and that
coarse simple connectedness is a coarse invariant (at least for
graphs). [P.]



Property A
I A metric space X has property A if for any R > 0 and ε > 0,

there exists a Hilbert space H, a map ξ : X → H and a
number S such that

(1) ‖ξx‖ = 1 for every x ∈ X ,
(2) if d(x , y) < R, then ‖ξx − ξy‖ < ε
(3) and if d(x , y) ≥ S , then 〈ξy , ξx〉 = 0.

I Although there is a straightforward way of formulating
amenability for metric spaces, such a property won’t in
general pass to subspaces. The point of property A is to act
like amenability for metric spaces while also taking into
account more of the total structure of the space.

I See, for example [4, 5.5.6], for some other characterizations.
I Exercise: Show this is a coarse property (this takes some

work, but there’s no special trick to it)
I ([4, 5.5.7]) A countable group Γ has property A if and only if

it is exact (i.e. its reduced group C ∗-algebra has a faithful,
nuclear representation)



Coarse embeddings in Hilbert space

I Every metric space coarsely embeds into a Banach space, but
not necessarily a Hilbert space

I Every tree (hence every free group) coarsely embeds in Hilbert
space

I Coarse embeddings in Hilbert space are used to verify the
coarse Baum-Connes conjecture for certain groups, which in
turn has applications to geometry and topology (Novikov
conjecture)



Relation between coarse properties



Box Spaces

I An important object in the study of coarse properties are box
spaces

I Suppose Γ = 〈F 〉 is finitely-generated. Let (Nn) be a
decreasing sequence of finite-index normal subgroups of Γ. A
box space of Γ is the disjoint union of Cayley graphs
CF (Γ/Nn) with the metric given by
d(x , y) = usual distance between x and y if x , y ∈ CF (Γ/Nn)
and d(x , y) = diamCF (Γ/Nk) + diamCF (Γ/Nl) if
x ∈ CF (Γ/Nk) and y ∈ CF (Γ/Nl).





box spaces and coarse properties

I A box space of Γ has property A iff Γ is amenable

I Some box spaces of non-abelian free groups are expanders,
which do not coarsely embed Hilbert space. Some box spaces
of such groups do admit such embeddings (and some which
aren’t expanders still don’t) ([1] and [5])

I If Γ is residually finite, then the asymptotic dimension of a box
space of Γ is either infinite or equal to that of Γ. If Γ is
virtually nilpotent, its box spaces are finite
(asymptotic)-dimensional. [6]



uniform Roe algebras

I ([4, 5.5.3]) Let X be a metric space with bounded geometry.
An operator A ∈ B(l2(X )) is said to have finite propagation if
〈Aδy , δx〉 6= 0 only if d(x , y) < S (so thinking of A as an
X × X -matrix, the entries at distance greater than S from the
diagonal are 0). The translation algebra A(X ) is the ∗-algebra
of all operators with finite propagation. The closure of the
translation algebra A(X ) in B(l2(X )) is called the uniform
Roe algebra and is denoted by C ∗u (X ).

I If Γ is a countable group (e.g. a finitely-generated group) it
has a natural metric and C ∗u (Γ) ∼= l∞(Γ) or Γ.



uniform Roe algebras and coarse geometry

I If d and d ′ are two metrics on X such that the identity map
(X , d)→ (X , d ′) is a coarse equivalence, then
C ∗u (X , d) = C ∗u (X , d ′) (this is because the two metrics lead to
the same translation algebra A(X ))

I X and Y are coarsely equivalent iff
K(l2)⊗ Cu(X ) ∼= K(l2)⊗ Cu(Y )

I Recall that the C ∗-algebra of a group is nuclear iff the group
is amenable. Similarly, a metric space X has property A if and
only if C ∗u (X ) is nuclear. [4]

I Moreover, if asdimX ≤ d , then the nuclear dimension of
C ∗u (X ) is at most d (see [11]). It has been conjectured that
the reverse inequality holds.



Coarse embeddings and the Baum-Connes conjecture

I The Baum-Connes conjecture states that a certain map called
the assembly map RKΓ

∗ (EΓ)→ K∗(C
∗
r (Γ)) is an isomorphism.

I When this holds, it is often helpful for computing K -theory
and has applications to geometry and topology (verifying the
Novikov conjecture for instance).

I There is also a coarse Baum-Connes conjecture regarding a
different assembly map K∗(X )→ K∗(C

∗(X )) (where C ∗(X ) is
the (not uniform) Roe algebra).



Coarse embeddings and the Baum-Connes conjecture
continued

I A commutative diagram relates these two maps (the vertical
maps come from forgetting about equivariance), so the
conjectures are related.

I A countable discrete group Γ which coarsely embeds in Hilbert
space satisfies the coarse Baum-Connes conjecture

I This implies the (regular) Baum-Connes assembly map is
injective, implying Γ satisfies the Novikov conjecture



large-scale dynamics

I We say a free action Γ y X has dynamic asymptotic
dimension ≤ d if for all finite F ⊂ Γ there is an open cover
U = {U0, . . . ,Ud} such that (for fi ∈ F ) the set |x |F = {y :
y = fk · · · f1 · x and fl · · · f1 · x ∈ Ui for all 1 ≤ l ≤ k} is
uniformly finite with respect to x .

I Example: the action by an irrational rotation Z y S1 has
dynamic asymptotic dimension 1.

I This dimension theory would appear to be sensitive both to
the large scale structure of the Γ-orbits and to the topology of
X



DAD and asdim

I for free actions Γ y X , DAD(Γ y X ) ≥ asdimΓ.

I When the dynamic asymptotic dimension of an isometric free
action is finite, it is bounded above by asdimΓ + dimX [10]

I There are many cases where DADΓ y X = asdimΓ, but
nothing in general is known about this except when X is
0-dimensional.



DAD of odometers

I If Γ is a finitely-generated group and (Nn) is a decreasing
sequence of finite-index normal subgroups, we can form an
action Γ y

∏
n Γ/Nn (or more generally, Γ y lim← Γ/Nn).

Such an action is called an odometer.

I If Γ is residually finite, then DAD(Γ y lim← Γ/Nn) is equal to
the asymptotic dimension of the box space tnCF (Γ/Nn). [P.]

I Any isometric action on a Cantor set is (pretty much) an
odometer, so the above extends to those actions as well. [P.]



DAD and amenability

I finite DAD implies an action is amenable

I this can be used to show that odometers of non-amenable
groups have infinite DAD

I amenability of groups is thought to at least sometimes imply
finite-dimensionality of box spaces, so amenability of actions
may also sometimes imply finite dynamic asymptotic
dimension



DAD and operator algebras

I The nuclear dimension of the crossed product product,
C (X ) or Γ is bounded above by
(dad(Γ y X ) + 1)(dim(X ) + 1)− 1 where dim(X ) is the
covering dimension of X . [7]

I Finite dynamic asymptotic dimension is also related to the
Baum-Connes conjecture.



Kakutani equivalence

I Kakutani equivalence is a weaker notion of equivalence for
group actions than orbit equivalence: two group actions
Γ y X , Λ y Y are Kakutani equivalent if there are clopen
subsets of X and Y such that their translates cover X and Y
and such that the ‘restricted actions’ on those subsets are
orbit equivalent.

I One can show that for compact spaces, Kakutani equivalence
is equivalent to the existence of a continuous orbit couple
([9]), which implies a coarse equivalence of the orbit
structures.

I This implies Kakutani equivalent actions have the same DAD
[P.]
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