Free Probability and Free Entropy (A High-Level Introduction)

Jennifer Pi

University of California, Irvine

GOALS Summer School 2022

∃ >

(Finishing Up) Proof of Free CLT

2 Microstates Free Entropy

3 Non-Microstates Free Entropy

What did you discover from Exercise 1?

< ∃⇒

< □ > < 同 >

æ

We see that for $\pi \in \mathcal{P}_2(2n)$, we have $\phi(\pi) = \sigma^{2n}$ if and only if we can successively remove pairs of matching random variables until we end with a single pair.

We see that for $\pi \in \mathcal{P}_2(2n)$, we have $\phi(\pi) = \sigma^{2n}$ if and only if we can successively remove pairs of matching random variables until we end with a single pair.

Actually, this occurs if and only if π is non-crossing.

We see that for $\pi \in \mathcal{P}_2(2n)$, we have $\phi(\pi) = \sigma^{2n}$ if and only if we can successively remove pairs of matching random variables until we end with a single pair.

Actually, this occurs if and only if π is non-crossing.

Otherwise, $\phi(\pi) = 0$.

Finishing Up the Proof

At the end of the first lecture, we knew:

$$\lim_{k\to\infty}\phi(S_k^n)=\sum_{\pi\in\mathcal{P}_2(n)}\phi(\pi).$$

For even moments, since only non-crossing partitions π give a non-zero contribution, we have

$$\lim_{k\to\infty}\phi(S_k^{2n})=\sum_{\pi\in NC_2(2n)}\phi(\pi)=\sigma^{2n}\cdot |NC_2(2n)|.$$

Since $|NC_2(2n)| = C_n$, the *n*th Catalan number, we are done!

Theorem (Free Central Limit Theorem)

If $(a_i)_{i \in \mathbb{N}}$ are self-adjoint, freely independent, identically distributed nc random variables with $\phi(a_i) = 0$ and $\phi(a_i^2) = \sigma^2$, then

$$rac{1}{\sqrt{k}}(a_1+\cdots+a_k)=S_k o \mathcal{S}(\sigma^2)$$
 in distribution.

Definition (Interpolated Free Group Factors)

Let (\mathcal{M}, τ) be a tracial von Neumann algebra and let \mathcal{R} be a copy of the hyperfinite II_1 factor in \mathcal{M} . Also let $\omega = \{X^t \mid t \in T\}$ be a semicircular family such that \mathcal{R} and ω are free.

Then for $1 < r \le \infty$, we define $L(\mathbb{F}_r)$ as the factor $(\mathcal{R} \cup \{p_t X^t p_t \mid t \in T\})''$, where $p_t \in \mathcal{R}$ are projections satisfying $r = 1 + \sum_{t \in T} \tau(p_t)^2$.

For a II_1 factor \mathcal{M} and 0 < t < 1, we define the *compression* of \mathcal{M} as

$$\mathcal{M}_t \cong p\mathcal{M}p$$
, for any $p \in \mathcal{P}(\mathcal{M})$, $\tau(p) = t$.

We extend this notion to *amplifications of* \mathcal{M} by taking tensors with matrix algebras; for $1 < t < \infty$, if we write $t = n \cdot \ell$, where $0 < \ell < 1$ and $n \in \mathbb{N}$, then we define

$$\mathcal{M}_t \cong p\mathcal{M}p \otimes M_n(\mathbb{C}) \cong M_n(p\mathcal{M}p), \quad \text{ for any } p \in \mathcal{P}(\mathcal{M}), \ \tau(p) = \ell.$$

Definition (Fundamental Group)

The **fundamental group** of a II_1 factor \mathcal{M} is $\{t \in \mathbb{R}_+ : \mathcal{M}_t \cong \mathcal{M}\}$. It is a multiplicative subgroup of \mathbb{R}_+ .

Theorem (Dykema '92; Radulescu '94)

One of the following two statements must be true:

- L(𝔽_r) ≅ L(𝔽_s) for all 1 < r, s ≤ ∞, and the fundamental group of L(𝔽_r) is ℝ₊ for all 1 < r ≤ ∞.
- 2 L(𝔽_r) ≇ L(𝔽_s) for all 1 < r, s ≤ ∞, and the fundamental group of L(𝔽_r) is {1} for all 1 < r ≤ ∞.

Addition Formula

$$L(\mathbb{F}_r) * L(\mathbb{F}_s) \cong L(\mathbb{F}_{r+s}), \text{ for } 1 < r, s \leq \infty.$$

Compression Formula

$$L(\mathbb{F}_r)_t \cong L\left(\mathbb{F}\left(1 + rac{r-1}{t^2}
ight)
ight), ext{ for } 1 < r \leq \infty, \ 0 < t < \infty.$$

イロト イヨト イヨト ・

э

Microstates Free Entropy

Image: A matrix and a matrix

æ

What does the word "entropy" bring to mind?

→ < ∃ →</p>

Image: A matrix and a matrix

æ

What does the word "entropy" bring to mind?

In classical information theory, entropy measures the amount of "information" or "uncertainty" in a random variable.

Boltzmann's formula from physics says the entropy of a "macrostate" is obtained by counting how many "microstates" correspond to that "macrostate".

What does the word "entropy" bring to mind?

In classical information theory, entropy measures the amount of "information" or "uncertainty" in a random variable.

Boltzmann's formula from physics says the entropy of a "macrostate" is obtained by counting how many "microstates" correspond to that "macrostate".

Classical entropy of a distribution μ on \mathbb{R}^n with density ρ is given by

$$H(\mu) := -\int_{\mathbb{R}} \rho(x_1, \ldots, x_n) \log \rho(x_1, \ldots, x_n) \ dx_1 \cdots dx_n.$$

Let $X = (x_1, \ldots, x_n)$ be a tuple of self-adjoint elements of (M, τ) .

Our "microstates" will be given by tuples of matrices in $M_N(\mathbb{C})_{sa}$ that approximate the mixed moments of X.

"Counting the number of microstates" will be taking the Lebesgue measure in $M_N(\mathbb{C})_{sa} \cong \mathbb{C}^{N^2} \cong \mathbb{R}^{2N^2}$.

We then do some appropriate normalization and want to take limits as $N \rightarrow \infty$, and as the level of approximation improves.

Definition of $\chi(X)$

Let (M, τ) be a tracial W^* -probability space and let x_1, \ldots, x_n be an *n*-tuple of self-adjoint elements in M. The set of approximating microstates is:

$$\begin{split} &\Gamma(x_1,\ldots,x_n;N,r,\epsilon) \\ &:= \{(A_1,\ldots,A_n) \in M_N(\mathbb{C})_{sa}^n : |\mathrm{tr}(A_{i_1}\cdots A_{i_k}) - \tau(x_{i_1}\cdots x_{i_k})| \leq \epsilon \\ &\text{for all } 1 \leq i_1,\ldots,i_k \leq n, 1 \leq k \leq r\}. \end{split}$$

Further define:

$$\chi(x_1,\ldots,x_n;r,\epsilon) := \limsup_{N \to \infty} \left(\frac{1}{N^2} \log(\Lambda(\Gamma(x_1,\ldots,x_n;N,r,\epsilon))) + \frac{n}{2} \log(N) \right)$$

The (microstates) free entropy $\chi(x_1, \ldots, x_n)$ is

$$\chi(x_1,\ldots,x_n):=\lim_{\substack{r\to\infty\\\epsilon\to 0}}\chi(x_1,\ldots,x_n;r,\epsilon).$$

Let (M, τ) be a tracial von Neumann algebra generated by self-adjoint x_1, \ldots, x_n . Assume that $\chi(x_1, \ldots, x_n) > -\infty$. Then

(Voiculescu '96) M does not have property Γ. In particular, M is a factor.

M does not have property Γ if for any bounded sequence (t_k) s.t. $\|[x, t_k]\|_2 \to 0$ for all $x \in M$, we have $\|t_k - \tau(t_k)1\|_2 \to 0$ (every central sequence is trivial).

< ロ > < 同 > < 回 > < 回 > < 回 > <

Let (M, τ) be a tracial von Neumann algebra generated by self-adjoint x_1, \ldots, x_n . Assume that $\chi(x_1, \ldots, x_n) > -\infty$. Then

(Voiculescu '96) M does not have property Γ. In particular, M is a factor.

M does not have property Γ if for any bounded sequence (t_k) s.t. $\|[x, t_k]\|_2 \to 0$ for all $x \in M$, we have $\|t_k - \tau(t_k)\mathbf{1}\|_2 \to 0$ (every central sequence is trivial).

(Voiculescu '96) M does not have a Cartan subalgebra.
 A Cartan subalgebra is a maximal abelian subalgebra whose normalizer generates M.

イロト イヨト イヨト ・

Let (M, τ) be a tracial von Neumann algebra generated by self-adjoint x_1, \ldots, x_n . Assume that $\chi(x_1, \ldots, x_n) > -\infty$. Then

(Voiculescu '96) M does not have property Γ. In particular, M is a factor.

M does not have property Γ if for any bounded sequence (t_k) s.t. $\|[x, t_k]\|_2 \to 0$ for all $x \in M$, we have $\|t_k - \tau(t_k)\mathbf{1}\|_2 \to 0$ (every central sequence is trivial).

- (Voiculescu '96) M does not have a Cartan subalgebra.
 A Cartan subalgebra is a maximal abelian subalgebra whose normalizer generates M.
- (Ge '98) M is prime. M is prime if it cannot be decomposed as $M = M_1 \overline{\otimes} M_2$ for II_1 factors M_1, M_2 .

イロト イヨト イヨト ・

3

Non-Microstates Free Entropy

< ∃⇒

æ

Another measure of the amount of "information" a random variable carries is the classical Fisher information.

Classically, entropy can be recovered through an appropriate integral of Fisher information.

This approach provides a more algebraic flavor and avoids the difficulty of finding the size of microstate spaces.

We will skip the classical formulation on this one!

Definition

Define the *partial non-commutative derivatives* ∂_i as linear mappings

$$\partial_i: \mathbb{C} \langle X_1, \dots, X_n
angle o \mathbb{C} \langle X_1, \dots, X_n
angle \otimes \mathbb{C} \langle X_1, \dots X_n
angle$$
 by

$$\partial_i 1 = 0, \qquad \partial_i X_j = \delta_{ij} 1 \otimes 1 \quad \text{ for } j = 1, \dots, n,$$

and by the Leibniz rule:

$$\partial_i(P_1P_2) = \partial_i(P_1) \cdot 1 \otimes P_2 + P_1 \otimes 1 \cdot \partial_i(P_2) \quad \text{for } P_1, P_2 \in \mathbb{C} \langle X_1, \dots, X_n \rangle.$$

Exercise: What is ∂_i on monomials? Compute

$$\partial_i(X_{i(1)}\cdots X_{i(m)}) =$$

э

15 / 24

Definition

Define the partial non-commutative derivatives ∂_i as linear mappings

$$\partial_i: \mathbb{C} \left< X_1, \dots, X_n \right> o \mathbb{C} \left< X_1, \dots, X_n \right> \otimes \mathbb{C} \left< X_1, \dots, X_n \right>$$
 by

$$\partial_i 1 = 0, \qquad \partial_i X_j = \delta_{ij} 1 \otimes 1 \quad \text{ for } j = 1, \dots, n,$$

and by the Leibniz rule:

$$\partial_i(P_1P_2) = \partial_i(P_1) \cdot 1 \otimes P_2 + P_1 \otimes 1 \cdot \partial_i(P_2) \quad \text{for } P_1, P_2 \in \mathbb{C} \langle X_1, \dots, X_n \rangle.$$

Exercise: What is ∂_i on monomials? Compute

$$\partial_i(X_{i(1)}\cdots X_{i(m)}) = \sum_{k=1}^m \delta_{i,i(k)}X_{i(1)}\cdots X_{i(k-1)}\otimes X_{i(k+1)}\cdots X_{i(m)}.$$

э

Recall for $x \in M$ we denote $||x||_2^2 = \tau(x^*x)$, and $L^2(M)$ is the closure of M under this 2-norm.

If $x_1, \ldots, x_n \in M_{sa}$, we can consider the operators ∂_i as derivatives on $\mathbb{C} \langle x_1, \ldots, x_n \rangle \subseteq M$ according to

$$\begin{array}{c} \mathbb{C} \langle X_1, \dots, X_n \rangle & \stackrel{\partial_i}{\longrightarrow} \mathbb{C} \langle X_1, \dots, X_n \rangle \otimes \mathbb{C} \langle X_1, \dots, X_n \rangle \\ & \downarrow^{eval} & \downarrow^{eval} \\ \mathbb{C} \langle x_1, \dots, x_n \rangle & \longrightarrow \mathbb{C} \langle x_1, \dots, x_n \rangle \otimes \mathbb{C} \langle x_1, \dots, x_n \rangle \end{array}$$

(if the evaluation map is an algebra isomorphism).

As an operator on $L^2(x_1, ..., x_n)$, ∂_i is unbounded, but we want them to be "nice", i.e. closable.

 $\implies \partial_i^*$ should be densely defined, i.e. $1 \otimes 1 \in D(\partial_i^*)$.

If $1 \otimes 1 \in D(\partial_i^*)$, then set $\xi_i := \partial_i^* (1 \otimes 1)$. Then we have the following relation:

$$egin{aligned} & au(\xi_i P(x_1,\ldots,x_n)) = \langle \partial_i^*(1\otimes 1) P(\overline{x}),1
angle \ & = \langle 1\otimes 1, \partial_i P(\overline{x})
angle \ & = au\otimes au(\partial_i P(\overline{x}))
angle \ & = au\otimes au(\partial_i P(\overline{x})). \end{aligned}$$

Let x_1, \ldots, x_n be self-adjoint elements of (M, τ) .

• We say ξ_1, \ldots, ξ_n form a **conjugate system** for x_1, \ldots, x_n if for all *i*, $\xi_i \in L^2(x_1, \ldots, x_n)$, and they satisfy the **conjugate relations:** for all $P \in \mathbb{C} \langle X_1, \ldots, X_n \rangle$,

$$\tau(\xi_i P(x_1,\ldots,x_n)) = \tau \otimes \tau((\partial_i P)(x_1,\ldots,x_n)).$$

2 The free Fisher information of x_1, \ldots, x_n is defined by

$$\Phi^*(x_1,\ldots,x_n) = \begin{cases} \sum_{i=1}^n \|\xi_i\|_2^2, & \text{if } \xi_1,\ldots,\xi_n \text{ is a conjugate system} \\ \text{for } x_1,\ldots,x_n \\ +\infty, & \text{if no conjugate system exists.} \end{cases}$$

0

Consider $x_1, \ldots, x_n, y_1, \ldots, y_m$ self-adjoint elements of the same tracial von Neumann algebra (M, τ) . Then $\{x_1, \ldots, x_n\}$ and $\{y_1, \ldots, y_m\}$ are free if and only if

$$\Phi^*(x_1,\ldots,x_n,y_1,\ldots,y_m)=\Phi^*(x_1,\ldots,x_n)+\Phi^*(y_1,\ldots,y_m).$$

Proof uses a formulation in terms of cumulants characterizing when $\{\xi_i\}$ is a conjugate system for $\{x_i\}$.

It was an open question for quite some time whether $\chi(X) = \chi^*(X)$. Since the result MIP^{*} = RE gave a negative answer to the Connes Embedding Problem (this means there exist II_1 factors that do not embed into any ultrapower of \mathcal{R}), we now know there are cases where $\chi^*(X) < \chi(X)$.

It is still open whether or not $\chi(X) = \chi^*(X)$ on all $\mathcal{R}^{\mathcal{U}}$ -embeddable tracial von Neumann algebras.

It is also open whether or not $\chi(X)$ is a von Neumann algebra invariant, i.e. if $W^*(X) = W^*(Y)$, then is it true that $\chi(X) = \chi(Y)$?

Brief Mention: Other Notions of Dimension

- Hayes' 1-bounded entropy
 - defined via covering numbers of the microstate spaces.
 - known to be a von Neumann algebra invariant.
- Charlesworth and Nelson's free Stein dimension
 - algebraic flavor; defined by taking dimension of an appropriate space of derivations.
 - known to be a *-algebra invariant.
- Jekel's free entropy for types in model theory
 - generalizes Hayes' 1-bounded entropy to expressions that involve sup and inf in addition to the trace polynomials.
 - known to be a von Neumann algebra invariant.

Jennifer Pi (UCI)

Free Probability and Free Entropy

July 26, 2022

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

3

	D' '		\sim
lenniter	P. 1		
Jennie		0	
			- /

3 N 3

• What is free independence?

• (Vaguely) What is free entropy, and why do people try to study it?

• Free Probability, Operator Algebras, Random Matrices

- What is free independence?
 - Definition: "alternating centered moments vanish", or "all mixed cumulants vanish".
 - A rule for determining joint moments from pure ones.
- (Vaguely) What is free entropy, and why do people try to study it?

• Free Probability, Operator Algebras, Random Matrices

- What is free independence?
 - Definition: "alternating centered moments vanish", or "all mixed cumulants vanish".
 - A rule for determining joint moments from pure ones.
- (Vaguely) What is free entropy, and why do people try to study it?
 - 2 main versions: microstates and non-microstates.
 - Hope to define basic invariants that can tell von Neumann algebras apart.
- Free Probability, Operator Algebras, Random Matrices

• What is free independence?

- Definition: "alternating centered moments vanish", or "all mixed cumulants vanish".
- A rule for determining joint moments from pure ones.
- (Vaguely) What is free entropy, and why do people try to study it?
 - 2 main versions: microstates and non-microstates.
 - Hope to define basic invariants that can tell von Neumann algebras apart.

• Free Probability, Operator Algebras, Random Matrices

- Many applications to uncovering the structure of tracial von Neumann algebras. One famous example is the role of free probability in proving the free group factor alternative.
- Many "nice" classes of random matrices are asymptotically free.

• What is free independence?

- Definition: "alternating centered moments vanish", or "all mixed cumulants vanish".
- A rule for determining joint moments from pure ones.
- (Vaguely) What is free entropy, and why do people try to study it?
 - 2 main versions: microstates and non-microstates.
 - Hope to define basic invariants that can tell von Neumann algebras apart.
- Free Probability, Operator Algebras, Random Matrices
 - Many applications to uncovering the structure of tracial von Neumann algebras. One famous example is the role of free probability in proving the free group factor alternative.
 - Many "nice" classes of random matrices are asymptotically free.
- There is more to explore!

Thank you!

Hope you learned something from this! Ask me questions anytime!

Jennifer Pi (UCI)

Free Probability and Free Entropy

July 26, 2022

24 / 24