Exercises with Solutions

1. (Finishing proof of Free CLT; doing hands-on moment calculation).

Suppose $\left(a_{i}\right)_{i \in \mathbb{N}}$ is a family of self-adjoint, freely independent, identically distributed nc random variables with $\phi\left(a_{i}\right)=0$ and $\phi\left(a_{i}^{2}\right)=\sigma^{2}$. Compute the following:
(a) $\phi\left(a_{1} a_{2} a_{3}\right)$

Solution: $a_{1} a_{2} a_{3}$ is an alternating word of centered elements, so by the definition of freeness, $\phi\left(a_{1} a_{2} a_{3}\right)=0$.
(b) $\phi\left(a_{1} a_{2} a_{1}\right)$

Solution: Again by the definition of freeness, $\phi\left(a_{1} a_{2} a_{1}\right)=0$.
(c) $\phi\left(a_{1} a_{1} a_{2} a_{2}\right)$

Solution: We do a standard trick, which is to add zero in the form of $\pm \phi$ (each element), and isolate the part that is zero by freeness.

$$
\begin{aligned}
\phi\left(a_{1} a_{1} a_{2} a_{2}\right)= & \phi\left(a_{1}^{2} a_{2}^{2}\right) \\
= & \phi\left[\left(a_{1}^{2}-\phi\left(a_{1}^{2}\right)+\phi\left(a_{1}^{2}\right)\right)\left(a_{2}^{2}-\phi\left(a_{2}^{2}\right)+\phi\left(a_{2}^{2}\right)\right)\right] \\
= & \phi\left[\left(a_{1}^{2}-\phi\left(a_{1}^{2}\right)\right)\left(a_{2}^{2}-\phi\left(a_{2}^{2}\right)\right)\right]+\phi\left(\left(a_{1}^{2}-\phi\left(a_{1}^{2}\right)\right) \phi\left(a_{2}^{2}\right)\right) \\
& +\phi\left(a_{1}^{2}\right) \phi\left(a_{2}^{2}-\phi\left(a_{2}^{2}\right)\right)+\phi\left(a_{1}^{2}\right) \phi\left(a_{2}^{2}\right) ;
\end{aligned}
$$

Now note the first term above is zero by freeness, while the second and third terms are zero since $\phi\left(a_{i}^{2}-\phi\left(a_{i}^{2}\right)\right)=\phi\left(a_{i}^{2}\right)-\phi\left(a_{i}^{2}\right)=0$. We conclude that

$$
\phi\left(a_{1} a_{1} a_{2} a_{2}\right)=\phi\left(a_{1}^{2}\right) \phi\left(a_{2}^{2}\right)=\sigma^{4} .
$$

(d) $\phi\left(a_{1} a_{2} a_{1} a_{2}\right)$

Solution: Again by the definition of freeness, $\phi\left(a_{1} a_{2} a_{1} a_{2}\right)=0$.
(e) $\phi\left(a_{1} a_{2} a_{2} a_{1}\right)$

Repeat the same kind of trick as in part (c). If you work out the algebra correctly, you should again get

$$
\phi\left(a_{1} a_{2} a_{2} a_{1}\right)=\phi\left(a_{1}^{2}\right) \phi\left(a_{2}^{2}\right)=\sigma^{4} .
$$

(f) Generalize the process in (3) and (5) above to arbitrary even-length products with 2 of each index, such as $\phi\left(a_{1} a_{2} a_{3} a_{3} a_{2} a_{1}\right)$.
For $\pi \in \mathcal{P}_{2}(2 n)$, what conditions are needed to get $\phi(\pi)=\sigma^{2 n}$? What about to get $\phi(\pi)=0$? Are there any other possible values for $\phi(\pi)$?
Note: I expect this problem to take quite some time! Students will probably need to work out a few examples before they start to see the pattern emerge. As long as they are talking/working through examples, there's no need to try to hint at the solution!
If students are stuck, give them some starting configurations which correspond to either crossing or non-crossing partitions, draw these partitions, and ask what $\phi()$ of the corresponding word is.
Some example words you can give students:

```
Crossing:
\(a_{1} a_{2} a_{1} a_{3} a_{3} a_{2}\)
\(a_{1} a_{2} a_{3} a_{1} a_{3} a_{2}\)
\(a_{1} a_{2} a_{2} a_{3} a_{1} a_{3}\)
```

Non-crossing:
$a_{1} a_{2} a_{2} a_{3} a_{3} a_{1}$
$a_{1} a_{2} a_{2} a_{1} a_{3} a_{3}$
$a_{1} a_{1} a_{2} a_{3} a_{3} a_{2}$
I will cover the following solution/fact at the beginning of Lecture 2: We see that for $\pi \in \mathcal{P}_{2}(2 n)$, we have $\phi(\pi)=\sigma^{2 n}$ if and only if we can successively remove pairs of matching random variables until we end with a single pair, for example:

Actually, this occurs if and only if π is non-crossing.

Otherwise, $\phi(\pi)=0$.
2. (Applying relationship between moment \& cumulant functionals).

Show that if ϕ is a trace, then the cumulants κ_{n} are invariant under cyclic permutations, i.e.

$$
\kappa_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\kappa_{n}\left(a_{2}, a_{3}, \ldots, a_{n}, a_{1}\right) .
$$

Hints to give students if they are stuck: Go by induction on n, and use the moment-cumulant formula. Is there a way to rearrange the moment-cumulant formula so it is of the following form?

$$
\kappa_{n}(\cdots)=\phi(\cdots)-\sum(\text { some terms }) .
$$

Solution: There is nothing to show in the case $n=1$, and for the $n=2$ case, we saw in the example on page 6 that

$$
\kappa_{2}\left(a_{1}, a_{2}\right)=\phi\left(a_{1} a_{2}\right)-\phi\left(a_{1}\right) \phi\left(a_{2}\right),
$$

but since ϕ is a trace we have that this is equivalent to

$$
\phi\left(a_{2} a_{1}\right)-\phi\left(a_{2}\right) \phi\left(a_{1}\right)=\kappa_{2}\left(a_{2}, a_{1}\right) .
$$

Now suppose we know that $\kappa_{\ell}(\cdots)$ is invariant under cyclic permutation for all $\ell<n$, for some $n>2$. By the moment-cumulant formula, we have

$$
\phi\left(a_{1} \cdots a_{n}\right)=\sum_{\pi \in N C(n)} \kappa_{\pi}\left(a_{1}, \ldots, a_{n}\right) \Longrightarrow \kappa_{n}\left(a_{1}, \ldots, a_{n}\right)=\phi\left(a_{1} \cdots a_{n}\right)-\sum_{\substack{\pi \in N C(n) \\ \pi \neq 1_{n}}} \kappa_{\pi}\left(a_{1}, \ldots, a_{n}\right) .
$$

I use the notation 1_{n} to mean the maximal partition, i.e. the one with a single block containing all elements $\{1,2, \ldots, n\}$. Now simply note that if $\pi \in N C(n)$ is not the maximally connected partition 1_{n}, then $\kappa_{\pi}(\cdots)$ is a product of cumulants of the form $\kappa_{\ell}(\cdots)$, with $\ell<n$. By the induction hypothesis, these are invariant under cyclic permutation. Combining this with the fact that ϕ is a trace, we have

$$
\begin{aligned}
\kappa_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right) & =\phi\left(a_{1} \cdots a_{n}\right)-\sum_{\substack{\pi \in N C(n) \\
\pi \neq 1_{n}}} \kappa_{\pi}\left(a_{1}, a_{2} \ldots, a_{n}\right) \\
& =\phi\left(a_{2} \cdots a_{n} a_{1}\right)-\sum_{\substack{\pi \in N C(n) \\
\pi \neq 1_{n}}} \kappa_{\pi}\left(a_{2}, \ldots, a_{n}, a_{1}\right) \\
& =\kappa_{n}\left(a_{2}, \ldots, a_{n}, a_{1}\right) .
\end{aligned}
$$

