Exercises with Solutions

1. (Finishing proof of Free CLT; doing hands-on moment calculation).
Suppose (4;)ien is a family of self-adjoint, freely independent, identically distributed nc ran-
dom variables with ¢(a;) = 0 and ¢(a?) = 0. Compute the following:

(@) ¢(arazas3)
Solution: ajayaz is an alternating word of centered elements, so by the definition of free-
ness, ¢(a1aza3) = 0.

(b) ¢(araz2a1)

Solution: Again by the definition of freeness, ¢(a1a2a1) = 0.

(c) ¢(araraza)
Solution: We do a standard trick, which is to add zero in the form of +¢(each element),
and isolate the part that is zero by freeness.

¢(a1a1a207) = P(aia3)
[(a7 — ¢(a]) + @(a])) (a5 — p(a3) + p(a3))]

[(a%—4>(a%)>(a%—4>< )]+ ¢((a] — p(a1))p(a3))

+o(at)p(az — ¢(a3)) + p(a])P(a3);

Now note the first term above is zero by freeness, while the second and third terms are
zero since ¢(a? — ¢(a?)) = ¢p(a?) — ¢(a?) = 0. We conclude that

1 1

= =

Plarmnn) = ¢(a)g(a3) = o

(d) ¢(ama2a1a2)
Solution: Again by the definition of freeness, ¢(a1a2a1a2) = 0.

(e) ¢(amazaza1)
Repeat the same kind of trick as in part (c). If you work out the algebra correctly, you
should again get

$p(a1a2a2a1) = <P(a%)(p(a%) — ot
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(f) Generalize the process in (3) and (5) above to arbitrary even-length products with 2 of each
index, such as ¢ (a1a2a3a3aza;).
For m € P,(2n), what conditions are needed to get ¢(71) = 0>*? What about to get
¢(7r) = 0? Are there any other possible values for ¢(77)?
Note: I expect this problem to take quite some time! Students will probably need to work
out a few examples before they start to see the pattern emerge. As long as they are talk-
ing/working through examples, there’s no need to try to hint at the solution!
If students are stuck, give them some starting configurations which correspond to either crossing
or non-crossing partitions, draw these partitions, and ask what ¢ () of the corresponding word is.
Some example words you can give students:

Crossing:

a1azayazasan
a1a2a3a1a3az
a1azazaszaiaz

Non-crossing;:

10242034301

ai1dpadpa1aszas

aijaiaxasasan

I will cover the following solution/fact at the beginning of Lecture 2: We see that for

1 € P2(2n), we have ¢(7r) = ¢" if and only if we can successively remove pairs of
matching random variables until we end with a single pair, for example:

RUsIet R Us N

122133 1221 1 1

Actually, this occurs if and only if 77 is non-crossing.

Otherwise, ¢(7r) = 0.
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2. (Applying relationship between moment & cumulant functionals).
Show that if ¢ is a trace, then the cumulants «; are invariant under cyclic permutations, i.e.

kn(ay, an, ..., an) = xp(az,as,...,a,,a1).

Hints to give students if they are stuck: Go by induction on n, and use the moment-cumulant formula.
Is there a way to rearrange the moment-cumulant formula so it is of the following form?

Kn(-++) = ¢(--+) = )_ (some terms).

Solution: There is nothing to show in the case n = 1, and for the n = 2 case, we saw in the
example on page 6 that

K2(a1,a2) = p(araz) — ¢p(a1)¢(az),

but since ¢ is a trace we have that this is equivalent to

¢(a2a1) — ¢(a2)Pp(a1) = xa(az, a1).

Now suppose we know that x,(- - -) is invariant under cyclic permutation for all ¢ < n, for
some 1 > 2. By the moment-cumulant formula, we have

plar-an) = Y, xx(ar,...,a00) = Kp(ar,...,a0) = P(ar---an)— Y, xxlay,... a,).
meNC(n) meNC(n)
£,

I use the notation 1, to mean the maximal partition, i.e. the one with a single block containing
all elements {1,2,...,n}. Now simply note that if 7 € NC(n) is not the maximally connected
partition 1,, then (- - - ) is a product of cumulants of the form x;(---), with £ < n. By the
induction hypothesis, these are invariant under cyclic permutation. Combining this with the
fact that ¢ is a trace, we have

Kn(ar, az, ... a0) = plar---an) — Y, xx(ar,az...,a,)

:<P(ﬂ2"'ﬂna1)— Z Kn—({}lz,...,ﬂn,(ll)

=Kn(az,...,an,a1).

12



