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Suppose N ⇢ M is a subfactor, ie a unital inclusion of type II1
factors.

Definition

The index of N ⇢ M is [M : N] := dimN L2(M).

Example

If R is the hyperfinite II1 factor, and G is a finite group which acts
outerly on R , then R ⇢ R o G is a subfactor of index |G |.

If H  G , then R o H ⇢ R o G is a subfactor of index [G : H].

Theorem (Jones)

The possible indices for a subfactor are

{4 cos
⇣⇡
n

⌘2
|n � 3} [ [4,1].
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Let X =NL2MM and X =ML2MN , and ⌦ = ⌦N or ⌦M as needed.

Definition

The standard invariant of N ⇢ M is the (planar) algebra of
bimodules generated by X :

X , X ⌦ X , X ⌦ X ⌦ X , X ⌦ X ⌦ X ⌦ X , . . .

X , X ⌦ X , X ⌦ X ⌦ X , X ⌦ X ⌦ X ⌦ X , . . .

Definition

The principal graph of N ⇢ M has vertices for (isomorphism
classes of) irreducible N-N and N-M bimodules, and an edge from

NYN to NZM if Z ⇢ Y ⌦ X (i↵ Y ⇢ Z ⌦ X).

Ditto for the dual principal graph, with M-M and M-N bimodules.

The graph norm of the principal graph of N ⇢ M is
p
[M : N].

Emily Peters Constructing subfactors with the jellyfish algorithm
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Example: R o H ⇢ R o G

Again, let G be a finite group with subgroup H, and act outerly on
R . Consider N = R o H ⇢ R o G = M.
The irreducible M-M bimodules are of the form R ⌦ V where V is
an irreducible G representation. The irreducible M-N bimodules
are of the form R ⌦W where W is an H irrep.
The dual principal graph of N ⇢ M is the induction-restriction
graph for irreps of H and G .

Example (S3  S4)

trivial standard V sign⌦standard sign

trivial standard sign

(The principal graph is an induction-restriction graph too, for H
and various subgroups of H.)

Emily Peters Constructing subfactors with the jellyfish algorithm
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Planar algebras

Definition (Jones)

A planar diagram has

a finite number of inner boundary circles

an outer boundary circle

non-intersecting strings

a marked point ? on each boundary circle

?

?

? ?
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In normal algebra (the kind with sets and functions), we have one
dimension of composition:

X Y Z
f g

In planar algebras, we have two dimensions of composition

2

1

?

?

3

? ?

�2
?

?
=

?

?

? ?
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In abstract algebra, sets are given additional structure by functions.
For example, a group is a set G with a multiplication law

� : G ⇥ G ! G .

A planar algebra also has sets, and maps giving them structure;
there are a lot more of them.

Definition

A planar algebra is

a family of vector spaces Vk , k = 0, 1, 2, . . ., and

an interpretation of any planar diagram as a multi-linear map

among Vi : ?

?

? ?

: V2 ⇥ V5 ⇥ V4 ! V7
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Definition

A planar algebra is

a family of vector spaces Vk , k = 0, 1, 2, . . ., and

Planar diagrams giving multi-linear map among Vi ,

such that composition of multilinear maps, and composition of
diagrams, agree:
V4 ⇥ V2 ⇥ V2 V6

V4 ⇥ V4 ⇥ V2

?

?

? ?
2

1

?

?

3

? ?
?

?
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Definition

A Temperley-Lieb diagram is a way of connecting up points on the
boundary of a circle labelled 1, . . . , 2n, so that the connecting
strings don’t cross.

For example, when n = 3:
?

,
?

,
?

,
?

,
?

Example

The Temperley-Lieb planar algebra TL:

The vector space TL2n has a basis consisting of all
Temperley-Lieb diagrams on 2n points.

A planar diagram acts on Temperley-Lieb diagrams by placing
the TL diagrams in the input disks, joining strings, and
replacing closed loops of string by ·�.
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Example

The Temperley-Lieb planar algebra TL:

The vector space TL2n has a basis consisting of all
Temperley-Lieb diagrams on 2n points.

A planar diagram acts on Temperley-Lieb diagrams by placing
the TL diagrams in the input disks, joining strings, and
replacing closed loops of string by ·�.

?

?

�
?

=

?

= �2

?
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Subfactor planar algebras

The standard invariant of a (finite index, extremal) subfactor is a
planar algebra P with some extra structure:

P0 is one-dimensional
All Pk are finite-dimensional

Sphericality: X = X

Inner product: each Pk has an adjoint ⇤ such that the bilinear
form hx , yi := Tr(yx⇤) is positive definite

From these properties, it follows that closed circles count for a
multiplicative constant �.

Definition

A planar algebra with these properties is a subfactor planar algebra.

Emily Peters Constructing subfactors with the jellyfish algorithm
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Theorem (Jones)

The standard invariant of a subfactor is a subfactor planar algebra.

Theorem (Popa ’95)

One can construct a subfactor N ⇢ M from any subfactor planar
algebra P, in such a way that the standard invariant of N ⇢ M is
P again.

Example

If � > 2, TL(�) is a subfactor planar algebra. If � = 2 cos(⇡/n), a
quotient of TL(�) is a subfactor planar algebra.
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Theorem (Jones, Ocneanu, Kawahigashi, Izumi, Bion-Nadal)

The principal graph of a subfactor of index less than 4 is one of

An = ⇤ · · ·
n vertices

, n � 2 index 4 cos2( ⇡
n+1)

D2n = ⇤ · · ·

2n vertices

, n � 2 index 4 cos2( ⇡
4n�2)

E6 = ⇤ index 4 cos2( ⇡
12) ⇡ 3.73

E8 = ⇤ index 4 cos2( ⇡
30) ⇡ 3.96
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Theorem (Popa)

The principal graphs of a subfactor of index 4 are extended Dynkin
diagram:

A(1)
n = ⇤ · · ·

· · ·
n + 1 vertices

, n � 1, D(1)
n = ⇤ · · ·

n + 1 vertices

, n � 3,

E (1)
6 = ⇤ , E (1)

7 = ⇤ ,

E (1)
8 = ⇤ , A1 = ⇤ · · · ,

A(1)
1 = ⇤ · · ·

· · ·
, D1 = ⇤ · · ·

There are multiple subfactors for some of these principal graphs

(eg, n � 2 non-isomorphic hyperfinite subfactors for D(1)
n ).
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In 1993 Haagerup classified possible principal graphs for
subfactors with index between 4 and 3 +

p
3 ⇡ 4.73:

, , , . . .,

(⇡ 4.30, 4.37, 4.38, . . .)

, (⇡ 4.56)

, , . . . (⇡ 4.62, 4.66, . . .).

Haagerup and Asaeda & Haagerup (1999) constructed two of
these possibilities.

Bisch (1998) and Asaeda & Yasuda (2007) ruled out infinite
families.

In 2009 we (Bigelow-Morrison-P.-Snyder) constructed the last
missing case. arXiv:0909.4099
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The Extended Haagerup planar algebra

[Bigelow, Morrison, P., Snyder] The extended Haagerup planar
algebra is the positive definite planar algebra generated by a single

S 2 V8,+, subject to the relations = � ⇡ 4.377, and

S?

?

···
= � S

?

?

···
, S?? ···

= S??
···

= · · · = 0 ,

8

8

8

S

S

?

?

=

8

8

f
(8) ,

15

S

?

18

f
(18) = i

p
[8][10]
[9]

9 9

7
S

?

S

?

18

f
(18) ,

16

S?

20

f
(20) = [2][20]

[9][10]

9 2 9

7 7
S

?

S

?

S

?

20

f
(20)

The extended Haagerup planar algebra is a subfactor planar algebra
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The Extended Haagerup planar algebra redux

[Bigelow, Morrison, P., Snyder] The extended Haagerup planar
algebra is the positive definite planar algebra generated by a single

S 2 V8,+, subject to the relations = � ⇡ 4.377, and

S?

?

···
= � S

?

?

···
, S?? ···

= S??
···

= · · · = 0 ,

8

8

8

S

S

?

?

2 TL8 , 15

S

? = ↵ 9 9

7
S

?

S

?

,

16

S?

= � n + 1 2 n + 1

7 7
S

?

S

?

S

?

.

The extended Haagerup planar algebra is a subfactor planar algebra
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Let V be the planar algebra generated by this S . To prove V is a
subfactor planar algebra: how do we know V 6= {0}? How do we
know dim(V0) = 1?

Theorem (Jones-Penneys ’10, Morrison-Walker ’10)

A planar algebra P with principal graph � is contained in the graph
planar algebra GPA(�).

We show that V 6= {0} by finding an element S , satisfying the

right relations, in the graph planar algebra of .

Having dim(V0) = 1 means we can evaluate any closed diagram as
a multiple of the empty diagram. We give an evaluation algorithm,
which treats each copy of S as a ‘jellyfish’ and uses the one-strand
and two-strand substitute braiding relations to let each S ‘swim’ to
the top of the diagram.

Emily Peters Constructing subfactors with the jellyfish algorithm



Background
Classification and construction

The jellyfish algorithm

Index less than 4
Index exactly 4
Index less than 3 +

p
3

Begin with arbitrary planar network of Ss.

Now float each generator to the surface, using the relation.
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The diagram now looks like a polygon with some diagonals,
labelled by the numbers of strands connecting generators.

=

Each such polygon has a corner, and the generator there is
connected to one of its neighbors by at least 8 edges.

Use S2 2 TL to reduce the number of generators, and
recursively evaluate the entire diagram.
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Constructing a subfactor inside its graph planar algebras:

1 Find candidate generators by solving many linear and a few
quadratic equations.

2 From principal graph, deduce as many relations as possible;
verify that generators found in (1) satisfy these.

3 Find an evaluation algorithm, showing that the relations from
(2) make any planar diagram completely evaluable.

(1) and (2) tend to be straightforward/algorithmic, and (3) can be
tricky.

Question: which subfactors have a jellyfish evaluation algorithm?
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Definition

A set of (linearly independent, self-adjoint, uncappable, rotational
eigenvector) generators B ⇢ Pn,+ satisfy jellyfish relations if for
each generator S, the diagrams

2n

S
? ,

2n

S
?

can be written as linear combinations of trains, which are diagrams

?

? ? ?
· · ·

T

S1 S2 S`

k k

2n 2n 2n

where S1, . . . , S` 2 B, and T is a single Temperley-Lieb diagram.
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Theorem (Bigelow-Penneys)

A n� 1 supertransitive subfactor planar algebra can be constructed
using jellyfish generators in Pn if and only if its principal graph is a
spoke graph. We can find 1-strand jellyfish generators if and only if
both the principal graph and dual principal graph are spoke graphs.

A spoke graph has a single high-valence hub, with (finite) legs
extending out of it. Its supertransitivity is the distance from the
first vertex to the hub.

Example

⇣
,

⌘
,

⇣
,

⌘
,

⇣
,

⌘
.
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How does one find jellyfish relations?

Acquire the generators in an appropriate graph planar algebra.
These generators are an assignment of numbers in a finite
extension of Q to certain loops on a graph.

Use a computer to evaluate certain closed diagrams with at
most 4 generators. This amounts to multiplying rather large
matrices, and taking the trace.

Turn these evaluations of closed diagrams into information
about inner products, and then use a computer to derive
jellyfish relations for our generators. The use of the computer
is limited to basic linear algebra.

We now have an evaluable planar subalgebra of a graph planar
algebra, which is necessarily a subfactor planar algebra.
Compute the principal graph by a process of elimination.
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Theorem (Penneys-P.)

A subfactor with principal graph 3Z/4 (previously known to Izumi):

⇣
,

⌘
,

can be found in the graph planar algebra of a di↵erent principal
graph ⇣

,
⌘
:
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The End!

Emily Peters Constructing subfactors with the jellyfish algorithm


