Operator Systems I

Sam Kim
University of Waterloo

July 18, 2020

What is an operator system?

An operator system is any subspace $S \subseteq B(H)$ such that
(1) the identity map 1 belongs to S and
(2) for any $x \in S, x^{*} \in S$.

Some people assume S is norm closed, but this largely doesn't affect the theory

Operator systems are a strict generalization of unital C*-algebras, since operator systems are just unital C^{*}-algebras without the multiplication.

We shall see that many new and strange behaviour occur for operator systems even when they have dimension 3 or 4 .

Talk outline

For the first part of our talk, we will describe some basic properties of operator systems and its connections to C*-algebras.

In the second part of our talk, we shall describe some examples of operator systems that admit properties that one might not expect, considering all we have learned about C^{*}-algebras.

Although operator systems admit an abstract characterization like C*-algebras, we shall not consider this today.

Recall an operator $T \in B(H)$ is positive if it is of the form $T=X^{*} X$ for some operator X.

Proposition

Let S be an operator system. Every element is spanned by positive elements in S.

Proof.

If $x \in S$, we know that the self-adjoint operators $\operatorname{Re}(x)=\frac{1}{2}\left(x+x^{*}\right)$ and $\operatorname{Im}(x)=\frac{1}{2 i}\left(x-x^{*}\right)$ both belong to S. If x is self-adjoint, then $x=\frac{1}{2}(\|x\| 1+x)-\frac{1}{2}(\|x\| 1-x)$.

We say that a map $\phi: S \rightarrow T$ is positive if for all $x \geq 0$ in $S, \phi(x) \geq 0$. The $\operatorname{map} \phi$ is unital if $\phi(1)=1$.

Proposition

Let $\phi: S \rightarrow T$ be a positive map. For all $x \in S, \phi\left(x^{*}\right)=\phi(x)^{*}$.

Proof.

Let $x=(a-b)+i(c-d)$, where $a, b, c, d \geq 0$. Since $\phi(a), \phi(b), \phi(c), \phi(d) \geq 0$,

$$
\begin{aligned}
\phi\left(x^{*}\right) & =\phi((a-b)-i(c-d))=(\phi(a)-\phi(b))-i(\phi(c)-\phi(d)) \\
& =\phi(x)^{*} .
\end{aligned}
$$

Example

The transpose map [•] ${ }^{T}: M_{n} \rightarrow M_{n}$ is a unital positive map. If $X \in M_{n}$ is a positive operator, then $X=Y^{*} Y$ for some operator $Y \in M_{n}$. Thus, $X^{T}=\left(Y^{T}\right)\left(Y^{T}\right)^{*}$ is positive.

Example

Any unital *-homomorphism between unital C^{*}-algebras are unital positive maps.

Given an operator system $S \subseteq B(H)$, denote by $M_{n}(S)$ the $n \times n$-matrices with coefficients in S as operator subsystem of $B\left(H^{n}\right)$.

Given a map $\phi: S \rightarrow T$, define the nth amplification of ϕ by

$$
\phi^{(n)}: M_{n}(S) \rightarrow M_{n}(T):\left[x_{i, j}\right]_{i, j} \mapsto\left[\phi\left(x_{i, j}\right)\right]_{i, j} .
$$

Definition

A map $\phi: S \rightarrow T$ is said to be a unital, completely positive (ucp) map if for all $n \geq 1, \phi^{(n)}$ is a unital, positive map.

Example

Suppose $\pi: A \rightarrow B$ is a unital ${ }^{*}$-homomorphism between unital C^{*}-algebras A and B. Since $\pi^{(n)}$ is also a unital ${ }^{*}$-homomorphism, π is a ucp map.

Example

The transpose map $[\cdot]^{T}: M_{2} \rightarrow M_{2}$ is not a completely positive map. The matrix

$$
M:=\left[\begin{array}{ll|ll}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]
$$

is positive, while

$$
\left([\cdot]^{T}\right)^{(2)}(M)=\left[\begin{array}{ll|ll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\hline 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

is not positive.

Just as *-homomorphisms are automatically contractive, so are ucp maps.

Proposition (Lemma 9.16)

Let X be an operator on a Hilbert space H. The following are equivalent:
(1) The matrix

$$
\left[\begin{array}{cc}
1 & X \\
X^{*} & 1
\end{array}\right]
$$

is positive.
(2) $\|X\| \leq 1$.

In fact, if we work a little harder, we can show that for $X \in B(H)$ and $Y \in B(H)$ positive, $\left[\begin{array}{cc}1 & X \\ X^{*} & Y\end{array}\right]$ is positive if and only if $X^{*} X \leq Y$. If $X, Y \in \mathbb{C}$, we have a 2×2 matrix so this is just a determinant calculation.

Proposition

Let $\phi: S \rightarrow T$ be a ucp map between operator systems S and T. The map ϕ is contractive.

Proof.

Let $x \in S$ be a contraction. By the previous exercise, the matrix

$$
\left[\begin{array}{cc}
1 & x \\
x^{*} & 1
\end{array}\right]
$$

is positive. Since $\phi^{(2)}$ is a positive map,

$$
0 \leq \phi^{(2)}\left(\left[\begin{array}{cc}
1 & x \\
x^{*} & 1
\end{array}\right]\right)=\left[\begin{array}{cc}
1 & \phi(x) \\
\phi(x)^{*} & 1
\end{array}\right] .
$$

By our exercise again, $\phi(x)$ is a contraction.

Definition

Given operator systems S and T, we say that $\phi: S \rightarrow T$ is a complete order embedding if ϕ is unital and for all $n \geq 1$ and for all $x \in M_{n}(S)$, $x \geq 0$ if and only if $\phi^{(n)}(x) \geq 0$.

By the previous proposition again, for all $x \in S,\|x\| \leq 1$ if and only if $\|\phi(x)\| \leq 1$. That is, ϕ must be an isometry.

Proposition

Let $\phi: S \rightarrow T$ be a map. It is a complete order embedding if and only if ϕ is an isometry, ϕ is ucp, and $\phi^{-1}: \phi(S) \rightarrow S$ is also a ucp map.

There is a Hahn-Banach-type extension Theorem for operator systems, called Arveson's extension theorem.

Theorem (Arveson's extension theorem)

Suppose that S and T are operator systems with a unital complete order embedding $\rho: S \hookrightarrow T$. If $\phi: S \rightarrow B(H)$ is a ucp map, then there is a ucp map $\psi: T \rightarrow B(H)$ such that the diagram

commutes.

The final topic I wish to talk on in this first part is the notion of a C*-cover. A C*-cover describes a notion of an operator system generating a C*-algebra.

Definition

Let S be an operator system. We say that a pair (A, ρ) is a C^{*}-cover if A is a unital C^{*}-algebra and $\rho: S \hookrightarrow A$ is a unital complete order embedding for which $A=C^{*}(\rho(S))$.

Example

Let G be a discrete group with generating set \mathfrak{g}. Assume that $e \in \mathfrak{g}$ and that $\mathfrak{g}^{-1}=\mathfrak{g}$. For the operator system

$$
S_{\lambda}(\mathfrak{g}):=\operatorname{span}\left\{\lambda_{g} \in B\left(\ell^{2}(G)\right): g \in \mathfrak{g}\right\} \subseteq B\left(\ell^{2}(G)\right),
$$

we have the C^{*}-cover $\left(C_{\lambda}^{*}(G), \iota\right)$, where $\iota: S_{\lambda}(\mathfrak{g}) \hookrightarrow C_{\lambda}^{*}(G)$ is the inclusion map.

The following deep theorem connects the study of operator systems to the study of C*-algebras.

Theorem (Hamana)

Let S be an operator system. There always exists a minimal C*-cover of S, denoted $\left(C_{\text {env }}^{*}(S), \iota\right)$.

The C^{*}-envelope is minimal in the following sense: if (A, ρ) is a C^{*}-cover of S, then there is a surjective unital ${ }^{*}$-homomorphism $\pi: A \rightarrow C_{\text {env }}^{*}(S)$ such that the diagram

commutes.
In the next part of this talk, we will explore the C^{*}-envelope in greater detail.

Operator Systems II

Sam Kim
University of Waterloo

July 18, 2020

What is a C*-envelope?

Recall that an operator system is a unital, *-closed subspace of $B(H)$.
The notion of morphism between operator systems is given by unital, completely positive (ucp) maps.

From this, we described a notion of a unital complete order embedding as a ucp map with ucp inverse onto its range.

Finally, there was a distinguished C^{*}-cover, called the C^{*}-envelope of S, which is minimal in the sense of quotients preserving S.

Example

Let S be an operator system and suppose that (A, ρ) is a C^{*}-cover for which A is a simple C^{*}-algebra. By the universal property of $\left(C_{\text {env }}^{*}(S), \iota\right)$, there is a quotient *-homomorphism $\pi: A \rightarrow C_{\text {env }}^{*}(S)$ preserving S. Since A is simple, π must be an isomorphism. Therefore, (A, ρ) is the C*-envelope of S.

Example

Let $S=\operatorname{span}\{1, z\} \subseteq C([0,1])$, where $z(t)=t$ for all $t \in[0,1]$. Define

$$
\rho: S \rightarrow \mathbb{C}^{2}: a 1+b z \mapsto(a, a+b)
$$

The map ρ is a complete order embedding. I claim that (\mathbb{C}^{2}, ρ) must be the \mathbb{C}^{*}-envelope. Since there is only one unital quotient of \mathbb{C}^{2} (namely \mathbb{C}), it suffices to show that there cannot be a complete order embedding of S into \mathbb{C}. This is because S has dimension 2 while \mathbb{C} has dimension 1 .

The following Lemma allows us to multiply unitaries just by using positivity.

Exercise (Walter's Lemma)

Let U, V be unitary operators on a Hilbert space H. Fix an operator $X \in B(H)$. The following are equivalent:
(1) The matrix $\left[\begin{array}{ccc}1 & U & X \\ U^{*} & 1 & V \\ X^{*} & V^{*} & 1\end{array}\right]$ is positive.
(2) $X=U V$.

Operator Systems generated by unitary operators satisfy the following nice uniqueness result.

Lemma

Suppose that S is an operator system generated by a collection of unitary operators $\mathcal{U} \subseteq U(K)$. If $\pi: C^{*}(\mathcal{U}) \rightarrow B(H)$ is any unital representation and if $\phi: C^{*}(\mathcal{U}) \rightarrow B(H)$ is a ucp map such that $\pi \upharpoonright S=\phi \upharpoonright S$, then $\phi=\pi$.

To show this, first observe that the set

$$
\left\{u_{1} u_{2} \cdots u_{n}: u_{1}, u_{2}, \ldots, u_{n} \in \mathcal{U} \cup \mathcal{U}^{*}\right\}
$$

span a dense subset of $C^{*}(\mathcal{U})$.
It is then enough to show that for any unitaries $u, v \in C^{*}(\mathcal{U})$ such that $\phi(u)=\pi(u)$ and $\phi(v)=\pi(v)$, we must have $\phi(u v)=\phi(u) \phi(v)$ since then $\phi(u v)=\phi(u) \phi(v)=\pi(u) \pi(v)=\pi(u v)$.

Proof.

Fix u, v unitaries in $C^{*}(\mathcal{U})$ for which $\phi(u)=\pi(u)$ and $\phi(v)=\pi(v)$. By Walter's Lemma, the matrix $\left[\begin{array}{ccc}1 & u & u v \\ u^{*} & 1 & v \\ (u v)^{*} & v^{*} & 1\end{array}\right]$ is positive. Since $\phi^{(3)}$ is a positive map, the matrix $\left[\begin{array}{ccc}1 & \phi(u) & \phi(u v) \\ \phi(u)^{*} & 1 & \phi(v) \\ \phi(u v)^{*} & \phi(v)^{*} & 1\end{array}\right]$ is positive. By Walter's Lemma again, $\phi(u v)=\phi(u) \phi(v)$.

Proposition

Suppose that S is an operator system generated by a collection of unitary operators $\mathcal{U} \subseteq U(K)$. If $\rho: S \hookrightarrow C^{*}(\mathcal{U})$ is the inclusion map, then $\left(C^{*}(\mathcal{U}), \rho\right)$ is the C^{*}-envelope of S.

Proof.

There is a quotient map $\pi: C^{*}(\mathcal{U}) \rightarrow C_{\text {env }}^{*}(S)$ preserving S. By Arveson's extension theorem, we have a ucp map $\phi: C_{\text {env }}^{*}(S) \rightarrow B(K)$ such that the diagram

commutes. The ucp map $\phi \circ \pi$ agrees with the inclusion map
$C^{*}(\mathcal{U}) \subseteq B(K)$ on S. By our Lemma, $\phi \circ \pi$ agrees with the inclusion map on $C^{*}(\mathcal{U})$. In particular, π is an embedding and hence gives us an isomorphism $C^{*}(\mathcal{U}) \cong C_{\text {env }}^{*}(S)$.

Our rigidity proposition is an example of hyperrigidity of an operator system.

Definition

Let S be an operator system and let (A, ρ) be a C^{*}-cover. We say that a representation

$$
\pi: A \rightarrow B(H)
$$

has the unique extension property if for all ucp maps $\phi: A \rightarrow B(H)$ such that $\pi \upharpoonright S=\phi \upharpoonright S$, we must have $\pi=\phi$.
We say that S is hyperrigid in A if all representations of A have the unique extension property.

Corollary

Let S be generated by unitary operators \mathcal{U}. Then S is hyperrigid in $C^{*}(\mathcal{U})$.

The following open question is currently one of the biggest problems in the theory of operator systems.

Question (Arveson's Hyperrigidty Conjecture)

Suppose that S is an operator system with C^{*}-cover (A, ρ). If all irreducible representations of A have the unique extension property, then is S hyperrigid in A ?

Example

Let G be a discrete group with discrete generating set \mathfrak{g}. The operator system $S_{\lambda}(\mathfrak{g}) \subseteq C_{\lambda}^{*}(G)$ has C^{*}-envelope $C_{\lambda}^{*}(G)$.

Example

Let $S=\operatorname{span}\{1, z, \bar{z}\} \subseteq C(\mathbb{T})$, where $z(t)=t$ for all $t \in \mathbb{T}$. The C*-envelope of S is $C(\mathbb{T})$.

Unlike C^{*}-algebras, where all the finite dimensional C^{*}-algebras embed into M_{n}, operator systems are not as nice.

Proposition

The operator system $S:=\operatorname{span}\{1, z, \bar{z}\} \subseteq C(\mathbb{T})$ does not have a unital, complete order embedding into M_{n} for any n.

Proof.

Suppose there is a unital complete order embedding $\rho: S \hookrightarrow M_{n}$. By the universal property of the C^{*}-envelope, there is a quotient map $\pi: C^{*}(\rho(S)) \rightarrow C(\mathbb{T})$ preserving S. Since $C^{*}(\rho(S))$ has dimension at most n^{2} but $C(\mathbb{T})$ has dimension \aleph_{0}, this is a contradiction.

One might think that operator subsystems of M_{n} are nicer, but our next goal is to show that this is not the case.

Definition

Given an operator system S, there exists a maximal C^{*}-cover of S, denoted $\left(C_{\max }^{*}(S), \iota\right)$. It is maximal in the following sense: if (A, ρ) is a C^{*}-cover of S, then there is a quotient ${ }^{*}$-homomorphism $\pi: C_{\max }^{*}(S) \rightarrow A$ such that the diagram

commutes.

We can then define two tensor products for operator systems.

Definition

Let S and T be operator systems.
(1) The minimal tensor product of S and T, denoted $S \otimes_{\min } T$ is the operator system given by the algebraic tensor product $S \otimes T$ in $C_{\text {env }}^{*}(S) \otimes_{\min } C_{\text {env }}^{*}(T)$.
(2) The commuting tensor product of S and T, denoted $S \otimes_{c} T$ is the operator system given by the algebraic tensor product $S \otimes T$ in $C_{\max }^{*}(S) \otimes_{\max } C_{\max }^{*}(T)$.

If A and B are unital C^{*}-algebras, then $A \otimes_{c} B$ agrees with $A \otimes_{\max } B$. As well, since $C_{\text {env }}^{*}(A)=A$ and $C_{\text {env }}^{*}(B)=B$, the minimal tensor product agree as well.

A remarkable result of A. Kavruk states the following:

Theorem (Kavruk)

There is an operator system S such that for all unital C^{*}-algebras A, the following are equivalent:
(1) $S \otimes_{\min } A=S \otimes_{c} A$.
(2) The C^{*}-algebra A is nuclear.

Remember that nuclearity of A means $A \otimes_{\min } B=A \otimes_{c} B$ holds for any C*-algebra B.

The existence of S means that if you check that $S \otimes_{\text {min }} A=S \otimes_{c} A$ holds, then $B \otimes_{\min } A=B \otimes_{c} A$ holds for all C^{*}-algebras B.

Because of this, operator systems with the above property are known as nuclearity detectors.

Here is a nuclearity detector.

$$
S:=\left\{\left[\begin{array}{cc|cc|cc}
a & b & 0 & 0 & 0 & 0 \\
b & a & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & a & c & 0 & 0 \\
0 & 0 & c & a & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & a & d \\
0 & 0 & 0 & 0 & d & a
\end{array}\right]: a, b, c, d \in \mathbb{C}\right\} \subseteq M_{2} \oplus M_{2} \oplus M_{2} .
$$

If we conjugate S by the unitary $U=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]^{\oplus 3}$, then we get that

$$
S \cong\{\operatorname{diag}(a+b, a-b, a+c, a-c, a+d, a-d): a, b, c, d \in \mathbb{C}\}
$$

In fact, $C_{\text {env }}^{*}(S)=\mathbb{C}^{6}$!

Why not end with an open question?

Question

Does there exist a separable C*-algebra that detects nuclearity?
If we allow for non-separable, the following example of Pop exists:.

Theorem

The C^{*}-algebra

$$
C^{*}\left(\mathbb{F}_{\infty}\right) \otimes_{\min } B(H) \otimes_{\min }(B(H) / K(H))
$$

is a nuclearity detector.

