Subfactors and quantum symmetries

Corey Jones

July 16, 2020

Corey Jones Subfactors and quantum symmetries

- A subfactor is an inclusion of von Neumann algebras N ⊆ M both of which have trivial center (i.e. are factors).
- We will be mostly focused on the case when *N*, *M* are II₁ factors (infinite dimensional with normal tracial state).
- Example: If G is a finite group with outer action on a II₁ factor N, and H ≤ G we have the subfactors N ⋊ H ⊆ N ⋊ G (See exercise 6.2.3)

Index for subfactors

- Hilbert space representations H of a II₁ factor N are classified by a number d ∈ (0,∞] called the Murray-von Neumann dimension dim_N(H) can take any value in this set.
 - Realize *H* as subrepresentation of $L^2(N) \otimes \ell^2(\mathbb{N})$.
 - Let *P* be projection onto *H*, then $P \in N' \cap B(L^2(N) \otimes \ell^2(\mathbb{N})) \cong N^{op} \otimes B(\ell^2(\mathbb{N}))$
 - $\dim_N(H) := \tau \otimes Tr(P).$
- The index [M : N] of a subfactor N ⊆ M is dim_N(L²(M)) (for details and alternate descriptions see Section 6.1 of notes)
- $[N \rtimes G : N \rtimes H] = [G : H]$ (the usual group theoretical index).

Remarkable Theorem (V. F. R. Jones, 1983)

The index of a subfactor must lie in the set $\{4\cos^2(\frac{\pi}{n}) : n \ge 3\} \cup [4, \infty]$, and all possible values are realized by some subfactor.

- The standard invariant of a finite index subfactor N ⊆ M is an algebraic structure which captures generalized symmetries of inclusion.
- In some situations, a complete invariant! (Will return to this later).
- Reveals deep connections between operator algebras and low dimensional topology and quantum field theory.
- What is it? Many different axiomatizations:
 - Ocneanu: Paragroups (finite depth).
 - Popa: λ -lattices.
 - V.F.R. Jones: Planar algebras.
 - Longo/Mueger: Algebras in tensor categories.

Bimodules

- A **bimodule** of a II₁-factor *N* is a Hilbert space *H* together with commuting actions of *N* (left *N* action) and *N*^{op} (right *N* action).
 - $L^2(N)$ (= completion of N w.r.t $\langle n, m \rangle := \tau(nm^*)$), with $n \triangleright m \triangleleft k := nmk$ for $n, m, k \in N$.
 - Let α ∈ Aut(N), and define L²_α(N) := L²(N) as Hilbert space, with n ▷ m ⊲ k := nmα(k) for n, m, k ∈ N.
 - Bimodules generalize automorphisms! (Quantum symmetries!)
- Bimodules form a category, whose objects are bimodules and morphisms are *intertwiners*, i.e. if H, K are bimodules over N, an intertwiner is a bounded linear map f : H → K such that f(n ▷_H ξ ⊲_H m) = n ▷_K f(ξ) ⊲_K m.
 - Can compose morphisms, associative.
 - Every bimodule has identity morphism.
 - Example: Suppose α ∈ Aut(N) is inner, i.e. α(n) = unu*. Then define map L²_α(N) → L²(N) by n → nu. (Exercise: check this is bimodule intertwiner)

- We said bimodules generalize automorphisms. But automorphisms form a *group*: in particular, you can compose them. Can we "compose" bimodules?
- **Relative tensor product**: **WRONG** but intuitively correct definition: For *H*, *K* a pair of *N N* bimodules

$$H \boxtimes_N K^{"} := "H \otimes K / \langle (\xi \triangleleft n) \otimes \eta - \xi \otimes (n \triangleright \eta) \rangle$$

- Correct definition needs bounded vectors, *N*-valued inner products, completions etc. (see "Bimodules, Higher Relative Commutants, and Fusion Algebra Associated to a Subfactor" by Dietmar Bisch).
- $L^2_{\alpha}(N) \boxtimes_N L^2_{\beta}(N) \cong L^2_{\alpha \circ \beta}(N).$
- For morphisms $f : H_1 \to H_2$ and $g : K_1 \to K_2$ we can define $f \boxtimes_N g : H_1 \boxtimes_N K_1 \to H_2 \boxtimes_N K_2$.

Rigid C*-tensor categories

The category of bifinite bimodules (left and right Murray von Neumann dimensions are finite) of a II₁ factor N forms a *rigid C*-tensor category* (Think FINITE DIMENSIONAL HILBERT SPACES **Hilb**_{f.d.}):

- Semi-simple C*-category (\cong Hilb $_{f.d.}^{\oplus n}$, $n \in [1, \infty]$ as a category).
- **Tensor product**: A functor $\mathcal{C} \times \mathcal{C} \to \mathcal{C}$, $X \times Y \mapsto X \otimes Y$ with
 - Associator isomorphisms $\alpha_{X,Y,Z}: (X \otimes Y) \otimes Z \rightarrow X \otimes (Y \otimes Z)$ with coherences (pentagon equations).
 - Simple unit object 1 ∈ C, tensoring with 1 on left or right is isomorphic to the identity functor (Simple means End(1) ≅ C)
- Duals: Every object X has a "dual" object X*, and morphisms ev : X* ⊗ X → 1 and coev : 1 → X ⊗ X* morphisms satisfying duality equations.
- Rigid C*-tensor categories generalize the category of finite dimensional Hilbert spaces. Objects have a well defined **quantum dimension**, which no longer need be an integer!

글 눈 옷 글 눈

Examples

- $\operatorname{Bim}_{b.f.}(N)$ category of bifinite bimodules with tensor product \boxtimes_N . The quantum dimension of (an irreducible) bimodule H is $\sqrt{\dim_N(H) \cdot \dim(H)_N}$.
- Rep(G), where G is a compact quantum group. Can have non-integer dimensions (e.g. SU_q(2) for q + q⁻¹ ∉ Z, dimensions of irreps are [n]_q = ^{qⁿ-q⁻ⁿ}/_{q-q⁻¹}).
- C(g, ℓ) (g is simple Lie algebra, l ∈ Z) coming from conformal field theory, dimensions for C(sl₂, ℓ) are [n]_q where q is root of unity related to ℓ.
- "Exotic" examples constructed by hand (using planar algebra techniques).
- Apply constructions to the above list of examples.

伺 と く ヨ と く ヨ と

We can think of an associative algebra as an object $A \in Vec$ with

- Multiplication map $m: A \otimes A \rightarrow A$.
- Unit map $i : \mathbb{C} \to A$ i.e. $(\lambda \mapsto \lambda 1_A)$

Such that the following diagrams commute:

Makes sense in any tensor category: all you need is \otimes , moving.

Standard invariant revisited

Let $N \subseteq M$ be a finite index inclusion of II_1 factors.

- $L^2(M)$ is a bifinite N-N bimodule.
- Let (L²(M))_N ⊆ Bim_{b.f.}(N) be the rigid C*-tensor catgeory generated by L²(M)
- Inclusion $N \subseteq M$ gives a "unit bimodule intertwiner" $L^2(N) \to L^2(M)$. The multiplication on the factor M gives a "multiplication bimodule intertwiner" $L^2(M) \boxtimes_N L^2(M) \to L^2(M)$.
- These make $L^2(M)$ into a (C*)-algebra object in $\langle L^2(M) \rangle_N$.
- The index [M : N] is the quantum dimension of the object $L^2(M)$ in the rigid C*-tensor category $\langle L^2(M) \rangle_N$.

Definition

The standard invariant of $N \subseteq M$ is the pair (Rigid C*-tensor category $\langle L^2(M) \rangle_N, L^2(M)$ as an algebra object).

Definition

An abstract standard invariant is a pair (\mathcal{C}, A) , where \mathcal{C} is a rigid C*-tensor category and A is a tensor generating (C*-)algebra object A. The index of the invariant is the quantum dimension of A.

- C = Rep(S_n), A = Fun({1,...,n}, ℂ) which is an ordinary commutative associative algebra with poitnwise multiplication. This becomes tensor generating algebra object in Rep(S_n) from the action S_n on {1,...,n}.
- More "quantum" example: **Fibb**. Two simple objects 1, X with fusion rules $X^2 = 1 \oplus X$. Then object 1 + X has algebra structure, of corresponding subfactor is $\frac{3+\sqrt{5}}{2} = 1 + \frac{1+\sqrt{5}}{2}$.

A B > A B >

Question: Can all abstract standard invariants be realized as standard invariants of finite index subfactors? If so in how many ways?

- Popa 1995: Yes! Can all be realized!
- Popa-Shlyakhtenko 2003: Any standard invariant can be realized by a subfactor $N \subseteq M$ with both N, M isomorphic to LF_{∞} .
- Popa: If (*C*, *A*) is *strongly amenable* then there exists a **unique hyperfinite subfactor** (up to isomorphism) relaizing this standard invariant!
- Therefore, classification of (strongly amenable) standard invariants gives a *complete classification of hyperfinite subfactors* up to a natural equivalence relation!
- Can try to classify subfactors by index: this has been acheived up to 5¹/₄ by many hands, including: Afzaly, Asaeda, Bigelow, Bion-Nadal, Bisch, Haagerup, Izumi, V.F.R. Jones, Kawahigashi, Morrison, Ocneanu, Penneys, Peters, Popa, Snyder, Tener ...

Subfactor classification by index up to $5\frac{1}{4}$

イロト イポト イヨト イヨト

э

- There exists (irreducible) subfactor standard invariants with index d ∈ [4,∞), but these are nonamenable for index > 4. Which can be realized by a hyperfinite subfactor? Is there a gap?
- What are useful invariants for non-amenable subfactors of the hyperfinite (beyond the standard invariant!)
- Given a II₁ N (e.g. a group factor), what can we say about the possible values of the index (or standard invariants) of extensions $N \subseteq M$?
- Classify standard invariants (hence hyperfinite subfactors) by other measures of complexity besides index (Small dimension, Skein theory, Rank, etc.)