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A subfactor is an inclusion of von Neumann algebras N ⊆ M
both of which have trivial center (i.e. are factors).

We will be mostly focused on the case when N,M are II1
factors (infinite dimensional with normal tracial state).

Example: If G is a finite group with outer action on a II1
factor N, and H ≤ G we have the subfactors N o H ⊆ N o G
(See exercise 6.2.3)
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Index for subfactors

Hilbert space representations H of a II1 factor N are classified by a
number d ∈ (0,∞] called the Murray-von Neumann dimension
dimN(H) - can take any value in this set.

Realize H as subrepresentation of L2(N)⊗ `2(N).

Let P be projection onto H, then
P ∈ N ′ ∩ B(L2(N)⊗ `2(N)) ∼= Nop ⊗ B(`2(N))

dimN(H) := τ ⊗ Tr(P).

The index [M : N] of a subfactor N ⊆ M is dimN(L2(M)) (for
details and alternate descriptions see Section 6.1 of notes)

[N o G : N o H] = [G : H] (the usual group theoretical index).

Remarkable Theorem (V. F. R. Jones, 1983)

The index of a subfactor must lie in the set {4 cos2(πn ) : n ≥ 3}∪ [4,∞],
and all possible values are realized by some subfactor.
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The standard invariant

The standard invariant of a finite index subfactor N ⊆ M is an
algebraic structure which captures generalized symmetries of
inclusion.

In some situations, a complete invariant! (Will return to this
later).

Reveals deep connections between operator algebras and low
dimensional topology and quantum field theory.

What is it? Many different axiomatizations:

Ocneanu: Paragroups (finite depth).
Popa: λ-lattices.
V.F.R. Jones: Planar algebras.
Longo/Mueger: Algebras in tensor categories.
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Bimodules

A bimodule of a II1-factor N is a Hilbert space H together with
commuting actions of N (left N action) and Nop (right N action).

L2(N) (= completion of N w.r.t 〈n,m〉 := τ(nm∗)), with
n .m / k := nmk for n,m, k ∈ N.

Let α ∈ Aut(N), and define L2α(N) := L2(N) as Hilbert space,
with n .m / k := nmα(k) for n,m, k ∈ N.

Bimodules generalize automorphisms! (Quantum symmetries!)

Bimodules form a category, whose objects are bimodules and
morphisms are intertwiners, i.e. if H,K are bimodules over N, an
intertwiner is a bounded linear map f : H → K such that
f (n .H ξ /H m) = n .K f (ξ) /K m.

Can compose morphisms, associative.
Every bimodule has identity morphism.
Example: Suppose α ∈ Aut(N) is inner, i.e. α(n) = unu∗.
Then define map L2α(N)→ L2(N) by n 7→ nu. (Exercise:
check this is bimodule intertwiner)
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Relative tensor product

We said bimodules generalize automorphisms. But automorphisms
form a group: in particular, you can compose them. Can we
“compose” bimodules?

Relative tensor product: WRONG but intuitively correct
definition: For H,K a pair of N − N bimodules

H �N K“ :=′′ H ⊗ K/〈(ξ / n)⊗ η − ξ ⊗ (n . η)〉

Correct definition needs bounded vectors, N-valued inner products,
completions etc. (see “Bimodules, Higher Relative Commutants,
and Fusion Algebra Associated to a Subfactor” by Dietmar Bisch).

L2α(N) �N L2β(N) ∼= L2α◦β(N).

For morphisms f : H1 → H2 and g : K1 → K2 we can define
f �N g : H1 �N K1 → H2 �N K2.
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Rigid C*-tensor categories

The category of bifinite bimodules (left and right Murray von Neumann
dimensions are finite) of a II1 factor N forms a rigid C*-tensor category
(Think FINITE DIMENSIONAL HILBERT SPACES Hilbf .d.):

Semi-simple C*-category (∼= Hilb⊕nf .d., n ∈ [1,∞] as a category).

Tensor product: A functor C × C → C, X × Y 7→ X ⊗ Y with

Associator isomorphisms
αX ,Y ,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z ) with coherences
(pentagon equations).
Simple unit object 1 ∈ C, tensoring with 1 on left or right is
isomorphic to the identity functor (Simple means End(1) ∼= C)

Duals: Every object X has a “ dual” object X ∗, and morphisms
ev : X ∗ ⊗ X → 1 and coev : 1→ X ⊗ X ∗ morphisms satisfying
duality equations.

Rigid C*-tensor categories generalize the category of finite
dimensional Hilbert spaces. Objects have a well defined quantum
dimension, which no longer need be an integer!
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Examples

Bimb.f .(N) category of bifinite bimodules with tensor product �N .
The quantum dimension of (an irreducible) bimodule H is√

dimN(H) · dim(H)N .

Rep(G), where G is a compact quantum group. Can have
non-integer dimensions (e.g. SUq(2) for q + q−1 /∈ Z, dimensions of

irreps are [n]q = qn−q−n

q−q−1 ).

C(g, `) (g is simple Lie algebra, l ∈ Z) coming from conformal field
theory, dimensions for C(sl2, `) are [n]q where q is root of unity
related to `.

“Exotic” examples constructed by hand (using planar algebra
techniques).

Apply constructions to the above list of examples.
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We can think of an associative algebra as an object A ∈ Vec with

Multiplication map m : A⊗ A→ A.

Unit map i : C→ A i.e. (λ 7→ λ1A)

Such that the following diagrams commute:

(A⊗ A)⊗ A A⊗ (A⊗ A)

A⊗ A A⊗ A

A

“move parentheses′′

m⊗IdA IdA⊗m

m m

C⊗ A A⊗ A A⊗C

A

∼=

i⊗IdA

m

IdA⊗i

∼=

Makes sense in any tensor category : all you need is ⊗, moving
parentheses and units! Corey Jones Subfactors and quantum symmetries



Standard invariant revisited

Let N ⊆ M be a finite index inclusion of II1 factors.

L2(M) is a bifinite N-N bimodule.

Let 〈L2(M)〉N ⊆ Bimb.f .(N) be the rigid C*-tensor catgeory
generated by L2(M)

Inclusion N ⊆ M gives a ”unit bimodule intertwiner”
L2(N)→ L2(M). The multiplication on the factor M gives a
“multiplication bimodule intertwiner” L2(M) �N L2(M)→ L2(M).

These make L2(M) into a (C*)-algebra object in 〈L2(M)〉N .

The index [M : N] is the quantum dimension of the object L2(M) in
the rigid C*-tensor category 〈L2(M)〉N .

Definition

The standard invariant of N ⊆ M is the pair
(Rigid C*-tensor category 〈L2(M)〉N , L2(M) as an algebra object).
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Abstract standard invariant

Definition

An abstract standard invariant is a pair (C,A), where C is a rigid
C*-tensor category and A is a tensor generating (C*-)algebra object A.
The index of the invariant is the quantum dimension of A.

C = Rep(Sn), A = Fun({1, . . . , n},C) which is an ordinary
commutative associative algebra with poitnwise multiplication. This
becomes tensor generating algebra object in Rep(Sn) from the
action Sn on {1, . . . , n}.

More “quantum” example: Fibb. Two simple objects 1,X with
fusion rules X 2 = 1⊕ X . Then object 1 + X has algebra structure,

of corresponding subfactor is 3+
√
5

2 = 1 + 1+
√
5

2 .
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Question: Can all abstract standard invariants be realized as standard
invariants of finite index subfactors? If so in how many ways?

Popa 1995: Yes! Can all be realized!

Popa-Shlyakhtenko 2003: Any standard invariant can be realized by
a subfactor N ⊆ M with both N,M isomorphic to LF∞.

Popa: If (C,A) is strongly amenable then there exists a unique
hyperfinite subfactor (up to isomorphism) relaizing this standard
invariant!

Therefore, classification of (strongly amenable) standard invariants
gives a complete classification of hyperfinite subfactors up to a
natural equivalence relation!

Can try to classify subfactors by index: this has been acheived up to
5

1
4 by many hands, including: Afzaly, Asaeda, Bigelow, Bion-Nadal,

Bisch, Haagerup, Izumi, V.F.R. Jones, Kawahigashi, Morrison,
Ocneanu, Penneys, Peters, Popa, Snyder, Tener ...
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Subfactor classification by index up to 51
4

Azfaly, Morrison, Penneys:

index

su
p
er
tr
an
si
ti
vi
ty

4 5 3+
√
5 6 61
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Some open questions

There exists (irreducible) subfactor standard invariants with index
d ∈ [4,∞), but these are nonamenable for index > 4. Which can be
realized by a hyperfinite subfactor? Is there a gap?

What are useful invariants for non-amenable subfactors of the
hyperfinite (beyond the standard invariant!)

Given a II1 N (e.g. a group factor), what can we say about the
possible values of the index (or standard invariants) of extensions
N ⊆ M?

Classify standard invariants (hence hyperfinite subfactors) by other
measures of complexity besides index (Small dimension, Skein
theory, Rank, etc.)
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