Non-separable metric space of non-commutative laws

David Jekel
(joint w/ Wilfrid Gangbo, Kyeongsik Nam, Dima Shlyakhtenko)
University of California, San Diego

GOALS, July 25, 2021

Acknowledgements

Land Acknowledgement: UCSD is on land of Kumeyaay people.
Funding Acknowledgement: D.J. was supported by the NSF grant DMS-2002826. W.G. was supported by DMS-1700202 and U.S. Air Force grant FA9550-18-1-0502. D.S. was supported by NSF grant DMS-1762360.

Inspirating conversations: Alice Guionnet, Yoann Dabrowski, Wuchen Li, Ben Hayes, Srivatsav Kunnawalkam Elayavalli.

Thanks to conference organizers!

Goals

- Connect non-commutative probability theory and group theory
- Distance between non-commutative probability measures
- Metric space of non-commutative probability measures is not separable!
- Use geometric group theory result of Olshanskii.

Non-commutative probability

A tracial von Neumann algebra is a von Neumann algebra M with a faithful normal tracial state $\tau: M \rightarrow \mathbb{C}$.

If M is commutative, (M, τ) is isomorphic to $L^{\infty}(\Omega, P)$ for some probability space P, and τ corresponds to the expectation $\tau(f)=\int f d P$.

Tracial von Neumann algebras are non-commutative probability spaces.

Non-commutative probability

classical	non-commutative
$L^{\infty}(\Omega, P)$	A
expectation \mathbb{E}	trace τ
bounded random variable Z	$Z \in M$
bdd real random variable	self-adjoint $Z \in M$
random variable in \mathbb{T}	unitary $U \in M$
random variable in \mathbb{T}^{d}	d-tuple $\left(U_{1}, \ldots, U_{d}\right)$ of unitaries
This talk: unitary d-tuples.	

Agreement in law

Definition

$U=\left(U_{1}, \ldots, U_{d}\right)$ unitary d-tuple of from $\left(M, \tau_{M}\right)$,
$V=\left(V_{1}, \ldots, V_{d}\right)$ unitary d-tuple from $\left(N, \tau_{N}\right)$.
U and V agree in law, or $U \sim V$, if

$$
\tau_{M}\left(U_{i_{1}}^{a_{1}} \ldots U_{i_{n}}^{a_{n}}\right)=\tau_{N}\left(V_{i_{1}}^{a_{1}} \ldots V_{i_{n}}^{a_{n}}\right)
$$

for all $n \in \mathbb{N}, i_{1}, \ldots, i_{n} \in \mathbb{N}, a_{1}, \ldots, a_{n} \in\{1,-1\}$.

Example

If $d=3$ and U and V agree in law, then

$$
\tau_{M}\left(U_{1} U_{2}^{*} U_{3} U_{1}\right)=\tau_{N}\left(V_{1} V_{2}^{*} V_{3} V_{1}\right)
$$

Agreement in law

Observation

Agreement in law is an equivalence relation.

Proposition

Let $U=\left(U_{1}, \ldots, U_{d}\right)$ be a unitary tuple from $\left(M, \tau_{M}\right)$ and let $V=\left(V_{1}, \ldots, V_{d}\right)$ be a unitary tuple from $\left(N, \tau_{N}\right)$. TFAE:
(1) U and V agree in law.
(2) There is $*$-isomorphism $\phi: \mathrm{W}^{*}(U) \rightarrow \mathrm{W}^{*}(V)$ such that $\phi\left(U_{j}\right)=V_{j}$ and $\tau_{N}(\phi(X))=\tau_{M}(X)$ for all $X \in \mathrm{~W}^{*}(U)$.

Agreement in law classifies unitary d-tuples in tracial von Neumann algebras up to isomorphism.

So wait. . . what is a law?

For $U_{1}, \ldots, U_{d} \in \mathcal{U}(M), \exists$! grp. hom. $\phi_{U}: \mathbb{F}_{d} \rightarrow \mathcal{U}(M)$ s.t. $\phi_{U}\left(g_{j}\right)=U_{j}$.

Definition

For $U=\left(U_{1}, \ldots, U_{d}\right)$ unitary d-tuple from $\left(M, \tau_{M}\right)$, the non-commutative law of U is the function $\ell: \mathbb{F}_{d} \rightarrow \mathbb{C}$,

$$
\ell_{u}(w)=\tau_{m}\left(\phi_{u}(w)\right) \text { for all } w \in \mathbb{F}_{d}
$$

Example

$$
d=3, \quad \ell_{U}\left(g_{1} g_{2}^{-1} g_{3} g_{1}\right)=\tau_{M}\left(U_{1} U_{2}^{*} U_{3} U_{1}\right)
$$

Non-commutative laws and characters

Definition (Representation theory)

A character on a group G is a unital, conjugation-invariant, positive-definite function $\mu: G \rightarrow \mathbb{C}$. Here positive-definite means that $\left[\mu\left(g_{i}^{*} g_{j}\right)\right]_{i, j=1}^{n} \geq 0$ for all $g_{1}, \ldots, g_{n} \in G$.

Proposition

$\mu: \mathbb{F}_{d} \rightarrow \mathbb{C}$ is character iff $\mu=\ell_{U}$ for some $U \in \mathcal{U}(M)$, some (M, τ).
(\Longleftarrow) Trace property of τ_{M} implies conjugation invariance of ℓ_{U}, positivity of τ_{M} implies positive-definiteness of ℓ_{U}.
(\Longrightarrow) If μ is a character, then μ defines an inner product on $\mathbb{C} G$. Complete to Hilbert space. Left translation of G produces unitary representation of G. Vector δ_{e} defines tracial state.

Wasserstein distance

Definition

Υ_{d} is the space of characters on \mathbb{F}_{d}.

Definition (Biane-Voiculescu 2001)

For $\mu, \nu \in \Upsilon_{d}$,

$$
\begin{aligned}
d_{W}(\mu, \nu):=\inf \left\{\|U-V\|_{2}:\right. & U, V \in \mathcal{U}(M)^{d} \\
& \ell_{U}=\mu, \ell_{V}=\nu \\
& \left.\left(M, \tau_{M}\right) \text { tracial von Neumann algebra }\right\}
\end{aligned}
$$

Here $U=\left(U_{1}, \ldots, U_{d}\right)$ and $V=\left(V_{1}, \ldots, V_{d}\right)$ and

$$
\|U-V\|_{2}=\left(\sum_{j=1}^{d} \tau_{M}\left(\left(U_{j}-V_{j}\right)^{*}\left(U_{j}-V_{j}\right)\right)\right)^{1 / 2}
$$

Wasserstein distance

Proposition (Biane-Voiculescu 2001)

The infimum defining $d_{W}(\mu, \nu)$ is achieved. Also, d_{W} is a metric on τ_{d}.

Existence of minimizer: The quantity $\|U-V\|_{2}$ depends continuously on the law $\ell_{(U, V)} \in \Upsilon_{2 d}$. Also, $\Upsilon_{2 d}$ is compact w.r.t. the topology of pointwise convergence on $\mathbb{F}_{2 d}$.

Triangle inequality: Take U, V in $\left(A, \tau_{A}\right)$ and V^{\prime}, W in $\left(B, \tau_{B}\right)$ that achieve the minimum for (λ, μ) and (μ, ν). Let $\left(M, \tau_{M}\right)$ be the free product of $\left(A, \tau_{A}\right)$ and $\left(B, \tau_{B}\right)$ with amalgamation over $\mathrm{W}^{*}(V) \cong \mathrm{W}^{*}(V)$, so $d_{W}(\lambda, \nu) \leq\|U-W\|_{2}$.

The connection to classical probability

Let $U=\left(U_{1}, \ldots, U_{d}\right)$ in a commutative von Neumann algebra $\left(M, \tau_{M}\right)=\left(L^{\infty}(\Omega), P\right)$.

- U_{j} is measurable function $\Omega \rightarrow \mathbb{T}$.
- U is random variable in \mathbb{T}^{d}.
- Classical law of U is the unique Borel measure m_{U} on \mathbb{T}^{d} such that

$$
\int_{\mathbb{T}^{d}} z_{1}^{a_{1}} \ldots z_{d}^{a_{d}} d m_{U}\left(z_{1}, \ldots, z_{d}\right)=\tau_{M}\left(U_{1}^{a_{1}} \ldots U_{d}^{a_{d}}\right)
$$

for all $a_{1}, \ldots, a_{d} \in \mathbb{Z}$.

- m_{U} completely determines ℓ_{U}, e.g. $d=3$,

$$
\ell_{U}\left(g_{1} g_{2}^{-1} g_{3} g_{1}\right)=\tau_{M}\left(U_{1} U_{2}^{*} U_{3} U_{1}\right)=\int_{\mathbb{T}^{3}} z_{1}^{2} z_{2}^{-1} z_{3} d m_{U}\left(z_{1}, z_{2}, z_{3}\right)
$$

The connection to classical probability

For commuting unitaries $\left(U_{1}, \ldots, U_{d}\right)$, how do you get from ℓ_{U} to μ_{U}.

- ℓ_{U} is defined by representation π of \mathbb{F}_{d} sending g_{j} to U_{j}.
- The U_{j} 's commute, so π factors through the abelianization $\mathbb{F}_{d} \rightarrow \mathbb{Z}^{d}$.
- $S o \ell_{u}$ corresponds to a character on \mathbb{Z}^{d}.
- Characters on $\mathbb{Z}^{d} \Longleftrightarrow$ states on $\mathrm{C}^{*}\left(\mathbb{Z}^{d}\right)$.
- $\mathrm{C}^{*}\left(\mathbb{Z}^{d}\right) \cong C\left(\mathbb{T}^{d}\right)$.
- Character on $\mathbb{Z}^{d} \Longleftrightarrow$ probability measure on \mathbb{T}^{d}.

The classical Wasserstein distance

Proposition

(1) The Wasserstein distance defines a metric on $\mathcal{P}\left(\mathbb{T}^{d}\right)$.
(c) The Wasserstein distance metrizes the weak-* topology on $\mathcal{P}\left(\mathbb{T}^{d}\right)$.
(0) $\left(\mathcal{P}\left(\mathbb{T}^{d}\right), d_{W}\right)$ is separable.

Proof of separability: Measures of the form

$$
\sum_{j=1}^{k} a_{j} \delta_{\left(z_{1}^{(j)}, \ldots, z_{d}^{(j)}\right)}, \quad a_{j} \in \mathbb{Q}
$$

form a countable dense subset.

Non-separability

Today's main theorem (GJNS)

For $d>1$, the metric space $\left(\Upsilon_{d}, d_{W}\right)$ is not separable.

Corollary

The topology on Υ_{d} generated by d_{w} is not the same as the weak-* topology (the topology of pointwise convergence as functions on \mathbb{F}_{d}).

Proof of Corollary: Υ_{d} is compact with respect to the weak-* topology. Every compact metric space is separable.

Kazhdan's Property (T)

- For $\pi: G \rightarrow \mathcal{U}(H)$ unitary representation, $\xi \in H$ is invariant if $\pi(g) \xi=\xi$ for all $g \in G$.
- $P_{\text {inv }}$ is the projection of H onto the subspace of invariant vectors.

Definition (Kazhdan)

A group G has Property (T) if there exists $g_{1}, \ldots, g_{d} \in G$ and $K>0$ such that, for every representation $\pi: G \rightarrow \mathcal{U}(H)$ and every $\xi \in H$, we have

$$
\left\|P_{\text {inv }} \xi-\xi\right\| \leq K\left(\sum_{j=1}^{d}\left\|\pi\left(g_{j}\right) \xi-\xi\right\|^{2}\right)^{1 / 2}
$$

We call $\left\{g_{1}, \ldots, g_{d}\right\}$ a Kazhdan set and K the Kazhdan constant.

Kazhdan's Property (T)

(1) Kazhdan set generates G.
(2 Lattices in $S L_{n}(\mathbb{Z})$ for $n \geq 3$ have Property (T).
(3) Property (T) is opposite to amenability.

- Property (T) plus amenability \Longrightarrow finite group.
- Property (T) means rigidity of representations of G.

Property (T) and Wasserstein distance

Theorem (Gromov, Olshanskii, Ozawa)

There exists a group G with Property (T) and an uncountable family $\left(H_{\alpha}\right)_{\alpha \in I}$ of distinct normal subgroups of G.

Proposition (GJNS)

Given Property (T) group G, Kazhdan tuple g_{1}, \ldots, g_{d}, Kazhdan constant K : For every normal $H \subseteq G$, there is a NC law μ_{H} such that

$$
d_{W}\left(\mu_{H}, \mu_{H^{\prime}}\right) \geq 1 / 2 K \text { for } H \neq H^{\prime} .
$$

Proof of main theorem:

- Take Property (T) group from Olshanskii theorem.
- By Proposition, we get uncountable $1 / 2 K$-separated set in Υ_{d}.
- So Υ_{d} is not separable, for some d.
- Get for all $d>1$ by matrix amplification trick. $\equiv \ldots, \equiv$,

Proof of Proposition

- H normal subgroup of G.
- $q: G \rightarrow G / H$ quotient map.
- $\lambda_{G / H}: G / H \rightarrow \mathcal{U}\left(\ell^{2}(G / H)\right)$ left regular representation.
- $L(G / H)$ von Neumann algebra generated by $\lambda_{G / H}$.
- $\tau_{G / H}$ trace on $L(G / H)$ given by δ_{e}.
- $U=\left(U_{1}, \ldots, U_{d}\right)$ where $U_{j}=\lambda_{G / H}\left(q\left(g_{j}\right)\right)$.
- Let $\mu_{H}=\ell_{U}$.

Alternative interpretation:

- $\psi: \mathbb{F}_{d} \rightarrow G$ sending generators to g_{j}.
- $1_{H}: G \rightarrow \mathbb{C}$ indicator function of H.
- $\ell_{H}=1_{H} \circ \psi$.
- It's the same since $\tau_{G / H}(q(\psi(w)))=\delta_{\psi(w) \in H}$.

Proof of Proposition

- Consider $H_{1} \neq H_{2}$, quotient map $q_{j}: G \rightarrow G / H_{j}$.
- Let $\left.U_{j}=\lambda_{G / H_{1}}\left(q_{1}\left(g_{j}\right)\right)\right), V_{j}=\lambda_{G / H_{2}}\left(q_{2}\left(g_{j}\right)\right)$.
- So $\mu_{H_{1}}=\ell_{U}$ and $\mu_{H_{2}}=\ell_{V}$.
- Take U^{\prime}, V^{\prime} from $\left(M, \tau_{M}\right)$ such that

$$
\ell_{U^{\prime}}=\ell_{U}, \quad \ell_{V^{\prime}}=\ell_{V}, \quad\left\|U^{\prime}-V^{\prime}\right\|_{2}=d_{W}\left(\mu_{H_{1}}, \mu_{H_{2}}\right)
$$

- $\mathrm{W}^{*}\left(U^{\prime}\right) \cong \mathrm{W}^{*}(U)=L\left(G / H_{1}\right)$.
- So $L\left(G / H_{1}\right) \stackrel{\alpha}{\hookrightarrow} M$ with $\alpha\left(U_{j}\right)=U_{j}^{\prime}$
- Similarly, $L\left(G / H_{2}\right) \stackrel{\beta}{\hookrightarrow} M$ with $\beta\left(V_{j}\right)=V_{j}^{\prime}$.

Proof of Proposition

To apply Property (T), define representation $\pi: G \rightarrow \mathcal{U}\left(L^{2}\left(M, \tau_{M}\right)\right)$,

$$
\pi(g) \xi=\alpha\left(\lambda_{G / H_{1}}\left(q_{1}(g)\right)\right) \xi \beta\left(\lambda_{G / H_{2}}\left(q_{2}(g)\right)\right)^{-1} .
$$

Note:

$$
\begin{aligned}
\|\pi(g) \widehat{1}-\widehat{1}\| & =\left\|\alpha\left(\lambda_{G / H_{1}}\left(q_{1}(g)\right)\right) \beta\left(\lambda_{G / H_{2}}\left(q_{2}(g)\right)\right)^{-1}-1\right\|_{2} \\
& =\left\|\alpha\left(\lambda_{G / H_{1}}\left(q_{1}(g)\right)\right)-\beta\left(\lambda_{G / H_{2}}\left(q_{2}(g)\right)\right)\right\|_{2} .
\end{aligned}
$$

So

$$
\left\|\pi\left(g_{j}\right) \widehat{1}-\widehat{1}\right\|_{2}=\left\|\alpha\left(U_{j}\right)-\beta\left(V_{j}\right)\right\|_{2}
$$

So

$$
\left(\sum_{j=1}^{d}\left\|\pi\left(g_{j}\right) \widehat{1}-\widehat{1}\right\|^{2}\right)^{1 / 2}=d_{w}\left(\mu_{H_{1}}, \mu_{H_{2}}\right)
$$

Estimate on the Wasserstein distance

- Apply $\operatorname{Property}(\mathrm{T}):\left\|P_{\text {inv }} \widehat{1}-\widehat{1}\right\| \leq K d_{W}\left(\mu_{H_{1}}, \mu_{H_{2}}\right)$.
- Invariance of $P_{\text {inv }} \widehat{1}$ plus triangle inequality:

$$
\|\pi(g) \widehat{1}-\widehat{1}\| \leq 2\left\|P_{\text {inv }} \widehat{1}-\widehat{1}\right\| \text { for all } g \in G
$$

- $\left\|\alpha\left(\lambda_{G / H_{1}}\left(q_{1}(g)\right)\right)-\beta\left(\lambda_{G / H_{2}}\left(q_{2}(g)\right)\right)\right\|_{2} \leq 2 K d_{W}\left(\mu_{H_{1}}, \mu_{H_{2}}\right)$.
- $\tau_{M}\left(\alpha\left(\lambda_{G / H_{1}}\left(q_{1}(g)\right)\right)\right)=\delta_{g \in H_{1}}$. Same for H_{2}.
- $\left|\delta_{g \in H_{1}}-\delta_{g \in H_{2}}\right| \leq 2 K d_{W}\left(\mu_{H_{1}}, \mu_{H_{2}}\right)$.
- $H_{1} \neq H_{2}$, so $d_{W}\left(\mu_{H_{1}}, \mu_{H_{2}}\right) \geq 1 / 2 K$.

References (in order of appearance) I

(1) Wilfrid Gangbo, David Jekel, Kyeongsik Nam, and Dimitri Shlyakhtenko. Duality for optimal couplings in free probability. arXiv:2105.12351
(2) Philippe Biane and Dan-Virgil Voiculescu. A free probability analogue of the Wasserstein metric on the trace-state space. Geometric and Functional Analysis, 11:1125-1138, 2001.
(3) Kazhdan, "On the connection of the dual space of a group with the structure of its closed subgroups", Functional Analysis and its Applications, 1 (1967), no. 1: 63-65
(1) Narutaka Ozawa. There is no separable universal II_{1} factor. Proc. Amer. Math. Soc., 132 (2004), 487-490.

- A. Yu. Olshanskii, On residualing homomorphisms and G-subgroups of hyperbolic groups. Internat. J. Algebra Comput. 3 (1993), no. 4, 365-409.

References (in order of appearance) II

© Scott Atkinson and Srivatsav Kunnawalkam Ellayavalli. On ultraproduct embeddings and amenability for tracial von Neumann algebras. International Mathematics Research Notices, 2021(4):2882-2918, 2021.

