Non-separable metric space of non-commutative laws

David Jekel (joint w/ Wilfrid Gangbo, Kyeongsik Nam, Dima Shlyakhtenko)

University of California, San Diego

GOALS, July 25, 2021

Land Acknowledgement: UCSD is on land of Kumeyaay people.

Funding Acknowledgement: D.J. was supported by the NSF grant DMS-2002826. W.G. was supported by DMS-1700202 and U.S. Air Force grant FA9550-18-1-0502. D.S. was supported by NSF grant DMS-1762360.

Inspirating conversations: Alice Guionnet, Yoann Dabrowski, Wuchen Li, Ben Hayes, Srivatsav Kunnawalkam Elayavalli.

Thanks to conference organizers!

- Connect non-commutative probability theory and group theory
- Distance between non-commutative probability measures
- Metric space of non-commutative probability measures is not separable!
- Use geometric group theory result of Olshanskii.

A tracial von Neumann algebra is a von Neumann algebra M with a faithful normal tracial state $\tau : M \to \mathbb{C}$.

If *M* is commutative, (M, τ) is isomorphic to $L^{\infty}(\Omega, P)$ for some probability space *P*, and τ corresponds to the expectation $\tau(f) = \int f \, dP$.

Tracial von Neumann algebras are *non-commutative probability spaces*.

classical	non-commutative
$L^{\infty}(\Omega, P)$	A
expectation $\mathbb E$	trace $ au$
bounded random variable Z	$Z\in M$
bdd real random variable	self-adjoint $Z \in M$
random variable in ${\mathbb T}$	unitary $U\in M$
random variable in \mathbb{T}^d	d -tuple (U_1, \ldots, U_d) of unitaries

This talk: unitary *d*-tuples.

- 4 ∃ ▶

Agreement in law

Definition

$$U = (U_1, \ldots, U_d)$$
 unitary *d*-tuple of from (M, τ_M) ,
 $V = (V_1, \ldots, V_d)$ unitary *d*-tuple from (N, τ_N) .
 U and V agree in law, or $U \sim V$, if

$$au_{\mathcal{M}}(U^{\mathsf{a}_1}_{i_1}\ldots U^{\mathsf{a}_n}_{i_n}) = au_{\mathcal{N}}(V^{\mathsf{a}_1}_{i_1}\ldots V^{\mathsf{a}_n}_{i_n})$$

for all
$$n \in \mathbb{N}$$
, $i_1, \ldots, i_n \in \mathbb{N}$, $a_1, \ldots, a_n \in \{1, -1\}$.

Example

If d = 3 and U and V agree in law, then

$$\tau_{\mathcal{M}}(U_1U_2^*U_3U_1) = \tau_{\mathcal{N}}(V_1V_2^*V_3V_1).$$

< 行

Observation

Agreement in law is an equivalence relation.

Proposition

- Let $U = (U_1, ..., U_d)$ be a unitary tuple from (M, τ_M) and let $V = (V_1, ..., V_d)$ be a unitary tuple from (N, τ_N) . TFAE:
 - U and V agree in law.
 - **2** There is *-isomorphism $\phi : W^*(U) \to W^*(V)$ such that $\phi(U_j) = V_j$ and $\tau_N(\phi(X)) = \tau_M(X)$ for all $X \in W^*(U)$.

Agreement in law classifies unitary d-tuples in tracial von Neumann algebras up to isomorphism.

ヘロト 人間ト 人間ト 人間ト

For $U_1, \ldots, U_d \in \mathcal{U}(M)$, $\exists !$ grp. hom. $\phi_U : \mathbb{F}_d \to \mathcal{U}(M)$ s.t. $\phi_U(g_j) = U_j$.

Definition

For $U = (U_1, \ldots, U_d)$ unitary *d*-tuple from (M, τ_M) , the *non-commutative law of U* is the function $\ell : \mathbb{F}_d \to \mathbb{C}$,

$$\ell_U(w) = \tau_m(\phi_U(w))$$
 for all $w \in \mathbb{F}_d$.

Example

$$d = 3,$$
 $\ell_U(g_1g_2^{-1}g_3g_1) = \tau_M(U_1U_2^*U_3U_1).$

▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶

Definition (Representation theory)

A character on a group G is a unital, conjugation-invariant, positive-definite function $\mu : G \to \mathbb{C}$. Here positive-definite means that $[\mu(g_i^*g_j)]_{i,j=1}^n \ge 0$ for all $g_1, \ldots, g_n \in G$.

Proposition

 $\mu : \mathbb{F}_d \to \mathbb{C}$ is character iff $\mu = \ell_U$ for some $U \in \mathcal{U}(M)$, some (M, τ) .

(\Leftarrow) Trace property of τ_M implies conjugation invariance of ℓ_U , positivity of τ_M implies positive-definiteness of ℓ_U .

 (\implies) If μ is a character, then μ defines an inner product on $\mathbb{C}G$. Complete to Hilbert space. Left translation of G produces unitary representation of G. Vector δ_e defines tracial state.

Wasserstein distance

Definition

 Υ_d is the space of characters on \mathbb{F}_d .

Definition (Biane-Voiculescu 2001)

For $\mu, \nu \in \Upsilon_d$,

$$\begin{split} d_W(\mu,\nu) &:= \inf\{\|U-V\|_2 : U, V \in \mathcal{U}(M)^d, \\ \ell_U &= \mu, \ell_V = \nu, \\ (M,\tau_M) \text{ tracial von Neumann algebra} \}. \end{split}$$

Here $U = (U_1, \ldots, U_d)$ and $V = (V_1, \ldots, V_d)$ and

$$\|U - V\|_2 = \left(\sum_{j=1}^d \tau_M((U_j - V_j)^*(U_j - V_j))\right)^{1/2}.$$

Proposition (Biane-Voiculescu 2001)

The infimum defining $d_W(\mu, \nu)$ is achieved. Also, d_W is a metric on Υ_d .

Existence of minimizer: The quantity $||U - V||_2$ depends continuously on the law $\ell_{(U,V)} \in \Upsilon_{2d}$. Also, Υ_{2d} is compact w.r.t. the topology of pointwise convergence on \mathbb{F}_{2d} .

Triangle inequality: Take *U*, *V* in (A, τ_A) and *V'*, *W* in (B, τ_B) that achieve the minimum for (λ, μ) and (μ, ν) . Let (M, τ_M) be the free product of (A, τ_A) and (B, τ_B) with amalgamation over $W^*(V) \cong W^*(V)$, so $d_W(\lambda, \nu) \leq ||U - W||_2$.

▲ □ ▶ ▲ □ ▶ ▲ □

The connection to classical probability

Let $U = (U_1, \ldots, U_d)$ in a commutative von Neumann algebra $(M, \tau_M) = (L^{\infty}(\Omega), P).$

- U_j is measurable function $\Omega \to \mathbb{T}$.
- U is random variable in \mathbb{T}^d .
- Classical law of U is the unique Borel measure m_U on \mathbb{T}^d such that

$$\int_{\mathbb{T}^d} z_1^{a_1} \dots z_d^{a_d} dm_U(z_1, \dots, z_d) = \tau_M(U_1^{a_1} \dots U_d^{a_d})$$

for all $a_1, \ldots, a_d \in \mathbb{Z}$.

• m_U completely determines ℓ_U , e.g. d = 3,

$$\ell_U(g_1g_2^{-1}g_3g_1) = \tau_M(U_1U_2^*U_3U_1) = \int_{\mathbb{T}^3} z_1^2 z_2^{-1} z_3 \, dm_U(z_1, z_2, z_3)$$

For commuting unitaries (U_1, \ldots, U_d) , how do you get from ℓ_U to μ_U .

- ℓ_U is defined by representation π of \mathbb{F}_d sending g_j to U_j .
- The U_j 's commute, so π factors through the abelianization $\mathbb{F}_d \to \mathbb{Z}^d$.
- So ℓ_U corresponds to a character on \mathbb{Z}^d .
- Characters on $\mathbb{Z}^d \iff$ states on $\mathrm{C}^*(\mathbb{Z}^d)$.
- $C^*(\mathbb{Z}^d) \cong C(\mathbb{T}^d).$
- Character on $\mathbb{Z}^d \iff$ probability measure on \mathbb{T}^d .

The classical Wasserstein distance

Proposition

- **(D)** The Wasserstein distance defines a metric on $\mathcal{P}(\mathbb{T}^d)$.
- (a) The Wasserstein distance metrizes the weak-* topology on $\mathcal{P}(\mathbb{T}^d)$.
- (2) $(\mathcal{P}(\mathbb{T}^d), d_W)$ is separable.

Proof of separability: Measures of the form

$$\sum_{j=1}^k a_j \delta_{(z_1^{(j)},...,z_d^{(j)})}, \qquad a_j \in \mathbb{Q}$$

form a countable dense subset.

Today's main theorem (GJNS)

For d > 1, the metric space (Υ_d, d_W) is not separable.

Corollary

The topology on Υ_d generated by d_W is *not* the same as the weak-* topology (the topology of pointwise convergence as functions on \mathbb{F}_d).

Proof of Corollary: Υ_d is compact with respect to the weak-* topology. Every compact metric space is separable.

• For $\pi : G \to \mathcal{U}(H)$ unitary representation, $\xi \in H$ is *invariant* if $\pi(g)\xi = \xi$ for all $g \in G$.

• P_{inv} is the projection of H onto the subspace of invariant vectors.

Definition (Kazhdan)

A group G has Property (T) if there exists $g_1, \ldots, g_d \in G$ and K > 0 such that, for every representation $\pi : G \to U(H)$ and every $\xi \in H$, we have

$$\|P_{\mathsf{inv}}\xi-\xi\|\leq K\left(\sum_{j=1}^d\|\pi(g_j)\xi-\xi\|^2
ight)^{1/2}$$

We call $\{g_1, \ldots, g_d\}$ a Kazhdan set and K the Kazhdan constant.

(四) (三) (三)

- Kazhdan set generates G.
- Lattices in $SL_n(\mathbb{Z})$ for $n \geq 3$ have Property (T).
- Property (T) is opposite to amenability.
- Property (T) plus amenability \implies finite group.
- Property (T) means *rigidity* of representations of G.

Property (T) and Wasserstein distance

Theorem (Gromov, Olshanskii, Ozawa)

There exists a group G with Property (T) and an uncountable family $(H_{\alpha})_{\alpha \in I}$ of distinct normal subgroups of G.

Proposition (GJNS)

Given Property (T) group G, Kazhdan tuple g_1, \ldots, g_d , Kazhdan constant K: For every normal $H \subseteq G$, there is a NC law μ_H such that

$$d_W(\mu_H,\mu_{H'}) \geq 1/2K$$
 for $H \neq H'$.

Proof of main theorem:

- Take Property (T) group from Olshanskii theorem.
- By Proposition, we get uncountable 1/2K-separated set in Υ_d .
- So Υ_d is not separable, for some d.
- Get for all d>1 by matrix amplification trick. \bullet , \bullet ,

David Jekel (UCSD)

Proof of Proposition

- H normal subgroup of G.
- $q: G \rightarrow G/H$ quotient map.
- $\lambda_{G/H} : G/H \to \mathcal{U}(\ell^2(G/H))$ left regular representation.
- L(G/H) von Neumann algebra generated by $\lambda_{G/H}$.
- $\tau_{G/H}$ trace on L(G/H) given by δ_e .
- $U = (U_1, \ldots, U_d)$ where $U_j = \lambda_{G/H}(q(g_j))$.
- Let $\mu_H = \ell_U$.

Alternative interpretation:

- $\psi : \mathbb{F}_d \to G$ sending generators to g_j .
- $1_H: G \to \mathbb{C}$ indicator function of H.
- $\ell_H = 1_H \circ \psi$.
- It's the same since $\tau_{G/H}(q(\psi(w))) = \delta_{\psi(w)\in H}$.

Proof of Proposition

• Consider $H_1 \neq H_2$, quotient map $q_j: G \rightarrow G/H_j$.

• Let
$$U_j = \lambda_{G/H_1}(q_1(g_j))), V_j = \lambda_{G/H_2}(q_2(g_j)).$$

• So
$$\mu_{H_1} = \ell_U$$
 and $\mu_{H_2} = \ell_V$.

• Take
$$U'$$
, V' from (M, au_M) such that

$$\ell_{U'} = \ell_U, \quad \ell_{V'} = \ell_V, \quad \|U' - V'\|_2 = d_W(\mu_{H_1}, \mu_{H_2}).$$

•
$$W^*(U') \cong W^*(U) = L(G/H_1).$$

• So
$$L(G/H_1) \stackrel{lpha}{\hookrightarrow} M$$
 with $lpha(U_j) = U_j'$

• Similarly,
$$L(G/H_2) \stackrel{\beta}{\hookrightarrow} M$$
 with $\beta(V_j) = V'_j$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Proof of Proposition

To apply Property (T), define representation $\pi : G \to \mathcal{U}(L^2(M, \tau_M))$, $\pi(g)\xi = \alpha(\lambda_{G/H_1}(q_1(g))) \xi \ \beta(\lambda_{G/H_2}(q_2(g)))^{-1}.$

Note:

$$\begin{split} \|\pi(g)\widehat{1}-\widehat{1}\| &= \|\alpha(\lambda_{G/H_1}(q_1(g)))\beta(\lambda_{G/H_2}(q_2(g)))^{-1}-1\|_2\\ &= \|\alpha(\lambda_{G/H_1}(q_1(g)))-\beta(\lambda_{G/H_2}(q_2(g)))\|_2. \end{split}$$

So

$$\|\pi(g_j)\widehat{1}-\widehat{1}\|_2 = \|\alpha(U_j)-\beta(V_j)\|_2$$

So

$$\left(\sum_{j=1}^{d} \|\pi(g_j)\widehat{1}-\widehat{1}\|^2\right)^{1/2} = d_W(\mu_{H_1},\mu_{H_2}).$$

→ ∃ ▶

Estimate on the Wasserstein distance

- Apply Property (T): $\|P_{inv}\widehat{1} \widehat{1}\| \leq K d_W(\mu_{H_1}, \mu_{H_2}).$
- Invariance of $P_{inv}\hat{1}$ plus triangle inequality:

$$\|\pi(g)\widehat{1}-\widehat{1}\|\leq 2\|\mathcal{P}_{\mathsf{inv}}\widehat{1}-\widehat{1}\|$$
 for all $g\in \mathcal{G}$.

- $\|\alpha(\lambda_{G/H_1}(q_1(g))) \beta(\lambda_{G/H_2}(q_2(g)))\|_2 \le 2K d_W(\mu_{H_1}, \mu_{H_2}).$
- $\tau_M(\alpha(\lambda_{G/H_1}(q_1(g)))) = \delta_{g \in H_1}$. Same for H_2 .
- $|\delta_{g\in H_1} \delta_{g\in H_2}| \le 2K d_W(\mu_{H_1}, \mu_{H_2}).$
- $H_1
 eq H_2$, so $d_W(\mu_{H_1}, \mu_{H_2}) \geq 1/2K$.

References (in order of appearance) I

- Wilfrid Gangbo, David Jekel, Kyeongsik Nam, and Dimitri Shlyakhtenko. Duality for optimal couplings in free probability. arXiv:2105.12351
- Philippe Biane and Dan-Virgil Voiculescu. A free probability analogue of the Wasserstein metric on the trace-state space. Geometric and Functional Analysis, 11:1125–1138, 2001.
- D. Kazhdan, "On the connection of the dual space of a group with the structure of its closed subgroups", Functional Analysis and its Applications, 1 (1967), no. 1: 63–65
- Narutaka Ozawa. There is no separable universal II₁ factor. Proc. Amer. Math. Soc., 132 (2004), 487–490.
- A. Yu. Olshanskii, On residualing homomorphisms and G-subgroups of hyperbolic groups. Internat. J. Algebra Comput. 3 (1993), no. 4, 365–409.

References (in order of appearance) II

 Scott Atkinson and Srivatsav Kunnawalkam Ellayavalli. On ultraproduct embeddings and amenability for tracial von Neumann algebras. International Mathematics Research Notices, 2021(4):2882–2918, 2021.