Groundwork for Operator Algebras Lecture Series "at" Michigan State University

# Free probability, random matrices, and 1-bounded entropy 

Ben Hayes

University of Virginia
July 18, 2020

## Overview

- I'll give a broad strokes background of (things around) microstates/microstates free entropy dimension.
- Roughly speaking, the idea is to understand a tracial vNa by understanding "how many" finite-dimensional approximations it has.
- This neatly connects to random matrices, and allows one to bring tools from the finite-dimensional world (finite-dimensional analysis, probability, measure theory) that are usually unavailable in the infinite-dimensional setting.


## Review: Commutative Laws

Let $X$ be an essentially bounded $\mathbb{R}$-valued random variable. Its law, or distribution, is the probability measure $\mu_{X}$ on $\left[-\|X\|_{\infty},\|X\|_{\infty}\right]$ defined by

$$
\mathbb{E}(f(X))=\int f d \mu_{X}
$$

for all Borel $f:\left[-\|X\|_{\infty},\|X\|_{\infty}\right] \rightarrow \mathbb{C}$.
Exercise: using Stone-Weierstrass and Riesz representation, if $\nu$ is any measure so that

$$
\mathbb{E}(p(X))=\int p d \nu
$$

for all polynomials $p:\left[-\|X\|_{\infty},\|X\|_{\infty}\right] \rightarrow \mathbb{C}$, then $\nu=\mu_{X}$.
Can do same for a tuple $X=\left(X_{1}, \cdots, X_{r}\right)$, just replace polynomials of one variable with polynomials of several variables.

## Concrete Noncommutative Laws

Fix $r \in \mathbb{N}$. We let $\mathbb{C}\left\langle T_{1}, \cdots, T_{r}\right\rangle$ be the algebra of NC polynomials in $r$-variables. Give $\mathbb{C}\left\langle T_{1}, \cdots, T_{r}\right\rangle$ the unique $*$-structure which makes $T_{j}$ self-adjoint.

Let $(M, \tau)$ be a tracial von Neumann algebra and $x \in M_{s . a .}^{r}$. The law of $x$ is the linear function $\ell_{x}: \mathbb{C}\left\langle T_{1}, \cdots, T_{r}\right\rangle \rightarrow \mathbb{C}$ defined by

$$
\ell_{x}(P)=\tau(P(x))
$$

If $r=1$, and $x$ is self-adjoint, then

$$
\ell_{x}(P)=\int P d \mu_{x}, \mu_{x}=\text { the spectral measure of } x \text { wrt } \tau
$$

## Abstract Noncommutative Laws

Fix $r \in \mathbb{N}$, and $R \in[0, \infty)$. Let $\Sigma_{R, r}$ be the space of all linear $\ell: \mathbb{C}\left\langle T_{1}, \cdots, T_{r}\right\rangle \rightarrow \mathbb{C}$ so that

- $\ell\left(P^{*} P\right) \geq 0$ for all $P \in \mathbb{C}\left\langle T_{1}, \cdots, T_{r}\right\rangle$,
- $\ell(P Q)=\ell(Q P)$ for all $P, Q \in \mathbb{C}\left\langle T_{1}, \cdots, T_{r}\right\rangle$,
- $\ell(1)=1$,
- $\left|\ell\left(T_{j_{1}} T_{j_{2}} \cdots T_{j_{k}}\right)\right| \leq R^{k}$ for all $j_{1}, \cdots, j_{k} \in\{1, \cdots, r\}$.

Exercise using GNS: $\ell \in \Sigma_{R, r}$ if and only if there is a tracial von Neumann algebra $(M, \tau)$ and an $x \in M_{s . a}^{r}$. so that $\ell=\ell_{x}$. Moreover, if $\ell=\ell_{x}$ then $\|x\|_{\infty} \leq R$, where

$$
\|x\|_{\infty}=\max _{1 \leq j \leq r}\left\|x_{j}\right\| .
$$

We can endow $\Sigma_{R, r}$ with the weak ${ }^{*}$-topology. So $\ell_{n} \in \Sigma_{R, r}$ converges to $\ell$ in $\Sigma_{R, r}$ if and only if $\ell_{n}(P) \rightarrow \ell(P)$ for every $P \in \mathbb{C}\left\langle T_{1}, \cdots, T_{r}\right\rangle$.

Given $R \in[0, \infty)$, a tracial von Neumann algebra ( $M, \tau$ ) and $x \in M_{s . \text {.. }}^{r}$ with $\|x\|_{\infty} \leq R$, say that $x$ has microstates if

$$
\ell_{x} \in{\left.\overline{\bigcup_{k}\left\{\ell_{A}: A \in M_{k}(\mathbb{C})_{s . a}^{r},\right.}\|A\|_{\infty} \leq R\right\}}^{w k^{*}} .
$$

Equivalently, there is a sequence $A_{n} \in M_{k(n)}(\mathbb{C})_{s . \text {.a. }}^{r}$ with $\left\|A_{n}\right\|_{\infty} \leq R$ and $\ell_{A_{n}} \rightarrow \ell_{x}$.
Exercise: $x$ has microstates if and only if $W^{*}(x)$ admits a trace-preserving embedding into an ultraproduct of matrices.

## Random matrices

Let $X^{(k)}=\left(X_{1}^{(k)}, \cdots, X_{r}^{(k)}\right) \in M_{k}(\mathbb{C})_{s . a .}^{r}$ be a random tuple such that:

- $\left(X_{l}^{(k)}\right)_{l=1}^{r}$ is an independent family,
- for each $1 \leq I \leq r, k \in \mathbb{N}$ the random variables

$$
\left\{\left(X_{l, i i}^{(k)}\right\}_{i=1}^{k} \cup\left\{\sqrt{2} \operatorname{Re}\left(X_{l, i j}^{(k)}\right)\right\}_{1 \leq i<j \leq k} \cup\left\{\sqrt{2} \operatorname{Im}\left(X_{l, i j}^{(k)}\right)\right\}_{1 \leq i<j \leq k}\right.
$$

are iid, Gaussian, with mean zero and variance $\frac{1}{k}$.
This is called the Gaussian unitary ensemble, denoted $\operatorname{GUE}(k, r)$.
Define the semicircular distribution to be the probability measure $\mu_{s c}$ on [-2,2] with

$$
d \mu_{s c}=\frac{1}{2 \pi} \sqrt{4-x^{2}} 1_{[-2,2]} d x
$$

## Voiculescu's asymptotic freeness theorem

Theorem (Voiculescu's asymptotic freeness theorem '98)
Fix $r \in \mathbb{N}$, and let $X^{(k)}$ be the Gaussian unitary ensemble $\operatorname{GUE}(k, r)$. Let $s=\left(s_{1}, \cdots, s_{k}\right)$ be a tuple of free independent NC variables with $\mu_{s_{j}}=\mu_{s c}$ for all $j$. Then, almost surely,

$$
\ell_{X(k)} \rightarrow_{k \rightarrow \infty} \ell_{s} .
$$

## Microstates Free Entropy Dimension

Motivated by his asymptotic freeness theorem, for a tuple $x \in M_{s . a}^{r}$. Voiculescu defined the microstates free entropy dimension.

One has $\delta_{0}(x) \geq 1$ if $W^{*}(x)$ is diffuse (has no nonzero minimal projections), and $\delta_{0}(x)>1$ has lots of structural implications for $W^{*}(x) . \delta_{0}(x)=r$ if $x$ is an $r$-tuple of free variables.

A priori, $\delta_{0}(x)$ is not an invariant of $W^{*}(x)$ : i.e. it is possible there exists $y \in W^{*}(x)_{\text {s.a. }}^{\prime}$ with $\delta_{0}(x) \neq \delta_{0}(y)$ and $W^{*}(y)=W^{*}(x)$.

Implicit in work of Jung '07 and explicitly due to $H$. '18 is the notion of 1-bounded entropy, denoted $h(M)$, which is an invariant.

In the spirit of talks on the assembly map, UCT,.. I will not give the definition.

## Axioms

All von Neumann algebras below are diffuse.

- $h(M) \in\{-\infty\} \cup[0,+\infty]$, and $h(M) \geq 0$ iff $M$ has microstates,
- $h(M)=0$ if $M$ is injective,
- $h(M)=\infty$ if $M=W^{*}(x)$ and $\delta_{0}(x)>1$, e.g. if $M \cong L\left(\mathbb{F}_{r}\right)$,
- $h\left(N_{1} \vee N_{2}\right) \leq h\left(N_{1}\right)+h\left(N_{2}\right)$ if $N_{1} \cap N_{2}$ is diffuse,
- $h\left(W^{*}\left(\mathcal{N}_{M}(N)\right)\right) \leq h(N)$ if $N \leq M$, where

$$
\mathcal{N}_{M}(N)=\left\{u \in \mathcal{U}(M): u N u^{*}=N\right\}
$$

this last item is mildly false. Properly speaking one needs to replace the "1-bounded entropy of $W^{*}\left(\mathcal{N}_{M}(N)\right)$ in the presence of $M$ ".

## Sample application

Say that $N \leq M$ is regular if $W^{*}\left(\mathcal{N}_{M}(N)\right)=L\left(\mathbb{F}_{r}\right)$. If $N \leq M$ is regular, then $h(M) \leq h(N)$. So

## Theorem (Voiculescu '96)

$L\left(\mathbb{F}_{r}\right)$ does not have a diffuse, regular, injective subalgebra.
E.g. $L\left(\mathbb{F}_{r}\right) \not \not L^{\infty}(X) \rtimes G$. These results were later recovered by Ozawa-Popa using Popa's deformation/rigidity theory.

## Sample Application II

## Theorem (Popa '83, Ge '96)

$L\left(\mathbb{F}_{r}\right)$ is prime. I.e. $L\left(\mathbb{F}_{r}\right) \not \equiv M_{1} \bar{\otimes} M_{2}$ with $M_{j}$ diffuse. In fact, $L\left(\mathbb{F}_{r}\right) \not \neq M_{1} \vee M_{2}$ with $M_{j}$ diffuse and $\left[M_{1}, M_{2}\right]=\{0\}$.

- Suppose $M=M_{1} \vee M_{2}$ with $M_{j}$ diffuse and $\left[M_{1}, M_{2}\right]=\{0\}$.
- Fix $A_{j} \leq M_{j}$ diffuse, abelian. Set $N_{j}=W^{*}\left(N_{M}\left(A_{j}\right)\right)$.
- So $h\left(N_{j}\right) \leq 0$.
- $N_{1} \supseteq A_{1} \vee M_{2}, N_{2} \supseteq M_{1} \vee A_{2}$. So $N_{1} \cap N_{2} \supseteq A_{1} \vee A_{2}$ is diffuse.
- $h(M)=h\left(N_{1} \vee N_{2}\right) \leq h\left(N_{1}\right)+h\left(N_{2}\right) \leq 0$.

Implicitly used the following exercise: if $(M, \tau)$ is tracial and $N \leq M$ is diffuse, then $M$ is diffuse.

## Other applications

> Theorem (Popa '83, Houdayer '15, H-Jekel-Nelson-Sinclair)
> $L(\mathbb{Z})=L(\mathbb{Z}) * 1 \leq L(\mathbb{Z}) * L\left(\mathbb{F}_{r-1}\right)$ has the absorbing amenability property. l.e. if $N \leq L\left(\mathbb{F}_{r}\right)$ is injective and $N \cap L(\mathbb{Z})$ is diffuse, then $N \leq L(\mathbb{Z})$.

Proof uses: 1-bounded entropy, exponential concentration of measure, external averaging property, Voiculescu's asymptotic freeness theorem.

## Other applications: weird normalizers

Given $N \leq M$ with $N$ diffuse, define (Pimnser-Popa '86, Izumi-Longo-Popa '98, Popa '99):

- $q \mathcal{N}_{M}(N)=$ set of $x \in M$ so that there are $a_{1}, \cdots, a_{k} \in M$ with

$$
x N \subseteq \sum_{j} N a_{j}, \text { and } N x \subseteq \sum_{j} a_{j} N
$$

- $q^{1} \mathcal{N}_{M}(N)=$ set of $x \in M$ so that there are $a_{1}, \cdots, a_{k} \in M$ with

$$
x N \subseteq \sum_{j} N a_{j} .
$$

- $\mathcal{N}_{M}^{w q}(N)=$ set of $u \in \mathcal{U}(M)$ so that $u N u^{*} \cap N$ is diffuse. (Defined in Popa '06, Ioana-Peterson-Popa '08 ,Galațan-Popa '17)
For each of this, if $Q=$ the $v N a$ generated by the appropriate normalizer, then $h(Q) \leq h(N)$ (by H.).

Let $A$ be a $*$-algebra. Say two $*$-reps $\pi, \rho$ of $A$ are disjoint if there are no bounded, $A$-equivariant, linear $T: \mathcal{H}_{\pi} \rightarrow H_{\rho}$.

Example: For $X$ compact, metrizable, and $\mu \in \operatorname{Prob}(X)$, consider $\pi_{\mu}: C(X) \rightarrow B\left(L^{2}(X, \mu)\right)$ by multiplication operators.

Exercise: $\pi_{\mu}, \pi_{\nu}$ are disjoint if and only if $\mu \perp \nu$.

## The weirdest normalizer, II

Exercise: $\pi, \rho$ are disjoint if and only if there is a sequence $\left(a_{n}\right)_{n} \in A$ with

- $\max \left(\left\|\pi\left(a_{n}\right)\right\|,\left\|\rho\left(a_{n}\right)\right\|\right) \leq 1$,
- $\pi\left(a_{n}\right) \rightarrow 1$ SOT,
- $\rho\left(a_{n}\right) \rightarrow 0$ SOT.

Hint: use the double commutant theorem and Kaplansky's density theorem.

For $N \leq M$, and $a \in M$, let $L^{2}(N a N)$ be the closed linear span in $L^{2}(M, \tau)$ of $\{x a y: x, y \in N\}$.
Let $\mathcal{H}_{s}(N \leq M)=$ all $a \in M$ so that $L^{2}(N a N)$ is disjoint from $L^{2}(N \bar{\otimes} N)$ as an $N-N$ bimodule.

This contains $q^{1} \mathcal{N}_{M}(N), \mathcal{N}_{M}^{w q}(N)$.

## One last application

## Theorem (H.)

$h\left(W^{*}\left(\mathcal{H}_{s}(N \leq M)\right)\right) \leq h(N)$.
Uses in a crucial way this previous characterization of disjointness.
Has new applications to nonisomorphism results on Free Araki-Woods factors (Shlyakhtenko '04), Bogoliubov cross products (following work of Houdayer-Shlyakhtenko '11), as well as new indecomposability results on free group factors currently not available by other methods. This also solves a conjecture of Galațan-Popa '17.

Suggestions for further reading:

- "Free random variables. A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups." CRM Monograph Series, Voiculescu-Dykema- Nica,
- "Free entropy", arXiv:0103168, Voiculescu, Bulletin of the London Mathematical Society,
- "Strongly 1-bounded von Neumann algebras", Geometric and Functional Analysis, Jung,
- "A Random matrix approach to absorption in free products", to appear in International Mathematics Research Notices, Jekel-H-Nelson-Sinclair,
- "1-bounded entropy and regularity problems in von Neumann algebras", International Mathematics Research Notices, H.

Thanks for paying attention!

