Groundwork for Operator Algebras Lecture Series "at" Michigan State University

Free probability, random matrices, and 1-bounded entropy

Ben Hayes

University of Virginia

July 18, 2020

- I'll give a broad strokes background of (things around) microstates/microstates free entropy dimension.
- Roughly speaking, the idea is to understand a tracial vNa by understanding "how many" finite-dimensional approximations it has.
- This neatly connects to random matrices, and allows one to bring tools from the finite-dimensional world (finite-dimensional analysis, probability, measure theory) that are usually unavailable in the infinite-dimensional setting.

Review: Commutative Laws

Let X be an essentially bounded \mathbb{R} -valued random variable. Its *law*, or distribution, is the probability measure μ_X on $[-\|X\|_{\infty}, \|X\|_{\infty}]$ defined by

$$\mathbb{E}(f(X)) = \int f \, d\mu_X$$

for all Borel $f: [-\|X\|_{\infty}, \|X\|_{\infty}] \to \mathbb{C}.$

Exercise: using Stone-Weierstrass and Riesz representation, if $\boldsymbol{\nu}$ is any measure so that

$$\mathbb{E}(p(X)) = \int p \, d\nu$$

for all polynomials $p \colon [-\|X\|_{\infty}, \|X\|_{\infty}] \to \mathbb{C}$, then $\nu = \mu_X$.

Can do same for a tuple $X = (X_1, \dots, X_r)$, just replace polynomials of one variable with polynomials of several variables.

Fix $r \in \mathbb{N}$. We let $\mathbb{C}\langle T_1, \cdots, T_r \rangle$ be the algebra of NC polynomials in *r*-variables. Give $\mathbb{C}\langle T_1, \cdots, T_r \rangle$ the unique *-structure which makes T_j self-adjoint.

Let (M, τ) be a tracial von Neumann algebra and $x \in M^r_{s.a.}$. The *law of x* is the linear function $\ell_x : \mathbb{C}\langle T_1, \cdots, T_r \rangle \to \mathbb{C}$ defined by

$$\ell_x(P) = \tau(P(x)).$$

If r = 1, and x is self-adjoint, then

$$\ell_x({\sf P}) = \int {\sf P} \, d\mu_x, \ \ \mu_x = {\sf the spectral measure of } x \; {\sf wrt} \; au$$

Fix $r \in \mathbb{N}$, and $R \in [0, \infty)$. Let $\Sigma_{R,r}$ be the space of all linear $\ell \colon \mathbb{C}\langle T_1, \cdots, T_r \rangle \to \mathbb{C}$ so that

- $\ell(P^*P) \ge 0$ for all $P \in \mathbb{C}\langle T_1, \cdots, T_r \rangle$,
- $\ell(PQ) = \ell(QP)$ for all $P, Q \in \mathbb{C}\langle T_1, \cdots, T_r \rangle$,
- $\ell(1) = 1$,
- $|\ell(T_{j_1}T_{j_2}\cdots T_{j_k})| \leq R^k$ for all $j_1,\cdots,j_k \in \{1,\cdots,r\}$.

Exercise using GNS: $\ell \in \Sigma_{R,r}$ if and only if there is a tracial von Neumann algebra (M, τ) and an $x \in M_{s.a.}^r$ so that $\ell = \ell_x$. Moreover, if $\ell = \ell_x$ then $||x||_{\infty} \leq R$, where

$$\|x\|_{\infty} = \max_{1 \le j \le r} \|x_j\|.$$

We can endow $\Sigma_{R,r}$ with the weak*-topology. So $\ell_n \in \Sigma_{R,r}$ converges to ℓ in $\Sigma_{R,r}$ if and only if $\ell_n(P) \to \ell(P)$ for every $P \in \mathbb{C}\langle T_1, \cdots, T_r \rangle$.

Given $R \in [0, \infty)$, a tracial von Neumann algebra (M, τ) and $x \in M_{s.a.}^r$ with $||x||_{\infty} \leq R$, say that x has microstates if

$$\ell_{x} \in \overline{\bigcup_{k} \{\ell_{A} : A \in M_{k}(\mathbb{C})_{s.a.}^{r}, \|A\|_{\infty} \leq R\}}^{wk^{*}}$$

Equivalently, there is a sequence $A_n \in M_{k(n)}(\mathbb{C})_{s.a.}^r$ with $||A_n||_{\infty} \leq R$ and $\ell_{A_n} \to \ell_x$.

Exercise: x has microstates if and only if $W^*(x)$ admits a trace-preserving embedding into an ultraproduct of matrices.

Let $X^{(k)} = (X_1^{(k)}, \dots, X_r^{(k)}) \in M_k(\mathbb{C})_{s.a.}^r$ be a random tuple such that:

- $(X_{l}^{(k)})_{l=1}^{r}$ is an independent family,
- for each $1 \leq l \leq r, \ k \in \mathbb{N}$ the random variables

$$\{(X_{l,ii}^{(k)}\}_{i=1}^k \cup \{\sqrt{2}\operatorname{Re}(X_{l,ij}^{(k)})\}_{1 \le i < j \le k} \cup \{\sqrt{2}\operatorname{Im}(X_{l,ij}^{(k)})\}_{1 \le i < j \le k}$$

are iid, Gaussian, with mean zero and variance $\frac{1}{k}$. This is called the *Gaussian unitary ensemble*, denoted GUE(k, r). Define the *semicircular distribution* to be the probability measure μ_{sc} on [-2, 2] with

$$d\mu_{sc} = \frac{1}{2\pi}\sqrt{4-x^2}\mathbf{1}_{[-2,2]}\,dx.$$

Theorem (Voiculescu's asymptotic freeness theorem '98)

Fix $r \in \mathbb{N}$, and let $X^{(k)}$ be the Gaussian unitary ensemble GUE(k, r). Let $s = (s_1, \dots, s_k)$ be a tuple of free independent NC variables with $\mu_{s_i} = \mu_{sc}$ for all j. Then, almost surely,

$$\ell_{X^{(k)}} \to_{k \to \infty} \ell_s.$$

Motivated by his asymptotic freeness theorem, for a tuple $x \in M_{s.a.}^r$ Voiculescu defined the *microstates free entropy dimension*.

One has $\delta_0(x) \ge 1$ if $W^*(x)$ is diffuse (has no nonzero minimal projections), and $\delta_0(x) > 1$ has lots of structural implications for $W^*(x)$. $\delta_0(x) = r$ if x is an r-tuple of free variables.

A priori, $\delta_0(x)$ is not an invariant of $W^*(x)$: i.e. it is possible there exists $y \in W^*(x)'_{s.a.}$ with $\delta_0(x) \neq \delta_0(y)$ and $W^*(y) = W^*(x)$.

Implicit in work of Jung '07 and explicitly due to H. '18 is the notion of *1-bounded entropy*, denoted h(M), which is an invariant.

In the spirit of talks on the assembly map, UCT,.. I will not give the definition.

Axioms

All von Neumann algebras below are diffuse.

- $h(M) \in \{-\infty\} \cup [0, +\infty]$, and $h(M) \ge 0$ iff M has microstates,
- h(M) = 0 if M is injective,
- $h(M) = \infty$ if $M = W^*(x)$ and $\delta_0(x) > 1$, e.g. if $M \cong L(\mathbb{F}_r)$,
- $h(N_1 \lor N_2) \le h(N_1) + h(N_2)$ if $N_1 \cap N_2$ is diffuse,
- $h(W^*(\mathcal{N}_M(N))) \leq h(N)$ if $N \leq M$, where

$$\mathcal{N}_{M}(N) = \{ u \in \mathcal{U}(M) : uNu^{*} = N \},\$$

this last item is *mildly* false. Properly speaking one needs to replace the "1-bounded entropy of $W^*(\mathcal{N}_M(N))$ in the presence of M".

Say that $N \leq M$ is regular if $W^*(\mathcal{N}_M(N)) = L(\mathbb{F}_r)$. If $N \leq M$ is regular, then $h(M) \leq h(N)$. So

Theorem (Voiculescu '96)

 $L(\mathbb{F}_r)$ does not have a diffuse, regular, injective subalgebra.

E.g. $L(\mathbb{F}_r) \ncong L^{\infty}(X) \rtimes G$. These results were later recovered by Ozawa-Popa using Popa's deformation/rigidity theory.

Theorem (Popa '83, Ge '96)

 $L(\mathbb{F}_r)$ is prime. I.e. $L(\mathbb{F}_r) \ncong M_1 \overline{\otimes} M_2$ with M_j diffuse. In fact, $L(\mathbb{F}_r) \ncong M_1 \lor M_2$ with M_j diffuse and $[M_1, M_2] = \{0\}$.

- Suppose $M = M_1 \vee M_2$ with M_j diffuse and $[M_1, M_2] = \{0\}$.
- Fix $A_j \leq M_j$ diffuse, abelian. Set $N_j = W^*(N_M(A_j))$.
- So $h(N_j) \leq 0$.
- $N_1 \supseteq A_1 \lor M_2$, $N_2 \supseteq M_1 \lor A_2$. So $N_1 \cap N_2 \supseteq A_1 \lor A_2$ is diffuse.
- $h(M) = h(N_1 \vee N_2) \le h(N_1) + h(N_2) \le 0.$

Implicitly used the following **exercise:** if (M, τ) is tracial and $N \leq M$ is diffuse, then M is diffuse.

Theorem (Popa '83, Houdayer '15, H-Jekel-Nelson-Sinclair)

 $L(\mathbb{Z}) = L(\mathbb{Z}) * 1 \le L(\mathbb{Z}) * L(\mathbb{F}_{r-1})$ has the absorbing amenability property. I.e. if $N \le L(\mathbb{F}_r)$ is injective and $N \cap L(\mathbb{Z})$ is diffuse, then $N \le L(\mathbb{Z})$.

Proof uses: 1-bounded entropy, exponential concentration of measure, external averaging property, Voiculescu's asymptotic freeness theorem.

Other applications: weird normalizers

Given $N \le M$ with N diffuse, define (Pimnser-Popa '86, Izumi-Longo-Popa '98, Popa '99):

• $q\mathcal{N}_M(N) =$ set of $x \in M$ so that there are $a_1, \cdots, a_k \in M$ with

$$xN \subseteq \sum_{j} Na_{j}$$
, and $Nx \subseteq \sum_{j} a_{j}N$.

• $q^1\mathcal{N}_M(N) =$ set of $x \in M$ so that there are $a_1, \cdots, a_k \in M$ with

$$xN \subseteq \sum_{j} Na_{j}.$$

• $\mathcal{N}_{M}^{wq}(N) = \text{set of } u \in \mathcal{U}(M) \text{ so that } uNu^{*} \cap N \text{ is diffuse.}$ (Defined in Popa '06, Ioana-Peterson-Popa '08, Galațan-Popa '17)

For each of this, if Q=the vNa generated by the appropriate normalizer, then $h(Q) \le h(N)$ (by H.).

Let A be a *-algebra. Say two *-reps π, ρ of A are *disjoint* if there are no bounded, A-equivariant, linear $T: \mathcal{H}_{\pi} \to H_{\rho}$.

Example: For X compact, metrizable, and $\mu \in \text{Prob}(X)$, consider $\pi_{\mu} \colon C(X) \to B(L^2(X, \mu))$ by multiplication operators.

Exercise: π_{μ}, π_{ν} are disjoint if and only if $\mu \perp \nu$.

Exercise: π, ρ are disjoint if and only if there is a sequence $(a_n)_n \in A$ with

- $\max(\|\pi(a_n)\|, \|\rho(a_n)\|) \le 1$,
- $\pi(a_n)
 ightarrow 1$ SOT,
- $\rho(a_n) \rightarrow 0$ SOT.

Hint: use the double commutant theorem and Kaplansky's density theorem.

For $N \leq M$, and $a \in M$, let $L^2(NaN)$ be the closed linear span in $L^2(M, \tau)$ of $\{xay : x, y \in N\}$.

Let $\mathcal{H}_s(N \leq M)$ = all $a \in M$ so that $L^2(NaN)$ is disjoint from $L^2(N \otimes N)$ as an N-N bimodule.

This contains $q^1 \mathcal{N}_M(N)$, $\mathcal{N}_M^{wq}(N)$.

Theorem (H.)

 $h(W^*(\mathcal{H}_s(N \leq M))) \leq h(N).$

Uses in a crucial way this previous characterization of disjointness.

Has new applications to nonisomorphism results on Free Araki-Woods factors (Shlyakhtenko '04), Bogoliubov cross products (following work of Houdayer-Shlyakhtenko '11), as well as new indecomposability results on free group factors currently not available by other methods. This also solves a conjecture of Galațan-Popa '17. Suggestions for further reading:

- "Free random variables. A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups." CRM Monograph Series, Voiculescu-Dykema- Nica,
- "Free entropy", arXiv:0103168, Voiculescu, Bulletin of the London Mathematical Society,
- "Strongly 1-bounded von Neumann algebras", Geometric and Functional Analysis, Jung,
- "A Random matrix approach to absorption in free products", to appear in International Mathematics Research Notices, Jekel-H-Nelson-Sinclair,
- "1-bounded entropy and regularity problems in von Neumann algebras", International Mathematics Research Notices, H.

Thanks for paying attention!