Model theory and von Neumann algebras

Isaac Goldbring

University of California, Irvine

Groundwork for Operator Algebras Lecture Series July 17, 2020

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Hi, my name is Isaac and I'm a model theorist.

- What's a model theorist you ask?
- And why am I speaking in a summer program on operator algebras?
- It turns out we have a common love interest: ultraproducts!

< 回 ト < 三 ト < 三

- Hi, my name is Isaac and I'm a model theorist.
- What's a model theorist you ask?
- And why am I speaking in a summer program on operator algebras?
- It turns out we have a common love interest: ultraproducts!

< 回 ト < 三 ト < 三

- Hi, my name is Isaac and I'm a model theorist.
- What's a model theorist you ask?
- And why am I speaking in a summer program on operator algebras?
- It turns out we have a common love interest: ultraproducts!

A .

- Hi, my name is Isaac and I'm a model theorist.
- What's a model theorist you ask?
- And why am I speaking in a summer program on operator algebras?
- It turns out we have a common love interest: ultraproducts!

If *I* is a set, a **ultrafilter on** *I* is a finitely additive, {0, 1}-valued probability measure on *I*. The ultrafilter is called **nonprincipal** if finite sets get measure 0.

We often identify an ultrafilter with its set of measure 1 sets and when doing so use letters like \mathcal{U} and \mathcal{V} to denote ultrafilters, writing $A \in \mathcal{U}$ to mean that the \mathcal{U} -measure of A is 1.

Theorem/Definition

Given any compact Hausdorff space *X*, any set *I*, any sequence $(a_i)_{i \in I}$ from *X*, and any ultrafilter \mathcal{U} on *I*, there is a unique element $a \in X$ with the property: for every open neighborhood *U* of *a*, we have $\{i \in I : a_i \in U\} \in \mathcal{U}$. We call *a* the \mathcal{U} -ultralimit of $(a_i)_{i \in I}$ and denote it by $\lim_{\mathcal{U}} a_i$.

ヘロト 人間 ト ヘヨト ヘヨト

If *I* is a set, a **ultrafilter on** *I* is a finitely additive, $\{0, 1\}$ -valued probability measure on *I*. The ultrafilter is called **nonprincipal** if finite sets get measure 0.

We often identify an ultrafilter with its set of measure 1 sets and when doing so use letters like \mathcal{U} and \mathcal{V} to denote ultrafilters, writing $A \in \mathcal{U}$ to mean that the \mathcal{U} -measure of A is 1.

Theorem/Definition

Given any compact Hausdorff space *X*, any set *I*, any sequence $(a_i)_{i \in I}$ from *X*, and any ultrafilter \mathcal{U} on *I*, there is a unique element $a \in X$ with the property: for every open neighborhood *U* of *a*, we have $\{i \in I : a_i \in U\} \in \mathcal{U}$. We call *a* the \mathcal{U} -ultralimit of $(a_i)_{i \in I}$ and denote it by $\lim_{\mathcal{U}} a_i$.

ヘロマ ヘロマ ヘロマ

If *I* is a set, a **ultrafilter on** *I* is a finitely additive, $\{0, 1\}$ -valued probability measure on *I*. The ultrafilter is called **nonprincipal** if finite sets get measure 0.

We often identify an ultrafilter with its set of measure 1 sets and when doing so use letters like \mathcal{U} and \mathcal{V} to denote ultrafilters, writing $A \in \mathcal{U}$ to mean that the \mathcal{U} -measure of A is 1.

Theorem/Definition

Given any compact Hausdorff space *X*, any set *I*, any sequence $(a_i)_{i \in I}$ from *X*, and any ultrafilter \mathcal{U} on *I*, there is a unique element $a \in X$ with the property: for every open neighborhood *U* of *a*, we have $\{i \in I : a_i \in U\} \in \mathcal{U}$. We call *a* the \mathcal{U} -ultralimit of $(a_i)_{i \in I}$ and denote it by $\lim_{\mathcal{U}} a_i$.

3

ヘロト 人間 ト イヨト イヨト

If *I* is a set, a **ultrafilter on** *I* is a finitely additive, $\{0, 1\}$ -valued probability measure on *I*. The ultrafilter is called **nonprincipal** if finite sets get measure 0.

We often identify an ultrafilter with its set of measure 1 sets and when doing so use letters like \mathcal{U} and \mathcal{V} to denote ultrafilters, writing $A \in \mathcal{U}$ to mean that the \mathcal{U} -measure of A is 1.

Theorem/Definition

Given any compact Hausdorff space *X*, any set *I*, any sequence $(a_i)_{i \in I}$ from *X*, and any ultrafilter \mathcal{U} on *I*, there is a unique element $a \in X$ with the property: for every open neighborhood *U* of *a*, we have $\{i \in I : a_i \in U\} \in \mathcal{U}$. We call *a* the \mathcal{U} -ultralimit of $(a_i)_{i \in I}$ and denote it by $\lim_{\mathcal{U}} a_i$.

Suppose that $\mathcal{M} = (M_i)_{i \in I}$ is a family of tracial von Neumann algebras and \mathcal{U} is an ultrafilter on *I*.

• We set $\ell^{\infty}(I, \mathcal{M}) := \{(a_i) \in \prod_{i \in I} M_i : \sup_{i \in I} ||a_i|| < \infty\}.$

• We also set $c_{\mathcal{U}}(\mathcal{M}) := \{(a_i) \in \ell^{\infty}(I, \mathcal{M}) : \lim_{\mathcal{U}} \|a_i\|_2 = 0\}.$

- The quotient C*-algebra $\ell^{\infty}(I, \mathcal{M})/c_{\mathcal{U}}(\mathcal{M})$ is a von Neumann algebra again, called the **tracial ultraproduct** of the family \mathcal{M} with respect to the ultrafilter \mathcal{U} , denoted $\prod_{\mathcal{U}} M_i$.
- We denote the coset of (a_i) by $(a_i)_{\mathcal{U}}$.
- $\prod_{\mathcal{U}} M_i$ has a natural trace: $\tau((a_i)_{\mathcal{U}}) := \lim_{\mathcal{U}} \tau_{M_i}(a_i)$.
- If each $M_i = M$, we write M^U , and call this the **ultrapower of** M with respect to the ultrafilter U.
- There is a natural **diagonal embedding** $M \hookrightarrow M^{\mathcal{U}}$ given by $a \mapsto (a, a, a, \ldots)_{\mathcal{U}}$.

■ $M^{\mathcal{U}}$ is nonseparable as soon as \mathcal{U} is sufficiently incomplete and M is infinite-dimensional.

Suppose that $\mathcal{M} = (M_i)_{i \in I}$ is a family of tracial von Neumann algebras and \mathcal{U} is an ultrafilter on *I*.

• We set $\ell^{\infty}(I, \mathcal{M}) := \{(a_i) \in \prod_{i \in I} M_i : \sup_{i \in I} \|a_i\| < \infty\}.$

• We also set $c_{\mathcal{U}}(\mathcal{M}) := \{(a_i) \in \ell^{\infty}(I, \mathcal{M}) : \lim_{\mathcal{U}} \|a_i\|_2 = 0\}.$

- The quotient C*-algebra $\ell^{\infty}(I, \mathcal{M})/c_{\mathcal{U}}(\mathcal{M})$ is a von Neumann algebra again, called the **tracial ultraproduct** of the family \mathcal{M} with respect to the ultrafilter \mathcal{U} , denoted $\prod_{\mathcal{U}} M_i$.
- We denote the coset of (a_i) by $(a_i)_{\mathcal{U}}$.
- $\prod_{\mathcal{U}} M_i$ has a natural trace: $\tau((a_i)_{\mathcal{U}}) := \lim_{\mathcal{U}} \tau_{M_i}(a_i)$.
- If each $M_i = M$, we write M^U , and call this the **ultrapower of** M with respect to the ultrafilter U.
- There is a natural **diagonal embedding** $M \hookrightarrow M^{\mathcal{U}}$ given by $a \mapsto (a, a, a, \ldots)_{\mathcal{U}}$.

■ $M^{\mathcal{U}}$ is nonseparable as soon as \mathcal{U} is sufficiently incomplete and M is infinite-dimensional.

- Suppose that $\mathcal{M} = (M_i)_{i \in I}$ is a family of tracial von Neumann algebras and \mathcal{U} is an ultrafilter on *I*.
- We set $\ell^{\infty}(I, \mathcal{M}) := \{(a_i) \in \prod_{i \in I} M_i : \sup_{i \in I} \|a_i\| < \infty\}.$
- We also set $c_{\mathcal{U}}(\mathcal{M}) := \{(a_i) \in \ell^{\infty}(I, \mathcal{M}) : \lim_{\mathcal{U}} \|a_i\|_2 = 0\}.$
- The quotient C*-algebra $\ell^{\infty}(I, \mathcal{M})/c_{\mathcal{U}}(\mathcal{M})$ is a von Neumann algebra again, called the **tracial ultraproduct** of the family \mathcal{M} with respect to the ultrafilter \mathcal{U} , denoted $\prod_{\mathcal{U}} M_i$.
- We denote the coset of (a_i) by $(a_i)_{\mathcal{U}}$.
- $\prod_{\mathcal{U}} M_i$ has a natural trace: $\tau((a_i)_{\mathcal{U}}) := \lim_{\mathcal{U}} \tau_{M_i}(a_i)$.
- If each $M_i = M$, we write M^U , and call this the **ultrapower of** M with respect to the ultrafilter U.
- There is a natural **diagonal embedding** $M \hookrightarrow M^{\mathcal{U}}$ given by $a \mapsto (a, a, a, \ldots)_{\mathcal{U}}$.

■ $M^{\mathcal{U}}$ is nonseparable as soon as \mathcal{U} is sufficiently incomplete and M is infinite-dimensional.

- Suppose that $\mathcal{M} = (M_i)_{i \in I}$ is a family of tracial von Neumann algebras and \mathcal{U} is an ultrafilter on *I*.
- We set $\ell^{\infty}(I, \mathcal{M}) := \{(a_i) \in \prod_{i \in I} M_i : \sup_{i \in I} ||a_i|| < \infty\}.$
- We also set $c_{\mathcal{U}}(\mathcal{M}) := \{(a_i) \in \ell^{\infty}(I, \mathcal{M}) : \lim_{\mathcal{U}} \|a_i\|_2 = 0\}.$
- The quotient C*-algebra $\ell^{\infty}(I, \mathcal{M})/c_{\mathcal{U}}(\mathcal{M})$ is a von Neumann algebra again, called the **tracial ultraproduct** of the family \mathcal{M} with respect to the ultrafilter \mathcal{U} , denoted $\prod_{\mathcal{U}} M_i$.
- We denote the coset of (a_i) by $(a_i)_{\mathcal{U}}$.
- $\prod_{\mathcal{U}} M_i$ has a natural trace: $\tau((a_i)_{\mathcal{U}}) := \lim_{\mathcal{U}} \tau_{M_i}(a_i)$.
- If each $M_i = M$, we write M^U , and call this the **ultrapower of** M with respect to the ultrafilter U.
- There is a natural **diagonal embedding** $M \hookrightarrow M^{\mathcal{U}}$ given by $a \mapsto (a, a, a, \ldots)_{\mathcal{U}}$.
- $M^{\mathcal{U}}$ is nonseparable as soon as \mathcal{U} is sufficiently incomplete and M is infinite-dimensional.

- Suppose that $\mathcal{M} = (M_i)_{i \in I}$ is a family of tracial von Neumann algebras and \mathcal{U} is an ultrafilter on *I*.
- We set $\ell^{\infty}(I, \mathcal{M}) := \{(a_i) \in \prod_{i \in I} M_i : \sup_{i \in I} ||a_i|| < \infty\}.$
- We also set $c_{\mathcal{U}}(\mathcal{M}) := \{(a_i) \in \ell^{\infty}(I, \mathcal{M}) : \lim_{\mathcal{U}} \|a_i\|_2 = 0\}.$
- The quotient C*-algebra $\ell^{\infty}(I, \mathcal{M})/c_{\mathcal{U}}(\mathcal{M})$ is a von Neumann algebra again, called the **tracial ultraproduct** of the family \mathcal{M} with respect to the ultrafilter \mathcal{U} , denoted $\prod_{\mathcal{U}} M_i$.
- We denote the coset of (a_i) by $(a_i)_U$.
- $\prod_{\mathcal{U}} M_i$ has a natural trace: $\tau((a_i)_{\mathcal{U}}) := \lim_{\mathcal{U}} \tau_{M_i}(a_i)$.
- If each $M_i = M$, we write M^U , and call this the **ultrapower of** M with respect to the ultrafilter U.
- There is a natural **diagonal embedding** $M \hookrightarrow M^{\mathcal{U}}$ given by $a \mapsto (a, a, a, \ldots)_{\mathcal{U}}$.
- $M^{\mathcal{U}}$ is nonseparable as soon as \mathcal{U} is sufficiently incomplete and M is infinite-dimensional.

- Suppose that $\mathcal{M} = (M_i)_{i \in I}$ is a family of tracial von Neumann algebras and \mathcal{U} is an ultrafilter on *I*.
- We set $\ell^{\infty}(I, \mathcal{M}) := \{(a_i) \in \prod_{i \in I} M_i : \sup_{i \in I} ||a_i|| < \infty\}.$
- We also set $c_{\mathcal{U}}(\mathcal{M}) := \{(a_i) \in \ell^{\infty}(I, \mathcal{M}) : \lim_{\mathcal{U}} \|a_i\|_2 = 0\}.$
- The quotient C*-algebra $\ell^{\infty}(I, \mathcal{M})/c_{\mathcal{U}}(\mathcal{M})$ is a von Neumann algebra again, called the **tracial ultraproduct** of the family \mathcal{M} with respect to the ultrafilter \mathcal{U} , denoted $\prod_{\mathcal{U}} M_i$.
- We denote the coset of (a_i) by $(a_i)_{\mathcal{U}}$.
- $\prod_{\mathcal{U}} M_i$ has a natural trace: $\tau((a_i)_{\mathcal{U}}) := \lim_{\mathcal{U}} \tau_{M_i}(a_i)$.
- If each $M_i = M$, we write M^U , and call this the **ultrapower of** M with respect to the ultrafilter U.
- There is a natural **diagonal embedding** $M \hookrightarrow M^{\mathcal{U}}$ given by $a \mapsto (a, a, a, \ldots)_{\mathcal{U}}$.
- $M^{\mathcal{U}}$ is nonseparable as soon as \mathcal{U} is sufficiently incomplete and M is infinite-dimensional.

- Suppose that $\mathcal{M} = (M_i)_{i \in I}$ is a family of tracial von Neumann algebras and \mathcal{U} is an ultrafilter on *I*.
- We set $\ell^{\infty}(I, \mathcal{M}) := \{(a_i) \in \prod_{i \in I} M_i : \sup_{i \in I} ||a_i|| < \infty\}.$
- We also set $c_{\mathcal{U}}(\mathcal{M}) := \{(a_i) \in \ell^{\infty}(I, \mathcal{M}) : \lim_{\mathcal{U}} \|a_i\|_2 = 0\}.$
- The quotient C*-algebra $\ell^{\infty}(I, \mathcal{M})/c_{\mathcal{U}}(\mathcal{M})$ is a von Neumann algebra again, called the **tracial ultraproduct** of the family \mathcal{M} with respect to the ultrafilter \mathcal{U} , denoted $\prod_{\mathcal{U}} M_i$.
- We denote the coset of (a_i) by $(a_i)_{\mathcal{U}}$.
- $\prod_{\mathcal{U}} M_i$ has a natural trace: $\tau((a_i)_{\mathcal{U}}) := \lim_{\mathcal{U}} \tau_{M_i}(a_i)$.
- If each $M_i = M$, we write $M^{\mathcal{U}}$, and call this the **ultrapower of** M with respect to the ultrafilter \mathcal{U} .
- There is a natural **diagonal embedding** $M \hookrightarrow M^{\mathcal{U}}$ given by $a \mapsto (a, a, a, \ldots)_{\mathcal{U}}$.
- $M^{\mathcal{U}}$ is nonseparable as soon as \mathcal{U} is sufficiently incomplete and M is infinite-dimensional.

- Suppose that $\mathcal{M} = (M_i)_{i \in I}$ is a family of tracial von Neumann algebras and \mathcal{U} is an ultrafilter on *I*.
- We set $\ell^{\infty}(I, \mathcal{M}) := \{(a_i) \in \prod_{i \in I} M_i : \sup_{i \in I} ||a_i|| < \infty\}.$
- We also set $c_{\mathcal{U}}(\mathcal{M}) := \{(a_i) \in \ell^{\infty}(I, \mathcal{M}) : \lim_{\mathcal{U}} \|a_i\|_2 = 0\}.$
- The quotient C*-algebra $\ell^{\infty}(I, \mathcal{M})/c_{\mathcal{U}}(\mathcal{M})$ is a von Neumann algebra again, called the **tracial ultraproduct** of the family \mathcal{M} with respect to the ultrafilter \mathcal{U} , denoted $\prod_{\mathcal{U}} M_i$.
- We denote the coset of (a_i) by $(a_i)_{\mathcal{U}}$.
- $\prod_{\mathcal{U}} M_i$ has a natural trace: $\tau((a_i)_{\mathcal{U}}) := \lim_{\mathcal{U}} \tau_{M_i}(a_i)$.
- If each $M_i = M$, we write $M^{\mathcal{U}}$, and call this the **ultrapower of** M with respect to the ultrafilter \mathcal{U} .
- There is a natural **diagonal embedding** $M \hookrightarrow M^{\mathcal{U}}$ given by $a \mapsto (a, a, a, \ldots)_{\mathcal{U}}$.

■ $M^{\mathcal{U}}$ is nonseparable as soon as \mathcal{U} is sufficiently incomplete and M is infinite-dimensional.

- Suppose that $\mathcal{M} = (M_i)_{i \in I}$ is a family of tracial von Neumann algebras and \mathcal{U} is an ultrafilter on *I*.
- We set $\ell^{\infty}(I, \mathcal{M}) := \{(a_i) \in \prod_{i \in I} M_i : \sup_{i \in I} ||a_i|| < \infty\}.$
- We also set $c_{\mathcal{U}}(\mathcal{M}) := \{(a_i) \in \ell^{\infty}(I, \mathcal{M}) : \lim_{\mathcal{U}} \|a_i\|_2 = 0\}.$
- The quotient C*-algebra $\ell^{\infty}(I, \mathcal{M})/c_{\mathcal{U}}(\mathcal{M})$ is a von Neumann algebra again, called the **tracial ultraproduct** of the family \mathcal{M} with respect to the ultrafilter \mathcal{U} , denoted $\prod_{\mathcal{U}} M_i$.
- We denote the coset of (a_i) by $(a_i)_{\mathcal{U}}$.
- $\prod_{\mathcal{U}} M_i$ has a natural trace: $\tau((a_i)_{\mathcal{U}}) := \lim_{\mathcal{U}} \tau_{M_i}(a_i)$.
- If each $M_i = M$, we write $M^{\mathcal{U}}$, and call this the **ultrapower of** M with respect to the ultrafilter \mathcal{U} .
- There is a natural **diagonal embedding** $M \hookrightarrow M^{\mathcal{U}}$ given by $a \mapsto (a, a, a, \ldots)_{\mathcal{U}}$.
- *M*^U is nonseparable as soon as U is sufficiently incomplete and *M* is infinite-dimensional.

- The tracial ultraproduct construction is a useful way to succintly express some important properties that a tracial von Neumann algebra may or may not have.
- We set $M' \cap M^{\mathcal{U}} := \{(a_i)_{\mathcal{U}} \in M^{\mathcal{U}} : [b, (a_i)_{\mathcal{U}}] = 0 \text{ for all } b \in M\}.$

Definition

A II₁ factor *M* has:

- **property Gamma** if $M' \cap M^{\mathcal{U}} \neq \mathbb{C}$;
- the **McDuff property** if $M' \cap M^{\mathcal{U}}$ is not abelian.
- Does not depend on the choice of nonprincipal ultrapower.
- $\blacksquare \mathcal{R}$ is McDuff.
- $L(\mathbb{F}_2)$ does not have property Gamma.

Dixmier and Lance constructed algebras with property Gamma but that are not McDuff.

- The tracial ultraproduct construction is a useful way to succintly express some important properties that a tracial von Neumann algebra may or may not have.
- We set $M' \cap M^{\mathcal{U}} := \{(a_i)_{\mathcal{U}} \in M^{\mathcal{U}} : [b, (a_i)_{\mathcal{U}}] = 0 \text{ for all } b \in M\}.$

Definition

A II₁ factor *M* has:

- **property Gamma** if $M' \cap M^{\mathcal{U}} \neq \mathbb{C}$;
- the **McDuff property** if $M' \cap M^{\mathcal{U}}$ is not abelian.
- Does not depend on the choice of nonprincipal ultrapower.
- $\blacksquare \mathcal{R}$ is McDuff.
- $L(\mathbb{F}_2)$ does not have property Gamma.

Dixmier and Lance constructed algebras with property Gamma but that are not McDuff.

- The tracial ultraproduct construction is a useful way to succintly express some important properties that a tracial von Neumann algebra may or may not have.
- We set $M' \cap M^{\mathcal{U}} := \{(a_i)_{\mathcal{U}} \in M^{\mathcal{U}} : [b, (a_i)_{\mathcal{U}}] = 0 \text{ for all } b \in M\}.$

Definition

- A II₁ factor *M* has:
 - **property Gamma** if $M' \cap M^{\mathcal{U}} \neq \mathbb{C}$;
 - the **McDuff property** if $M' \cap M^{\mathcal{U}}$ is not abelian.
 - Does not depend on the choice of nonprincipal ultrapower.
 - $\blacksquare \mathcal{R}$ is McDuff.
 - $L(\mathbb{F}_2)$ does not have property Gamma.

Dixmier and Lance constructed algebras with property Gamma but that are not McDuff.

- The tracial ultraproduct construction is a useful way to succintly express some important properties that a tracial von Neumann algebra may or may not have.
- We set $M' \cap M^{\mathcal{U}} := \{(a_i)_{\mathcal{U}} \in M^{\mathcal{U}} : [b, (a_i)_{\mathcal{U}}] = 0 \text{ for all } b \in M\}.$

Definition

- A II₁ factor *M* has:
 - **property Gamma** if $M' \cap M^{\mathcal{U}} \neq \mathbb{C}$;
 - the **McDuff property** if $M' \cap M^{\mathcal{U}}$ is not abelian.
 - Does not depend on the choice of nonprincipal ultrapower.
 - \mathcal{R} is McDuff.
 - $L(\mathbb{F}_2)$ does not have property Gamma.

Dixmier and Lance constructed algebras with property Gamma but that are not McDuff.

- The tracial ultraproduct construction is a useful way to succintly express some important properties that a tracial von Neumann algebra may or may not have.
- We set $M' \cap M^{\mathcal{U}} := \{(a_i)_{\mathcal{U}} \in M^{\mathcal{U}} : [b, (a_i)_{\mathcal{U}}] = 0 \text{ for all } b \in M\}.$

Definition

- A II₁ factor *M* has:
 - **property Gamma** if $M' \cap M^{\mathcal{U}} \neq \mathbb{C}$;
 - the **McDuff property** if $M' \cap M^{\mathcal{U}}$ is not abelian.
 - Does not depend on the choice of nonprincipal ultrapower.
 - R is McDuff.
 - $L(\mathbb{F}_2)$ does not have property Gamma.

Dixmier and Lance constructed algebras with property Gamma but that are not McDuff.

- The tracial ultraproduct construction is a useful way to succintly express some important properties that a tracial von Neumann algebra may or may not have.
- We set $M' \cap M^{\mathcal{U}} := \{(a_i)_{\mathcal{U}} \in M^{\mathcal{U}} : [b, (a_i)_{\mathcal{U}}] = 0 \text{ for all } b \in M\}.$

Definition

- A II₁ factor *M* has:
 - **property Gamma** if $M' \cap M^{\mathcal{U}} \neq \mathbb{C}$;
 - the **McDuff property** if $M' \cap M^{\mathcal{U}}$ is not abelian.
 - Does not depend on the choice of nonprincipal ultrapower.
 - **\mathcal{R} is McDuff.**
 - $L(\mathbb{F}_2)$ does not have property Gamma.

Dixmier and Lance constructed algebras with property Gamma but that are not McDuff.

- The tracial ultraproduct construction is a useful way to succintly express some important properties that a tracial von Neumann algebra may or may not have.
- We set $M' \cap M^{\mathcal{U}} := \{(a_i)_{\mathcal{U}} \in M^{\mathcal{U}} : [b, (a_i)_{\mathcal{U}}] = 0 \text{ for all } b \in M\}.$

Definition

- A II₁ factor *M* has:
 - **property Gamma** if $M' \cap M^{\mathcal{U}} \neq \mathbb{C}$;
 - the **McDuff property** if $M' \cap M^{\mathcal{U}}$ is not abelian.
 - Does not depend on the choice of nonprincipal ultrapower.
 - **\mathcal{R} is McDuff.**
 - $L(\mathbb{F}_2)$ does not have property Gamma.
 - Dixmier and Lance constructed algebras with property Gamma but that are not McDuff.

- An **atomic formula** is one of the form $\Re \operatorname{tr}(p(x))$ or $\Im \operatorname{tr}(p(x))$ for some *-polynomial p(x).
- We obtain the class of all formulae by closing under the following two operations:
 - If $\varphi_1, \ldots, \varphi_n$ are formulae and $f : \mathbb{R}^n \to \mathbb{R}$ is continuous, then $f(\varphi_1, \ldots, \varphi_n)$ is also a formula.
 - If φ is a formula and *x* is a variable, then for every *n*, $\inf_{\|x\| \le n} \varphi$ and $\sup_{\|x\| \le n} \varphi$ are formulae. (Operator norm balls)
- If $\varphi(x)$ is a formula with **free variables** $x = (x_1, \dots, x_n)$ and *M* is a tracial von Neumann algebra, we get a natural **interpretation** function $\varphi^M : M^n \to \mathbb{R}$.
- A sentence is a formula without free variables. If σ is a sentence and M is a tracial von Neumann algebra, then $\sigma^M \in \mathbb{R}$.
- For example, $\sigma := \inf_{\|x\| \le 1} \max(\|x x^*\|_2, \|x x^2\|_2, |tr(x) \frac{1}{\pi}|)$ is a sentence and $\sigma^M = 0$ if and only if *M* has a projection of trace $\frac{1}{\pi}$.

- An **atomic formula** is one of the form $\Re \operatorname{tr}(p(x))$ or $\Im \operatorname{tr}(p(x))$ for some *-polynomial p(x).
- We obtain the class of all formulae by closing under the following two operations:
 - If $\varphi_1, \ldots, \varphi_n$ are formulae and $f : \mathbb{R}^n \to \mathbb{R}$ is continuous, then $f(\varphi_1, \ldots, \varphi_n)$ is also a formula.
 - If φ is a formula and x is a variable, then for every n, $\inf_{\|x\| \le n} \varphi$ and $\sup_{\|x\| \le n} \varphi$ are formulae. (Operator norm balls)
- If $\varphi(x)$ is a formula with **free variables** $x = (x_1, \dots, x_n)$ and *M* is a tracial von Neumann algebra, we get a natural **interpretation** function $\varphi^M : M^n \to \mathbb{R}$.
- A sentence is a formula without free variables. If σ is a sentence and M is a tracial von Neumann algebra, then $\sigma^M \in \mathbb{R}$.

For example, $\sigma := \inf_{\|x\| \le 1} \max(\|x - x^*\|_2, \|x - x^2\|_2, |tr(x) - \frac{1}{\pi}|)$ is a sentence and $\sigma^M = 0$ if and only if *M* has a projection of trace $\frac{1}{\pi}$.

- An **atomic formula** is one of the form $\Re \operatorname{tr}(p(x))$ or $\Im \operatorname{tr}(p(x))$ for some *-polynomial p(x).
- We obtain the class of all formulae by closing under the following two operations:
 - If $\varphi_1, \ldots, \varphi_n$ are formulae and $f : \mathbb{R}^n \to \mathbb{R}$ is continuous, then $f(\varphi_1, \ldots, \varphi_n)$ is also a formula.
 - If φ is a formula and x is a variable, then for every n, $\inf_{\|x\| \le n} \varphi$ and $\sup_{\|x\| < n} \varphi$ are formulae. (Operator norm balls)
- If $\varphi(x)$ is a formula with **free variables** $x = (x_1, \dots, x_n)$ and *M* is a tracial von Neumann algebra, we get a natural **interpretation** function $\varphi^M : M^n \to \mathbb{R}$.
- A sentence is a formula without free variables. If σ is a sentence and M is a tracial von Neumann algebra, then $\sigma^M \in \mathbb{R}$.
- For example, $\sigma := \inf_{\|x\| \le 1} \max(\|x x^*\|_2, \|x x^2\|_2, |tr(x) \frac{1}{\pi}|)$ is a sentence and $\sigma^M = 0$ if and only if *M* has a projection of trace $\frac{1}{\pi}$.

- An **atomic formula** is one of the form $\Re \operatorname{tr}(p(x))$ or $\Im \operatorname{tr}(p(x))$ for some *-polynomial p(x).
- We obtain the class of all formulae by closing under the following two operations:
 - If $\varphi_1, \ldots, \varphi_n$ are formulae and $f : \mathbb{R}^n \to \mathbb{R}$ is continuous, then $f(\varphi_1, \ldots, \varphi_n)$ is also a formula.
 - If φ is a formula and x is a variable, then for every n, $\inf_{\|x\| \le n} \varphi$ and $\sup_{\|x\| < n} \varphi$ are formulae. (Operator norm balls)
- If $\varphi(x)$ is a formula with **free variables** $x = (x_1, ..., x_n)$ and *M* is a tracial von Neumann algebra, we get a natural **interpretation** function $\varphi^M : M^n \to \mathbb{R}$.
- A sentence is a formula without free variables. If σ is a sentence and M is a tracial von Neumann algebra, then $\sigma^M \in \mathbb{R}$.
- For example, $\sigma := \inf_{\|x\| \le 1} \max(\|x x^*\|_2, \|x x^2\|_2, |\operatorname{tr}(x) \frac{1}{\pi}|)$ is a sentence and $\sigma^M = 0$ if and only if *M* has a projection of trace $\frac{1}{\pi}$.

- An **atomic formula** is one of the form $\Re \operatorname{tr}(p(x))$ or $\Im \operatorname{tr}(p(x))$ for some *-polynomial p(x).
- We obtain the class of all formulae by closing under the following two operations:
 - If $\varphi_1, \ldots, \varphi_n$ are formulae and $f : \mathbb{R}^n \to \mathbb{R}$ is continuous, then $f(\varphi_1, \ldots, \varphi_n)$ is also a formula.
 - If φ is a formula and x is a variable, then for every n, $\inf_{\|x\| \le n} \varphi$ and $\sup_{\|x\| < n} \varphi$ are formulae. (Operator norm balls)
- If $\varphi(x)$ is a formula with **free variables** $x = (x_1, ..., x_n)$ and *M* is a tracial von Neumann algebra, we get a natural **interpretation** function $\varphi^M : M^n \to \mathbb{R}$.
- A sentence is a formula without free variables. If σ is a sentence and M is a tracial von Neumann algebra, then $\sigma^M \in \mathbb{R}$.

For example, $\sigma := \inf_{\|x\| \le 1} \max(\|x - x^*\|_2, \|x - x^2\|_2, |\operatorname{tr}(x) - \frac{1}{\pi}|)$ is a sentence and $\sigma^M = 0$ if and only if *M* has a projection of trace $\frac{1}{2}$.

- An **atomic formula** is one of the form $\Re \operatorname{tr}(p(x))$ or $\Im \operatorname{tr}(p(x))$ for some *-polynomial p(x).
- We obtain the class of all formulae by closing under the following two operations:
 - If $\varphi_1, \ldots, \varphi_n$ are formulae and $f : \mathbb{R}^n \to \mathbb{R}$ is continuous, then $f(\varphi_1, \ldots, \varphi_n)$ is also a formula.
 - If φ is a formula and x is a variable, then for every n, $\inf_{\|x\| \le n} \varphi$ and $\sup_{\|x\| < n} \varphi$ are formulae. (Operator norm balls)
- If $\varphi(x)$ is a formula with **free variables** $x = (x_1, ..., x_n)$ and *M* is a tracial von Neumann algebra, we get a natural **interpretation** function $\varphi^M : M^n \to \mathbb{R}$.
- A sentence is a formula without free variables. If σ is a sentence and M is a tracial von Neumann algebra, then $\sigma^M \in \mathbb{R}$.

For example, $\sigma := \inf_{\|x\| \le 1} \max(\|x - x^*\|_2, \|x - x^2\|_2, |\operatorname{tr}(x) - \frac{1}{\pi}|)$ is a sentence and $\sigma^M = 0$ if and only if *M* has a projection of trace $\frac{1}{\pi}$.

Elementary equivalence and elementary embeddings

Definition

II₁ factors *M* and *N* are **elementarily equivalent**, denoted $M \equiv N$, if $\sigma^M = \sigma^N$ for every sentence σ .

Definition

An embedding $i : M \hookrightarrow N$ is **elementary** if $\varphi(a)^M = \varphi(i(a))^N$ for all formulae $\varphi(x)$ and all $a \in M$. If M is a subalgebra of N and the inclusion is an elementary embedding, we say that M is an **elementary substructure** of N, denoted $M \preceq N$.

Theorem (Downward Löwenheim-Skolem)

Given any II₁ factor N and separable $X \subseteq N$, there is a separable $M \preceq N$ with $X \subseteq M$.

< 日 > < 同 > < 回 > < 回 > < □ > <

Elementary equivalence and elementary embeddings

Definition

II₁ factors *M* and *N* are **elementarily equivalent**, denoted $M \equiv N$, if $\sigma^M = \sigma^N$ for every sentence σ .

Definition

An embedding $i : M \hookrightarrow N$ is **elementary** if $\varphi(a)^M = \varphi(i(a))^N$ for all formulae $\varphi(x)$ and all $a \in M$. If M is a subalgebra of N and the inclusion is an elementary embedding, we say that M is an **elementary substructure** of N, denoted $M \preceq N$.

Theorem (Downward Löwenheim-Skolem)

Given any II₁ factor N and separable $X \subseteq N$, there is a separable $M \preceq N$ with $X \subseteq M$.

Elementary equivalence and elementary embeddings

Definition

II₁ factors *M* and *N* are **elementarily equivalent**, denoted $M \equiv N$, if $\sigma^M = \sigma^N$ for every sentence σ .

Definition

An embedding $i : M \hookrightarrow N$ is **elementary** if $\varphi(a)^M = \varphi(i(a))^N$ for all formulae $\varphi(x)$ and all $a \in M$. If M is a subalgebra of N and the inclusion is an elementary embedding, we say that M is an **elementary substructure** of N, denoted $M \preceq N$.

Theorem (Downward Löwenheim-Skolem)

Given any II₁ factor N and separable $X \subseteq N$, there is a separable $M \preceq N$ with $X \subseteq M$.

Isaac Goldbring (UCI)

э

・ロト ・四ト ・ヨト ・ヨト

Theorem (Łos' theorem or the Fundamental Theorem of Ultraproducts)

Fix a family $(M_i)_{i \in I}$ of tracial von Neumann algebras, an ultrafilter \mathcal{U} on I, a formula $\varphi(x)$, and $(a_i)_{\mathcal{U}} \in \prod_{\mathcal{U}} M_i$. Then

$$arphi((a_i)_{\mathcal{U}})^{\prod_{\mathcal{U}}M_i} = \lim_{\mathcal{U}} arphi(a_i)^{M_i}.$$

The ultraproduct is democratic!

Corollary

The diagonal embedding $M \hookrightarrow M^{\mathcal{U}}$ is an elementary embedding. In particular, if $M^{\mathcal{U}} \cong N^{\mathcal{V}}$, then $M \equiv N$.

(日)

Theorem (Łos' theorem or the Fundamental Theorem of Ultraproducts)

Fix a family $(M_i)_{i \in I}$ of tracial von Neumann algebras, an ultrafilter \mathcal{U} on I, a formula $\varphi(x)$, and $(a_i)_{\mathcal{U}} \in \prod_{\mathcal{U}} M_i$. Then

$$arphi((a_i)_{\mathcal{U}})^{\prod_{\mathcal{U}}M_i} = \lim_{\mathcal{U}} arphi(a_i)^{M_i}.$$

The ultraproduct is democratic!

Corollary

The diagonal embedding $M \hookrightarrow M^{\mathcal{U}}$ is an elementary embedding. In particular, if $M^{\mathcal{U}} \cong N^{\mathcal{V}}$, then $M \equiv N$.

< 日 > < 同 > < 回 > < 回 > < □ > <

Theorem (Łos' theorem or the Fundamental Theorem of Ultraproducts)

Fix a family $(M_i)_{i \in I}$ of tracial von Neumann algebras, an ultrafilter \mathcal{U} on I, a formula $\varphi(x)$, and $(a_i)_{\mathcal{U}} \in \prod_{\mathcal{U}} M_i$. Then

$$arphi((a_i)_{\mathcal{U}})^{\prod_{\mathcal{U}}M_i} = \lim_{\mathcal{U}} arphi(a_i)^{M_i}.$$

The ultraproduct is democratic!

Corollary

The diagonal embedding $M \hookrightarrow M^{\mathcal{U}}$ is an elementary embedding. In particular, if $M^{\mathcal{U}} \cong N^{\mathcal{V}}$, then $M \equiv N$.

(a) < (a) < (b) < (b)

Theorem (Keisler-Shelah)

Tracial von Neumann algebras M and N are elementarily equivalent if and only if there are ultrafilters \mathcal{U} and \mathcal{V} such that $M^{\mathcal{U}} \cong N^{\mathcal{V}}$.

- *M* and *N* need not be separable. If they are not, then *U* and *V* may need to "live" on larger index sets.
- If *M* and *N* are separable, it is unknown if one can take *U* and *V* to live on ℕ. (More on this later...)

Theorem (Keisler-Shelah)

Tracial von Neumann algebras M and N are elementarily equivalent if and only if there are ultrafilters \mathcal{U} and \mathcal{V} such that $M^{\mathcal{U}} \cong N^{\mathcal{V}}$.

- *M* and *N* need not be separable. If they are not, then *U* and *V* may need to "live" on larger index sets.
- If *M* and *N* are separable, it is unknown if one can take *U* and *V* to live on ℕ. (More on this later...)

Theorem (Keisler-Shelah)

Tracial von Neumann algebras M and N are elementarily equivalent if and only if there are ultrafilters \mathcal{U} and \mathcal{V} such that $M^{\mathcal{U}} \cong N^{\mathcal{V}}$.

- *M* and *N* need not be separable. If they are not, then *U* and *V* may need to "live" on larger index sets.
- If *M* and *N* are separable, it is unknown if one can take *U* and *V* to live on ℕ. (More on this later...)

Theorem (Keisler-Shelah)

Tracial von Neumann algebras M and N are elementarily equivalent if and only if there are ultrafilters \mathcal{U} and \mathcal{V} such that $M^{\mathcal{U}} \cong N^{\mathcal{V}}$.

- *M* and *N* need not be separable. If they are not, then *U* and *V* may need to "live" on larger index sets.
- If *M* and *N* are separable, it is unknown if one can take U and V to live on N. (More on this later...)

Question

If *M* is a separable II₁ factor, do there exist nonprincipal ultrafilters \mathcal{U} and \mathcal{V} (on \mathbb{N}) such that $M^{\mathcal{U}} \ncong M^{\mathcal{V}}$?

Theorem (Ge-Hadwin; Farah-Hart-Sherman)

If the Continuum Hypothesis (CH) holds, then for all nonprincipal ultrafilters \mathcal{U} and \mathcal{V} on \mathbb{N} , $M^{\mathcal{U}} \cong M^{\mathcal{V}}$.

- The model-theoretic explanation: $M^{\mathcal{U}}$ has density character 2^{\aleph_0} and is \aleph_1 -saturated.
- If CH holds, then one can do a "back-and-forth argument" to inductively build an isomorphism between $M^{\mathcal{U}}$ and $M^{\mathcal{V}}$.
- This shows that in fact $M^{\mathcal{U}} \cong N^{\mathcal{V}}$ whenever $M \equiv N$ are both separable.
- The same argument shows that $M' \cap M^{\mathcal{U}} \cong M' \cap M^{\mathcal{V}}$

Isaac Goldbring (UCI)

Question

If *M* is a separable II₁ factor, do there exist nonprincipal ultrafilters \mathcal{U} and \mathcal{V} (on \mathbb{N}) such that $M^{\mathcal{U}} \ncong M^{\mathcal{V}}$?

Theorem (Ge-Hadwin; Farah-Hart-Sherman)

If the Continuum Hypothesis (CH) holds, then for all nonprincipal ultrafilters \mathcal{U} and \mathcal{V} on \mathbb{N} , $M^{\mathcal{U}} \cong M^{\mathcal{V}}$.

- The model-theoretic explanation: *M*^{*U*} has density character 2^{ℵ₀} and is ℵ₁-saturated.
- If CH holds, then one can do a *"back-and-forth argument"* to inductively build an isomorphism between $M^{\mathcal{U}}$ and $M^{\mathcal{V}}$.
- This shows that in fact $M^{\mathcal{U}} \cong N^{\mathcal{V}}$ whenever $M \equiv N$ are both separable.
- The same argument shows that $M' \cap M^{\mathcal{U}} \cong M' \cap M^{\mathcal{V}}$

Question

If *M* is a separable II₁ factor, do there exist nonprincipal ultrafilters \mathcal{U} and \mathcal{V} (on \mathbb{N}) such that $M^{\mathcal{U}} \ncong M^{\mathcal{V}}$?

Theorem (Ge-Hadwin; Farah-Hart-Sherman)

If the Continuum Hypothesis (CH) holds, then for all nonprincipal ultrafilters \mathcal{U} and \mathcal{V} on \mathbb{N} , $M^{\mathcal{U}} \cong M^{\mathcal{V}}$.

■ The model-theoretic explanation: M^U has density character 2^{ℵ₀} and is ℵ₁-saturated.

If CH holds, then one can do a *"back-and-forth argument"* to inductively build an isomorphism between $M^{\mathcal{U}}$ and $M^{\mathcal{V}}$.

This shows that in fact $M^{\mathcal{U}} \cong N^{\mathcal{V}}$ whenever $M \equiv N$ are both separable.

The same argument shows that $M' \cap M^{\mathcal{U}} \cong M' \cap M^{\mathcal{V}}$

Question

If *M* is a separable II₁ factor, do there exist nonprincipal ultrafilters \mathcal{U} and \mathcal{V} (on \mathbb{N}) such that $M^{\mathcal{U}} \ncong M^{\mathcal{V}}$?

Theorem (Ge-Hadwin; Farah-Hart-Sherman)

If the Continuum Hypothesis (CH) holds, then for all nonprincipal ultrafilters \mathcal{U} and \mathcal{V} on \mathbb{N} , $M^{\mathcal{U}} \cong M^{\mathcal{V}}$.

- The model-theoretic explanation: M^U has density character 2^{ℵ₀} and is ℵ₁-saturated.
- If CH holds, then one can do a *"back-and-forth argument"* to inductively build an isomorphism between $M^{\mathcal{U}}$ and $M^{\mathcal{V}}$.
- This shows that in fact $M^{\mathcal{U}} \cong N^{\mathcal{V}}$ whenever $M \equiv N$ are both separable.
- The same argument shows that $M' \cap M^{\mathcal{U}} \cong M' \cap M^{\mathcal{V}}$

Question

If *M* is a separable II₁ factor, do there exist nonprincipal ultrafilters \mathcal{U} and \mathcal{V} (on \mathbb{N}) such that $M^{\mathcal{U}} \ncong M^{\mathcal{V}}$?

Theorem (Ge-Hadwin; Farah-Hart-Sherman)

If the Continuum Hypothesis (CH) holds, then for all nonprincipal ultrafilters \mathcal{U} and \mathcal{V} on \mathbb{N} , $M^{\mathcal{U}} \cong M^{\mathcal{V}}$.

- The model-theoretic explanation: M^U has density character 2^{ℵ₀} and is ℵ₁-saturated.
- If CH holds, then one can do a *"back-and-forth argument"* to inductively build an isomorphism between *M*^U and *M*^V.
- This shows that in fact $M^{\mathcal{U}} \cong N^{\mathcal{V}}$ whenever $M \equiv N$ are both separable.

The same argument shows that $M' \cap M^{\mathcal{U}} \cong M' \cap M^{\mathcal{V}}$

Isaac Goldbring (UCI)

Question

If *M* is a separable II₁ factor, do there exist nonprincipal ultrafilters \mathcal{U} and \mathcal{V} (on \mathbb{N}) such that $M^{\mathcal{U}} \ncong M^{\mathcal{V}}$?

Theorem (Ge-Hadwin; Farah-Hart-Sherman)

If the Continuum Hypothesis (CH) holds, then for all nonprincipal ultrafilters \mathcal{U} and \mathcal{V} on \mathbb{N} , $M^{\mathcal{U}} \cong M^{\mathcal{V}}$.

- The model-theoretic explanation: M^U has density character 2^{ℵ₀} and is ℵ₁-saturated.
- If CH holds, then one can do a *"back-and-forth argument"* to inductively build an isomorphism between *M*^U and *M*^V.
- This shows that in fact $M^{\mathcal{U}} \cong N^{\mathcal{V}}$ whenever $M \equiv N$ are both separable.
- The same argument shows that $M' \cap M^{\mathcal{U}} \cong M' \cap M^{\mathcal{V}}$.

Theorem (Farah-Hart-Sherman; Farah-Shelah)

If CH fails, then there exist nonprincipal ultrafilters \mathcal{U} and \mathcal{V} on \mathbb{N} such that $M^{\mathcal{U}} \ncong M^{\mathcal{V}}$. (In fact, there exist $2^{2^{\aleph_0}}$ many such nonisomorphic ultrapowers.)

- II₁ factors have a model-theoretically nasty property called the order property, which roughly means that one can encode something resembling an order in a II₁ factor.
- This allows one to use old set-theoretic techniques which show that the poset (N^N, <) has nonisomorphic ultrapowers (assuming that CH fails).
- Fancier model theory (*stability theory*) shows that the order property is *precisely* the reason for the nonisomorphic ultrapowers.
- The above arguments yield $M' \cap M^{\mathcal{U}} \cong M' \bigcap M^{\mathcal{V}}$ (M McDuff).

Isaac Goldbring (UCI)

Theorem (Farah-Hart-Sherman; Farah-Shelah)

If CH fails, then there exist nonprincipal ultrafilters \mathcal{U} and \mathcal{V} on \mathbb{N} such that $M^{\mathcal{U}} \ncong M^{\mathcal{V}}$. (In fact, there exist $2^{2^{\aleph_0}}$ many such nonisomorphic ultrapowers.)

- II₁ factors have a model-theoretically nasty property called the order property, which roughly means that one can encode something resembling an order in a II₁ factor.
- This allows one to use old set-theoretic techniques which show that the poset (N^N, <) has nonisomorphic ultrapowers (assuming that CH fails).
- Fancier model theory (*stability theory*) shows that the order property is *precisely* the reason for the nonisomorphic ultrapowers.
- The above arguments yield $M' \cap M^{\mathcal{U}} \cong M' \bigcap M^{\mathcal{V}}$ (M McDuff).

Isaac Goldbring (UCI)

Theorem (Farah-Hart-Sherman; Farah-Shelah)

If CH fails, then there exist nonprincipal ultrafilters \mathcal{U} and \mathcal{V} on \mathbb{N} such that $M^{\mathcal{U}} \ncong M^{\mathcal{V}}$. (In fact, there exist $2^{2^{\aleph_0}}$ many such nonisomorphic ultrapowers.)

- II₁ factors have a model-theoretically nasty property called the order property, which roughly means that one can encode something resembling an order in a II₁ factor.
- This allows one to use old set-theoretic techniques which show that the poset (N^N, <) has nonisomorphic ultrapowers (assuming that CH fails).
- Fancier model theory (*stability theory*) shows that the order property is *precisely* the reason for the nonisomorphic ultrapowers.
- The above arguments yield $M' \cap M^{\mathcal{U}} \cong M' \cap M^{\mathcal{V}}_{\mathcal{A}}(M, \mathbb{Q}, \mathbb{Q}, \mathbb{Q})$

Theorem (Farah-Hart-Sherman; Farah-Shelah)

If CH fails, then there exist nonprincipal ultrafilters \mathcal{U} and \mathcal{V} on \mathbb{N} such that $M^{\mathcal{U}} \ncong M^{\mathcal{V}}$. (In fact, there exist $2^{2^{\aleph_0}}$ many such nonisomorphic ultrapowers.)

- II₁ factors have a model-theoretically nasty property called the order property, which roughly means that one can encode something resembling an order in a II₁ factor.
- This allows one to use old set-theoretic techniques which show that the poset (N^N, <) has nonisomorphic ultrapowers (assuming that CH fails).
- Fancier model theory (stability theory) shows that the order property is precisely the reason for the nonisomorphic ultrapowers.
- The above arguments yield $M' \cap M^{\mathcal{U}} \cong M' \cap M^{\mathcal{V}}$ (M McDuff).

Theorem (Farah-Hart-Sherman; Farah-Shelah)

If CH fails, then there exist nonprincipal ultrafilters \mathcal{U} and \mathcal{V} on \mathbb{N} such that $M^{\mathcal{U}} \ncong M^{\mathcal{V}}$. (In fact, there exist $2^{2^{\aleph_0}}$ many such nonisomorphic ultrapowers.)

- II₁ factors have a model-theoretically nasty property called the order property, which roughly means that one can encode something resembling an order in a II₁ factor.
- This allows one to use old set-theoretic techniques which show that the poset (N^N, <) has nonisomorphic ultrapowers (assuming that CH fails).
- Fancier model theory (stability theory) shows that the order property is precisely the reason for the nonisomorphic ultrapowers.
- The above arguments yield $M' \cap M^{\mathcal{U}} \cong M' \cap M^{\mathcal{V}} (M \text{ McDuff})$.

Suppose that *M* and *N* are separable and \mathcal{U} is a nonprincipal ultrafilter on \mathbb{N} such that $M^{\mathcal{U}} \cong N^{\mathcal{U}}$. Must it be the case that $M \cong N$?

Theorem (Farah-Hart-Sherman)

For any separable II₁ factor *M*, there are continuum many separable II₁ factors *N* such that $M \equiv N$.

- Nicoara, Popa, and Sasyk constructed a family (M_{α}) of separable II₁ factors indexed by 2^{ω} , each of which embeds into $\mathcal{R}^{\mathcal{U}}$, such that only countably many can embed into any given separable II₁ factor.
- Given M, consider $M_{\alpha} \hookrightarrow \mathcal{R}^{\mathcal{U}} \hookrightarrow M^{\mathcal{U}}$.
- By DLS, there exists separable $N_{\alpha} \leq M^{\mathcal{U}}$ such that $M_{\alpha} \hookrightarrow N_{\alpha}$. There must be continuum many nonisomorphic N_{α} .

Isaac Goldbring (UCI)

Suppose that *M* and *N* are separable and \mathcal{U} is a nonprincipal ultrafilter on \mathbb{N} such that $M^{\mathcal{U}} \cong N^{\mathcal{U}}$. Must it be the case that $M \cong N$?

Theorem (Farah-Hart-Sherman)

For any separable II₁ factor *M*, there are continuum many separable II₁ factors *N* such that $M \equiv N$.

- Nicoara, Popa, and Sasyk constructed a family (M_α) of separable II₁ factors indexed by 2^ω, each of which embeds into R^U, such that only countably many can embed into any given separable II₁ factor.
- Given M, consider $M_{\alpha} \hookrightarrow \mathcal{R}^{\mathcal{U}} \hookrightarrow M^{\mathcal{U}}$.
- By DLS, there exists separable $N_{\alpha} \leq M^{\mathcal{U}}$ such that $M_{\alpha} \hookrightarrow N_{\alpha}$. There must be continuum many nonisomorphic N_{α} .

Suppose that *M* and *N* are separable and \mathcal{U} is a nonprincipal ultrafilter on \mathbb{N} such that $M^{\mathcal{U}} \cong N^{\mathcal{U}}$. Must it be the case that $M \cong N$?

Theorem (Farah-Hart-Sherman)

For any separable II₁ factor *M*, there are continuum many separable II₁ factors *N* such that $M \equiv N$.

Nicoara, Popa, and Sasyk constructed a family (M_α) of separable II₁ factors indexed by 2^ω, each of which embeds into R^U, such that only countably many can embed into any given separable II₁ factor.

Given *M*, consider $M_{\alpha} \hookrightarrow \mathcal{R}^{\mathcal{U}} \hookrightarrow M^{\mathcal{U}}$.

■ By DLS, there exists separable $N_{\alpha} \leq M^{\mathcal{U}}$ such that $M_{\alpha} \hookrightarrow N_{\alpha}$. There must be continuum many nonisomorphic N_{α} .

Suppose that *M* and *N* are separable and \mathcal{U} is a nonprincipal ultrafilter on \mathbb{N} such that $M^{\mathcal{U}} \cong N^{\mathcal{U}}$. Must it be the case that $M \cong N$?

Theorem (Farah-Hart-Sherman)

For any separable II₁ factor *M*, there are continuum many separable II₁ factors *N* such that $M \equiv N$.

- Nicoara, Popa, and Sasyk constructed a family (M_α) of separable II₁ factors indexed by 2^ω, each of which embeds into R^U, such that only countably many can embed into any given separable II₁ factor.
- Given M, consider $M_{\alpha} \hookrightarrow \mathcal{R}^{\mathcal{U}} \hookrightarrow M^{\mathcal{U}}$.
- By DLS, there exists separable $N_{\alpha} \leq M^{\mathcal{U}}$ such that $M_{\alpha} \hookrightarrow N_{\alpha}$. There must be continuum many nonisomorphic N_{α} .

Suppose that *M* and *N* are separable and \mathcal{U} is a nonprincipal ultrafilter on \mathbb{N} such that $M^{\mathcal{U}} \cong N^{\mathcal{U}}$. Must it be the case that $M \cong N$?

Theorem (Farah-Hart-Sherman)

For any separable II₁ factor *M*, there are continuum many separable II₁ factors *N* such that $M \equiv N$.

- Nicoara, Popa, and Sasyk constructed a family (M_α) of separable II₁ factors indexed by 2^ω, each of which embeds into R^U, such that only countably many can embed into any given separable II₁ factor.
- Given M, consider $M_{\alpha} \hookrightarrow \mathcal{R}^{\mathcal{U}} \hookrightarrow M^{\mathcal{U}}$.
- By DLS, there exists separable $N_{\alpha} \preceq M^{\mathcal{U}}$ such that $M_{\alpha} \hookrightarrow N_{\alpha}$. There must be continuum many nonisomorphic N_{α} .

Isaac Goldbring (UCI)

Progress on the number of nonisomorphic separable II_1 factors was slow. A major breakthrough was the following:

Theorem (McDuff)

There is a family of countable groups Γ_{α} indexed by 2^{ω} such that, setting $M_{\alpha} := L(\Gamma_{\alpha})$, one has $M_{\alpha} \ncong M_{\beta}$ for all $\alpha < \beta < 2^{\omega}$.

Progress on the number of nonisomorphic *ultrapowers* of separable II₁ factors was also slow, until:

Theorem (Boutonnet-Chifan-Ioana)

The McDuff factors M_{α} are such that, for any ultrafilters \mathcal{U} and \mathcal{V} (on any index set), $M_{\alpha}^{\mathcal{U}} \not\cong M_{\beta}^{\mathcal{V}}$ for all $\alpha < \beta < 2^{\omega}$.

G.-Hart-Towsner gave explicit sentences distinguishing these factors.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Progress on the number of nonisomorphic separable II_1 factors was slow. A major breakthrough was the following:

Theorem (McDuff)

There is a family of countable groups Γ_{α} indexed by 2^{ω} such that, setting $M_{\alpha} := L(\Gamma_{\alpha})$, one has $M_{\alpha} \ncong M_{\beta}$ for all $\alpha < \beta < 2^{\omega}$.

Progress on the number of nonisomorphic *ultrapowers* of separable II₁ factors was also slow, until:

Theorem (Boutonnet-Chifan-Ioana)

The McDuff factors M_{α} are such that, for any ultrafilters \mathcal{U} and \mathcal{V} (on any index set), $M_{\alpha}^{\mathcal{U}} \not\cong M_{\beta}^{\mathcal{V}}$ for all $\alpha < \beta < 2^{\omega}$.

G.-Hart-Towsner gave explicit sentences distinguishing these factors.

Progress on the number of nonisomorphic separable II_1 factors was slow. A major breakthrough was the following:

Theorem (McDuff)

There is a family of countable groups Γ_{α} indexed by 2^{ω} such that, setting $M_{\alpha} := L(\Gamma_{\alpha})$, one has $M_{\alpha} \ncong M_{\beta}$ for all $\alpha < \beta < 2^{\omega}$.

Progress on the number of nonisomorphic *ultrapowers* of separable II_1 factors was also slow, until:

Theorem (Boutonnet-Chifan-Ioana)

The McDuff factors M_{α} are such that, for any ultrafilters \mathcal{U} and \mathcal{V} (on any index set), $M_{\alpha}^{\mathcal{U}} \ncong M_{\beta}^{\mathcal{V}}$ for all $\alpha < \beta < 2^{\omega}$.

G.-Hart-Towsner gave explicit sentences distinguishing these factors.

ヘロト ヘ回ト ヘヨト ヘヨ

Progress on the number of nonisomorphic separable II_1 factors was slow. A major breakthrough was the following:

Theorem (McDuff)

There is a family of countable groups Γ_{α} indexed by 2^{ω} such that, setting $M_{\alpha} := L(\Gamma_{\alpha})$, one has $M_{\alpha} \ncong M_{\beta}$ for all $\alpha < \beta < 2^{\omega}$.

Progress on the number of nonisomorphic *ultrapowers* of separable II_1 factors was also slow, until:

Theorem (Boutonnet-Chifan-Ioana)

The McDuff factors M_{α} are such that, for any ultrafilters \mathcal{U} and \mathcal{V} (on any index set), $M_{\alpha}^{\mathcal{U}} \not\cong M_{\beta}^{\mathcal{V}}$ for all $\alpha < \beta < 2^{\omega}$.

G.-Hart-Towsner gave explicit sentences distinguishing these factors.

Progress on the number of nonisomorphic separable II_1 factors was slow. A major breakthrough was the following:

Theorem (McDuff)

There is a family of countable groups Γ_{α} indexed by 2^{ω} such that, setting $M_{\alpha} := L(\Gamma_{\alpha})$, one has $M_{\alpha} \ncong M_{\beta}$ for all $\alpha < \beta < 2^{\omega}$.

Progress on the number of nonisomorphic *ultrapowers* of separable II_1 factors was also slow, until:

Theorem (Boutonnet-Chifan-Ioana)

The McDuff factors M_{α} are such that, for any ultrafilters \mathcal{U} and \mathcal{V} (on any index set), $M_{\alpha}^{\mathcal{U}} \not\cong M_{\beta}^{\mathcal{V}}$ for all $\alpha < \beta < 2^{\omega}$.

G.-Hart-Towsner gave explicit sentences distinguishing these factors.

Isaac Goldbring (UCI)

In his seminal paper on the classification of injective factors from 1976, Connes proved that *L*(𝔽₂) embeds into 𝗮^U (we simply say embeddable).

- He then "suggested" that all II₁ factors are embeddable; this is known as the Connes embedding problem (CEP).
- The CEP was one of the most famous unsolved problems in operator algebras until earlier this year, when a group of computer scientists proved a complexity result called MIP* = RE.
- Via detours through quantum information theory (Tsirelson's problem) and C*-algebra theory (Kirchberg's QWEP problem), this showed that CEP failed.

Last month, Bradd Hart and I used model theory to show that MIP* = RE implies that the **universal theory of** R **is not computable**, which we had already showed implies the failure of CEP using a little more model theory.

- In his seminal paper on the classification of injective factors from 1976, Connes proved that *L*(𝔽₂) embeds into 𝗮^U (we simply say embeddable).
- He then "suggested" that all II₁ factors are embeddable; this is known as the Connes embedding problem (CEP).
- The CEP was one of the most famous unsolved problems in operator algebras until earlier this year, when a group of computer scientists proved a complexity result called MIP* = RE.
- Via detours through quantum information theory (Tsirelson's problem) and C*-algebra theory (Kirchberg's QWEP problem), this showed that CEP failed.
- Last month, Bradd Hart and I used model theory to show that MIP* = RE implies that the **universal theory of** R **is not computable**, which we had already showed implies the failure of CEP using a little more model theory.

- In his seminal paper on the classification of injective factors from 1976, Connes proved that L(𝔽₂) embeds into 𝗮^U (we simply say embeddable).
- He then "suggested" that all II₁ factors are embeddable; this is known as the Connes embedding problem (CEP).
- The CEP was one of the most famous unsolved problems in operator algebras until earlier this year, when a group of computer scientists proved a complexity result called MIP* = RE.
- Via detours through quantum information theory (Tsirelson's problem) and C*-algebra theory (Kirchberg's QWEP problem), this showed that CEP failed.
- Last month, Bradd Hart and I used model theory to show that MIP* = RE implies that the **universal theory of** R **is not computable**, which we had already showed implies the failure of CEP using a little more model theory.

- In his seminal paper on the classification of injective factors from 1976, Connes proved that L(𝔽₂) embeds into 𝗮^U (we simply say embeddable).
- He then "suggested" that all II₁ factors are embeddable; this is known as the Connes embedding problem (CEP).
- The CEP was one of the most famous unsolved problems in operator algebras until earlier this year, when a group of computer scientists proved a complexity result called MIP* = RE.
- Via detours through quantum information theory (Tsirelson's problem) and C*-algebra theory (Kirchberg's QWEP problem), this showed that CEP failed.
- Last month, Bradd Hart and I used model theory to show that MIP* = RE implies that the **universal theory of** R **is not computable**, which we had already showed implies the failure of CEP using a little more model theory.

- In his seminal paper on the classification of injective factors from 1976, Connes proved that L(𝔽₂) embeds into 𝗮^U (we simply say embeddable).
- He then "suggested" that all II₁ factors are embeddable; this is known as the Connes embedding problem (CEP).
- The CEP was one of the most famous unsolved problems in operator algebras until earlier this year, when a group of computer scientists proved a complexity result called MIP* = RE.
- Via detours through quantum information theory (Tsirelson's problem) and C*-algebra theory (Kirchberg's QWEP problem), this showed that CEP failed.
- Last month, Bradd Hart and I used model theory to show that MIP* = RE implies that the universal theory of R is not computable, which we had already showed implies the failure of CEP using a little more model theory.

Isaac Goldbring (UCI)

Model theory and vNas

• A sentence σ is **universal** if it is of the form $\sup_{\vec{x}} \varphi(\vec{x})$, where φ has no quantifiers in it.

If $M \hookrightarrow N$ and σ is universal, then $\sigma^M \leq \sigma^N$.

Proposition

If $\sigma^M \leq \sigma^N$ for all universal sentences σ , then $M \hookrightarrow N^U$ for some \mathcal{U} .

Corollary

CEP is equivalent to the statement that $\sigma^M = \sigma^R$ for all II₁ factors M.

■ So the failure of CEP tells us that there are at least two distinct *universal theories* of II₁ factors.

■ We believe there should be 2^ℵ⁰ many such distinct universal theories.

Isaac Goldbring (UCI)

- A sentence σ is **universal** if it is of the form $\sup_{\vec{x}} \varphi(\vec{x})$, where φ has no quantifiers in it.
- If $M \hookrightarrow N$ and σ is universal, then $\sigma^M \leq \sigma^N$.

Proposition

If $\sigma^M \leq \sigma^N$ for all universal sentences σ , then $M \hookrightarrow N^U$ for some \mathcal{U} .

Corollary

CEP is equivalent to the statement that $\sigma^M = \sigma^R$ for all II₁ factors M.

- So the failure of CEP tells us that there are at least two distinct *universal theories* of II₁ factors.
- We believe there should be 2^ℵ⁰ many such distinct universal theories.

- A sentence σ is **universal** if it is of the form $\sup_{\vec{x}} \varphi(\vec{x})$, where φ has no quantifiers in it.
- If $M \hookrightarrow N$ and σ is universal, then $\sigma^M \leq \sigma^N$.

Proposition

If $\sigma^M \leq \sigma^N$ for all universal sentences σ , then $M \hookrightarrow N^U$ for some U.

Corollary

CEP is equivalent to the statement that $\sigma^M = \sigma^R$ for all II₁ factors M.

- So the failure of CEP tells us that there are at least two distinct *universal theories* of II₁ factors.
- We believe there should be 2[№] many such distinct universal theories.

- A sentence σ is **universal** if it is of the form $\sup_{\vec{x}} \varphi(\vec{x})$, where φ has no quantifiers in it.
- If $M \hookrightarrow N$ and σ is universal, then $\sigma^M \leq \sigma^N$.

Proposition

If $\sigma^M \leq \sigma^N$ for all universal sentences σ , then $M \hookrightarrow N^U$ for some \mathcal{U} .

Corollary

CEP is equivalent to the statement that $\sigma^{M} = \sigma^{\mathcal{R}}$ for all II₁ factors M.

- So the failure of CEP tells us that there are at least two distinct *universal theories* of II₁ factors.
- We believe there should be 2[№] many such distinct universal theories.

- A sentence σ is **universal** if it is of the form $\sup_{\vec{x}} \varphi(\vec{x})$, where φ has no quantifiers in it.
- If $M \hookrightarrow N$ and σ is universal, then $\sigma^M \leq \sigma^N$.

Proposition

If $\sigma^M \leq \sigma^N$ for all universal sentences σ , then $M \hookrightarrow N^U$ for some \mathcal{U} .

Corollary

CEP is equivalent to the statement that $\sigma^{M} = \sigma^{\mathcal{R}}$ for all II₁ factors M.

So the failure of CEP tells us that there are at least two distinct universal theories of II₁ factors.

■ We believe there should be 2[№] many such distinct universal theories.

Universal theories

- A sentence σ is **universal** if it is of the form $\sup_{\vec{x}} \varphi(\vec{x})$, where φ has no quantifiers in it.
- If $M \hookrightarrow N$ and σ is universal, then $\sigma^M \leq \sigma^N$.

Proposition

If $\sigma^M \leq \sigma^N$ for all universal sentences σ , then $M \hookrightarrow N^U$ for some \mathcal{U} .

Corollary

CEP is equivalent to the statement that $\sigma^{M} = \sigma^{\mathcal{R}}$ for all II₁ factors M.

So the failure of CEP tells us that there are at least two distinct universal theories of II₁ factors.

■ We believe there should be 2^{ℵ0} many such distinct universal theories.

Suppose that σ is a universal sentence.

- By plugging in elements from $M_n(\mathbb{C})$ for larger *n*, we can start "effectively" enumerating lower bounds for $\sigma^{\mathcal{R}}$.
- But what effectively enumerating upper bounds for $\sigma^{\mathcal{R}}$?
- There is a proof system for continuous logic and the Completeness Theorem tells us that if something is a (first-order) theorem about II₁ factors, then there will be a formal proof of it from the axioms of II₁ factors.
- If σ^R ≤ r, then by CEP, "σ ≤ r" is a theorem about II₁ factors, so by running our "proof machine" we will eventually know this fact. This effectively enumerates upper bounds for σ^R. (Soundness makes sure we make no mistakes.)
- Thus, CEP implies that the universal theory of \mathcal{R} is computable, meaning we can effectively approximate $\sigma^{\mathcal{R}}$ to within any desired tolerance.

- Suppose that σ is a universal sentence.
- By plugging in elements from $M_n(\mathbb{C})$ for larger *n*, we can start "effectively" enumerating lower bounds for $\sigma^{\mathcal{R}}$.
- But what effectively enumerating upper bounds for $\sigma^{\mathcal{R}}$?
- There is a proof system for continuous logic and the Completeness Theorem tells us that if something is a (first-order) theorem about II₁ factors, then there will be a formal proof of it from the axioms of II₁ factors.
- If σ^R ≤ r, then by CEP, "σ ≤ r" is a theorem about II₁ factors, so by running our "proof machine" we will eventually know this fact. This effectively enumerates upper bounds for σ^R. (Soundness makes sure we make no mistakes.)
- Thus, CEP implies that the universal theory of \mathcal{R} is computable, meaning we can effectively approximate $\sigma^{\mathcal{R}}$ to within any desired tolerance.

- Suppose that σ is a universal sentence.
- By plugging in elements from $M_n(\mathbb{C})$ for larger *n*, we can start "effectively" enumerating lower bounds for $\sigma^{\mathcal{R}}$.
- But what effectively enumerating upper bounds for $\sigma^{\mathcal{R}}$?
- There is a proof system for continuous logic and the Completeness Theorem tells us that if something is a (first-order) theorem about II₁ factors, then there will be a formal proof of it from the axioms of II₁ factors.
- If σ^R ≤ r, then by CEP, "σ ≤ r" is a theorem about II₁ factors, so by running our "proof machine" we will eventually know this fact. This effectively enumerates upper bounds for σ^R. (Soundness makes sure we make no mistakes.)
- Thus, CEP implies that the universal theory of \mathcal{R} is computable, meaning we can effectively approximate $\sigma^{\mathcal{R}}$ to within any desired tolerance.

- Suppose that σ is a universal sentence.
- By plugging in elements from $M_n(\mathbb{C})$ for larger *n*, we can start "effectively" enumerating lower bounds for $\sigma^{\mathcal{R}}$.
- But what effectively enumerating upper bounds for $\sigma^{\mathcal{R}}$?
- There is a proof system for continuous logic and the Completeness Theorem tells us that if something is a (first-order) theorem about II₁ factors, then there will be a formal proof of it from the axioms of II₁ factors.
- If σ^R ≤ r, then by CEP, "σ ≤ r" is a theorem about II₁ factors, so by running our "proof machine" we will eventually know this fact. This effectively enumerates upper bounds for σ^R. (Soundness makes sure we make no mistakes.)
- Thus, CEP implies that the universal theory of \mathcal{R} is computable, meaning we can effectively approximate $\sigma^{\mathcal{R}}$ to within any desired tolerance.

- Suppose that σ is a universal sentence.
- By plugging in elements from $M_n(\mathbb{C})$ for larger *n*, we can start "effectively" enumerating lower bounds for $\sigma^{\mathcal{R}}$.
- But what effectively enumerating upper bounds for $\sigma^{\mathcal{R}}$?
- There is a proof system for continuous logic and the Completeness Theorem tells us that if something is a (first-order) theorem about II₁ factors, then there will be a formal proof of it from the axioms of II₁ factors.
- If σ^R ≤ r, then by CEP, "σ ≤ r" is a theorem about II₁ factors, so by running our "proof machine" we will eventually know this fact. This effectively enumerates upper bounds for σ^R. (Soundness makes sure we make no mistakes.)
- Thus, CEP implies that the universal theory of \mathcal{R} is computable, meaning we can effectively approximate $\sigma^{\mathcal{R}}$ to within any desired tolerance.

- Suppose that σ is a universal sentence.
- By plugging in elements from $M_n(\mathbb{C})$ for larger *n*, we can start "effectively" enumerating lower bounds for $\sigma^{\mathcal{R}}$.
- But what effectively enumerating upper bounds for $\sigma^{\mathcal{R}}$?
- There is a proof system for continuous logic and the Completeness Theorem tells us that if something is a (first-order) theorem about II₁ factors, then there will be a formal proof of it from the axioms of II₁ factors.
- If σ^R ≤ r, then by CEP, "σ ≤ r" is a theorem about II₁ factors, so by running our "proof machine" we will eventually know this fact. This effectively enumerates upper bounds for σ^R. (Soundness makes sure we make no mistakes.)
- Thus, CEP implies that the universal theory of \mathcal{R} is computable, meaning we can effectively approximate $\sigma^{\mathcal{R}}$ to within any desired tolerance.

A II₁ factor *M* is called **locally universal** if every II₁ factor embeds into an ultrapower of *M*.

So CEP asks if \mathcal{R} is locally universal.

Theorem (Farah-Hart-Sherman)

A separable locally universal II₁ factor exists.

Clearly any factor extending a locally universal factor is also locally universal. Using a technique known as **model-theoretic forcing**, one can construct locally universal factors with a wide variety of extra properties.

A II₁ factor *M* is called **locally universal** if every II₁ factor embeds into an ultrapower of *M*.

So CEP asks if \mathcal{R} is locally universal.

Theorem (Farah-Hart-Sherman)

A separable locally universal II₁ factor exists.

Clearly any factor extending a locally universal factor is also locally universal. Using a technique known as **model-theoretic forcing**, one can construct locally universal factors with a wide variety of extra properties.

A II₁ factor *M* is called **locally universal** if every II₁ factor embeds into an ultrapower of *M*.

So CEP asks if \mathcal{R} is locally universal.

Theorem (Farah-Hart-Sherman)

A separable locally universal II₁ factor exists.

Clearly any factor extending a locally universal factor is also locally universal. Using a technique known as **model-theoretic forcing**, one can construct locally universal factors with a wide variety of extra properties.

A II₁ factor *M* is called **locally universal** if every II₁ factor embeds into an ultrapower of *M*.

So CEP asks if \mathcal{R} is locally universal.

Theorem (Farah-Hart-Sherman)

A separable locally universal II₁ factor exists.

Clearly any factor extending a locally universal factor is also locally universal. Using a technique known as **model-theoretic forcing**, one can construct locally universal factors with a wide variety of extra properties.

In connection with the CEP, Popa asked the following question:

Popa's FCEP

Suppose that *M* is embeddable. Must there exist an embedding $i: M \hookrightarrow \mathcal{R}^{\mathcal{U}}$ such that $i(M)' \cap \mathcal{R}^{\mathcal{U}}$ is a factor?

- *R* satisfies the FCEP. (Dixmier and Lance)
- $L(SL_3(\mathbb{Z}))$ satisfies the FCEP. (Popa)
- Brown showed that embeddings *i* as above are the *extreme points* in a convex-like space of embeddings from *M* to $\mathcal{R}^{\mathcal{U}}$.

In connection with the CEP, Popa asked the following question:

Popa's FCEP

Suppose that *M* is embeddable. Must there exist an embedding $i: M \hookrightarrow \mathcal{R}^{\mathcal{U}}$ such that $i(M)' \cap \mathcal{R}^{\mathcal{U}}$ is a factor?

- R satisfies the FCEP. (Dixmier and Lance)
- $L(SL_3(\mathbb{Z}))$ satisfies the FCEP. (Popa)
- Brown showed that embeddings *i* as above are the *extreme points* in a convex-like space of embeddings from *M* to R^U.

In connection with the CEP, Popa asked the following question:

Popa's FCEP

Suppose that *M* is embeddable. Must there exist an embedding $i: M \hookrightarrow \mathcal{R}^{\mathcal{U}}$ such that $i(M)' \cap \mathcal{R}^{\mathcal{U}}$ is a factor?

- R satisfies the FCEP. (Dixmier and Lance)
- $L(SL_3(\mathbb{Z}))$ satisfies the FCEP. (Popa)

Brown showed that embeddings *i* as above are the *extreme points* in a convex-like space of embeddings from *M* to $\mathcal{R}^{\mathcal{U}}$.

In connection with the CEP, Popa asked the following question:

Popa's FCEP

Suppose that *M* is embeddable. Must there exist an embedding $i: M \hookrightarrow \mathcal{R}^{\mathcal{U}}$ such that $i(M)' \cap \mathcal{R}^{\mathcal{U}}$ is a factor?

- R satisfies the FCEP. (Dixmier and Lance)
- $L(SL_3(\mathbb{Z}))$ satisfies the FCEP. (Popa)
- Brown showed that embeddings *i* as above are the *extreme points* in a convex-like space of embeddings from *M* to R^U.

Theorem (Atkinson-G.-Your friend Sri, 2020)

If $M \equiv \mathcal{R}$, then M satisfies the FCEP.

The proof uses the model-theoretic notion of **heir** along with the above work of Nate Brown.

Theorem (G.)

There is a locally universal II₁ factor M such that, for all property (T) factors N, there is an embedding $i : N \hookrightarrow M^{\mathcal{U}}$ such that $i(N)' \cap M^{\mathcal{U}}$ is a factor.

The proof uses the model-theoretic notion of infinitely generic factor as well as a model-theoretic bicommutant theorem.

One can identify two precise hurdles from adapting this argument to establishing the original FCEP for property (T) factors.

Isaac Goldbring (UCI)

Theorem (Atkinson-G.-Your friend Sri, 2020)

If $M \equiv \mathcal{R}$, then M satisfies the FCEP.

The proof uses the model-theoretic notion of **heir** along with the above work of Nate Brown.

Theorem (G.)

There is a locally universal II₁ factor M such that, for all **property** (T) factors N, there is an embedding $i : N \hookrightarrow M^{\mathcal{U}}$ such that $i(N)' \cap M^{\mathcal{U}}$ is a factor.

The proof uses the model-theoretic notion of infinitely generic factor as well as a model-theoretic bicommutant theorem.

One can identify two precise hurdles from adapting this argument to establishing the original FCEP for property (T) factors.

Theorem (Atkinson-G.-Your friend Sri, 2020)

If $M \equiv \mathcal{R}$, then M satisfies the FCEP.

The proof uses the model-theoretic notion of **heir** along with the above work of Nate Brown.

Theorem (G.)

There is a locally universal II₁ factor M such that, for all property (T) factors N, there is an embedding $i : N \hookrightarrow M^{\mathcal{U}}$ such that $i(N)' \cap M^{\mathcal{U}}$ is a factor.

The proof uses the model-theoretic notion of infinitely generic factor as well as a model-theoretic bicommutant theorem.

One can identify two precise hurdles from adapting this argument to establishing the original FCEP for property (T) factors.

Theorem (Atkinson-G.-Your friend Sri, 2020)

If $M \equiv \mathcal{R}$, then M satisfies the FCEP.

The proof uses the model-theoretic notion of **heir** along with the above work of Nate Brown.

Theorem (G.)

There is a locally universal II_1 factor M such that, for all property (T) factors N, there is an embedding $i : N \hookrightarrow M^{\mathcal{U}}$ such that $i(N)' \cap M^{\mathcal{U}}$ is a factor.

The proof uses the model-theoretic notion of infinitely generic factor as well as a model-theoretic bicommutant theorem.

One can identify two precise hurdles from adapting this argument to establishing the original FCEP for property (T) factors.

Theorem (Atkinson-G.-Your friend Sri, 2020)

If $M \equiv \mathcal{R}$, then M satisfies the FCEP.

The proof uses the model-theoretic notion of **heir** along with the above work of Nate Brown.

Theorem (G.)

There is a locally universal II_1 factor M such that, for all property (T) factors N, there is an embedding $i : N \hookrightarrow M^{\mathcal{U}}$ such that $i(N)' \cap M^{\mathcal{U}}$ is a factor.

- The proof uses the model-theoretic notion of infinitely generic factor as well as a model-theoretic bicommutant theorem.
- One can identify two precise hurdles from adapting this argument to establishing the original FCEP for property (T) factors.

Isaac Goldbring (UCI)

The Jung property

Theorem (Jung)

If *M* is a separable embeddable factor, then any two embeddings $\pi, \rho : M \hookrightarrow \mathcal{R}^{\mathcal{U}}$ are **unitarily conjugate** if and only if $M \cong \mathcal{R}$.

Theorem (Atksinon-Kunnawalkam Elayavalli)

If M is a separable embeddable factor, then any two embeddings $\pi, \rho : M \hookrightarrow M^{\mathcal{U}}$ are unitarily conjugate if and only if $M \cong \mathcal{R}$.

Theorem (Atkinson-G.-Kunnawalkam Elayavalli)

- If M is a separable embeddable factor, then any two embeddings π, ρ : M → M^U are conjugate by an automorphism if and only if M ≅ R.
- 2 There is a nonembeddable M with this property.

(I) (III) (III) (III) (III)

The Jung property

Theorem (Jung)

If *M* is a separable embeddable factor, then any two embeddings $\pi, \rho : M \hookrightarrow \mathcal{R}^{\mathcal{U}}$ are **unitarily conjugate** if and only if $M \cong \mathcal{R}$.

Theorem (Atksinon-Kunnawalkam Elayavalli)

If M is a separable embeddable factor, then any two embeddings $\pi, \rho: M \hookrightarrow M^{\mathcal{U}}$ are unitarily conjugate if and only if $M \cong \mathcal{R}$.

Theorem (Atkinson-G.-Kunnawalkam Elayavalli)

- If M is a separable embeddable factor, then any two embeddings π, ρ : M → M^U are conjugate by an automorphism if and only if M ≅ R.
- 2 There is a nonembeddable M with this property.

The Jung property

Theorem (Jung)

If *M* is a separable embeddable factor, then any two embeddings $\pi, \rho : M \hookrightarrow \mathcal{R}^{\mathcal{U}}$ are **unitarily conjugate** if and only if $M \cong \mathcal{R}$.

Theorem (Atksinon-Kunnawalkam Elayavalli)

If *M* is a separable embeddable factor, then any two embeddings $\pi, \rho : M \hookrightarrow M^{\mathcal{U}}$ are unitarily conjugate if and only if $M \cong \mathcal{R}$.

Theorem (Atkinson-G.-Kunnawalkam Elayavalli)

- If M is a separable embeddable factor, then any two embeddings π, ρ : M → M^U are conjugate by an automorphism if and only if M ≅ R.
- 2 There is a nonembeddable M with this property.

Definable sets

Exercise

Suppose that $p \in \prod_{\mathcal{U}} M_i$ is a projection. Then there are projections $p_i \in M_i$ such that $p = (p_i)_{\mathcal{U}}$. Ditto for unitaries.

For a formula $\varphi(\vec{x})$ and M, set $Z(\varphi^M) := \{ \vec{a} \in M : \varphi(\vec{a})^M = 0 \}.$

Theorem/Definition

Fix a formula $\varphi(\vec{x})$. The following are equivalent:

$$1 \quad Z(\varphi^{\prod_{\mathcal{U}} M_i}) = \prod_{\mathcal{U}} Z(\varphi^{M_i}).$$

2 For any formula $\psi(\vec{x}, \vec{y})$, $\sup_{\vec{x} \in Z(\varphi)} \psi(\vec{x}, \vec{y})$ and $\inf_{\vec{x} \in Z(\varphi)} \psi(\vec{x}, \vec{y})$ "are" formulae again.

In this case, we call $Z(\varphi)$ a **definable set**.

So projections and unitaries form definable sets.

Definable sets

Exercise

Suppose that $p \in \prod_{\mathcal{U}} M_i$ is a projection. Then there are projections $p_i \in M_i$ such that $p = (p_i)_{\mathcal{U}}$. Ditto for unitaries.

For a formula $\varphi(\vec{x})$ and M, set $Z(\varphi^M) := \{ \vec{a} \in M : \varphi(\vec{a})^M = 0 \}.$

Theorem/Definition

Fix a formula $\varphi(\vec{x})$. The following are equivalent:

- $1 \quad Z(\varphi^{\prod_{\mathcal{U}} M_i}) = \prod_{\mathcal{U}} Z(\varphi^{M_i}).$
- **2** For any formula $\psi(\vec{x}, \vec{y})$, $\sup_{\vec{x} \in Z(\varphi)} \psi(\vec{x}, \vec{y})$ and $\inf_{\vec{x} \in Z(\varphi)} \psi(\vec{x}, \vec{y})$ "are" formulae again.

In this case, we call $Z(\varphi)$ a **definable set**.

So projections and unitaries form definable sets.

くロン 不通 とくほ とくほ とうほう

Exercise

Suppose that $p \in \prod_{\mathcal{U}} M_i$ is a projection. Then there are projections $p_i \in M_i$ such that $p = (p_i)_{\mathcal{U}}$. Ditto for unitaries.

For a formula $\varphi(\vec{x})$ and M, set $Z(\varphi^M) := \{ \vec{a} \in M : \varphi(\vec{a})^M = 0 \}.$

Theorem/Definition

Fix a formula $\varphi(\vec{x})$. The following are equivalent:

$$1 \quad Z(\varphi^{\prod_{\mathcal{U}} M_i}) = \prod_{\mathcal{U}} Z(\varphi^{M_i}).$$

2 For any formula $\psi(\vec{x}, \vec{y})$, $\sup_{\vec{x} \in Z(\varphi)} \psi(\vec{x}, \vec{y})$ and $\inf_{\vec{x} \in Z(\varphi)} \psi(\vec{x}, \vec{y})$ "are" formulae again.

In this case, we call $Z(\varphi)$ a **definable set**.

So projections and unitaries form definable sets.

イロト イ理ト イヨト イヨト ニヨー

Theorem (G., Hart, and Sinclair)

Given a II_1 factor N, we can treat N-N bimodules (see Corey's talk) as structures in an appropriate language just like we have been doing for tracial von Neumann algebras.

If *H* is an *N*-*N* bimodule, we call $\xi \in H$ central if $x\xi = \xi x$ for all $x \in N$.

Theorem (G., Hart, and Sinclair)

N has property (*T*) if and only if the set of central vectors forms a definable set for the class of *N*-*N* bimodules.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Theorem (G., Hart, and Sinclair)

Given a II_1 factor N, we can treat N-N bimodules (see Corey's talk) as structures in an appropriate language just like we have been doing for tracial von Neumann algebras.

If *H* is an *N*-*N* bimodule, we call $\xi \in H$ central if $x\xi = \xi x$ for all $x \in N$.

Theorem (G., Hart, and Sinclair)

N has property (*T*) if and only if the set of central vectors forms a definable set for the class of *N*-*N* bimodules.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Theorem (G., Hart, and Sinclair)

Given a II_1 factor N, we can treat N-N bimodules (see Corey's talk) as structures in an appropriate language just like we have been doing for tracial von Neumann algebras.

If *H* is an *N*-*N* bimodule, we call $\xi \in H$ central if $x\xi = \xi x$ for all $x \in N$.

Theorem (G., Hart, and Sinclair)

N has property (*T*) if and only if the set of central vectors forms a definable set for the class of *N*-*N* bimodules.

Existentially closed tracial von Neumann algebras

Theorem/Definition

Given an inclusion $M \subseteq N$ of tracial von Neumann algebras, the following are equivalent:

for any quantifier-free formula $\varphi(\vec{x}, \vec{y})$ and any $\vec{a} \in M$, we have:

$$(\inf_{\vec{x}}\varphi(\vec{x},\vec{a}))^M = (\inf_{\vec{x}}\varphi(\vec{x},\vec{a}))^N.$$

There is an embedding $N \hookrightarrow M^{\mathcal{U}}$ such that the restriction $M \hookrightarrow M^{\mathcal{U}}$ is the diagonal embedding.

In this case, we say that M is **existentially closed** (e.c.) in N. M is existentially closed if it is e.c. in all extensions. Can also relativize to the embeddable case.

This is the model-theoretic generalization of algebraically closed field.

3

Existentially closed tracial von Neumann algebras

Theorem/Definition

Given an inclusion $M \subseteq N$ of tracial von Neumann algebras, the following are equivalent:

for any quantifier-free formula $\varphi(\vec{x}, \vec{y})$ and any $\vec{a} \in M$, we have:

$$(\inf_{\vec{x}}\varphi(\vec{x},\vec{a}))^M = (\inf_{\vec{x}}\varphi(\vec{x},\vec{a}))^N.$$

There is an embedding $N \hookrightarrow M^{\mathcal{U}}$ such that the restriction $M \hookrightarrow M^{\mathcal{U}}$ is the diagonal embedding.

In this case, we say that M is **existentially closed** (e.c.) in N. M is existentially closed if it is e.c. in all extensions. Can also relativize to the embeddable case.

This is the model-theoretic generalization of algebraically closed field.

- Every tracial von Neumann algebra embeds into an e.c. tracial von Neumann algebra (of the same density character).
- E.c. tracial von Neumann algebras are locally universal McDuff II₁ factors.
- (G., Hart, Sinclair) You cannot axiomatize the e.c. factors.
- (G.) Suppose that *N* has property (T) and $N \subseteq M$ with *M* e.c. Then $(N' \cap M)' \cap M = N$. (Model-theoretic bicommutant theorem.)
- **CEP** is equivalent to the statement that \mathcal{R} is e.c.

Questions

- 1 Is there a "concrete" e.c. factor?
- 2 Are all e.c. factors elementarily equivalent?

- Every tracial von Neumann algebra embeds into an e.c. tracial von Neumann algebra (of the same density character).
- E.c. tracial von Neumann algebras are locally universal McDuff II₁ factors.
- (G., Hart, Sinclair) You cannot axiomatize the e.c. factors.
- (G.) Suppose that *N* has property (T) and $N \subseteq M$ with *M* e.c. Then $(N' \cap M)' \cap M = N$. (Model-theoretic bicommutant theorem.)
- **CEP** is equivalent to the statement that \mathcal{R} is e.c.

Questions

- 1 Is there a "concrete" e.c. factor?
- 2 Are all e.c. factors elementarily equivalent?

- Every tracial von Neumann algebra embeds into an e.c. tracial von Neumann algebra (of the same density character).
- E.c. tracial von Neumann algebras are locally universal McDuff II₁ factors.
- (G., Hart, Sinclair) You cannot axiomatize the e.c. factors.
- (G.) Suppose that *N* has property (T) and $N \subseteq M$ with *M* e.c. Then $(N' \cap M)' \cap M = N$. (Model-theoretic bicommutant theorem.)
- **CEP** is equivalent to the statement that \mathcal{R} is e.c.

Questions

- 1 Is there a "concrete" e.c. factor?
- 2 Are all e.c. factors elementarily equivalent?

- Every tracial von Neumann algebra embeds into an e.c. tracial von Neumann algebra (of the same density character).
- E.c. tracial von Neumann algebras are locally universal McDuff II₁ factors.
- (G., Hart, Sinclair) You cannot axiomatize the e.c. factors.
- (G.) Suppose that *N* has property (T) and $N \subseteq M$ with *M* e.c. Then $(N' \cap M)' \cap M = N$. (Model-theoretic bicommutant theorem.)
- CEP is equivalent to the statement that \mathcal{R} is e.c.

Questions

- 1 Is there a "concrete" e.c. factor?
- 2 Are all e.c. factors elementarily equivalent?

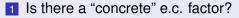
- Every tracial von Neumann algebra embeds into an e.c. tracial von Neumann algebra (of the same density character).
- E.c. tracial von Neumann algebras are locally universal McDuff II₁ factors.
- (G., Hart, Sinclair) You cannot axiomatize the e.c. factors.
- (G.) Suppose that *N* has property (T) and $N \subseteq M$ with *M* e.c. Then $(N' \cap M)' \cap M = N$. (Model-theoretic bicommutant theorem.)
- CEP is equivalent to the statement that R is e.c.

Questions

- 1 Is there a "concrete" e.c. factor?
- 2 Are all e.c. factors elementarily equivalent?

- Every tracial von Neumann algebra embeds into an e.c. tracial von Neumann algebra (of the same density character).
- E.c. tracial von Neumann algebras are locally universal McDuff II₁ factors.
- (G., Hart, Sinclair) You cannot axiomatize the e.c. factors.
- (G.) Suppose that *N* has property (T) and $N \subseteq M$ with *M* e.c. Then $(N' \cap M)' \cap M = N$. (Model-theoretic bicommutant theorem.)
- CEP is equivalent to the statement that *R* is e.c.

Questions



2 Are all e.c. factors elementarily equivalent?

- Every tracial von Neumann algebra embeds into an e.c. tracial von Neumann algebra (of the same density character).
- E.c. tracial von Neumann algebras are locally universal McDuff II₁ factors.
- (G., Hart, Sinclair) You cannot axiomatize the e.c. factors.
- (G.) Suppose that *N* has property (T) and $N \subseteq M$ with *M* e.c. Then $(N' \cap M)' \cap M = N$. (Model-theoretic bicommutant theorem.)
- **CEP** is equivalent to the statement that \mathcal{R} is e.c.

Questions

- 1 Is there a "concrete" e.c. factor?
- 2 Are all e.c. factors elementarily equivalent?

< ロ > < 同 > < 回 > < 回 >

Thanks for your attention!

Isaac Goldbring (UCI)

Model theory and vNas

GOALS July 2020 25/26

3 + 4 = +

Suggestions for future reading

- S. Atkinson, I. Goldbring, and S. Kunnawalkam Elayavalli, Factorial commutants and II₁ factors with the generalized Jung property.
- I. Farah, I. Goldbring, B. Hart, and D. Sherman, *Existentially closed II*₁ factors.
- I. Farah, B. Hart, and D. Sherman, Model theory of operator algebras I, II, and III.
- I. Goldbring, *Spectral gap and definability*.
- I. Goldbring, *Enforceable operator algebras*.
- I. Goldbring and B. Hart, The universal theory of the hyperfinite II₁ factor is not computable.
- I. Goldbring, B. Hart, and T. Sinclair, The theory of tracial von Neumann algebras does not have a model companion.
- I. Goldbring, B. Hart, and H. Towsner, *Explicit sentences distinguishing McDuff's II*₁ factors.

Isaac Goldbring (UCI)

э