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Introduction

Hi, my name is Isaac and I’m a model theorist.
What’s a model theorist you ask?
And why am I speaking in a summer program on operator
algebras?
It turns out we have a common love interest: ultraproducts!
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Ultrafilters and ultralimits

Definition

If I is a set, a ultrafilter on I is a finitely additive, {0,1}-valued
probability measure on I. The ultrafilter is called nonprincipal if finite
sets get measure 0.

We often identify an ultrafilter with its set of measure 1 sets and when
doing so use letters like U and V to denote ultrafilters, writing A ∈ U to
mean that the U-measure of A is 1.

Theorem/Definition

Given any compact Hausdorff space X , any set I, any sequence (ai)i∈I
from X , and any ultrafilter U on I, there is a unique element a ∈ X with
the property: for every open neighborhood U of a, we have
{i ∈ I : ai ∈ U} ∈ U . We call a the U-ultralimit of (ai)i∈I and denote it
by limU ai .
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Tracial ultraproduct

Suppose thatM = (Mi)i∈I is a family of tracial von Neumann
algebras and U is an ultrafilter on I.
We set `∞(I,M) := {(ai) ∈

∏
i∈I Mi : supi∈I ‖ai‖ <∞}.

We also set cU (M) := {(ai) ∈ `∞(I,M) : limU ‖ai‖2 = 0}.
The quotient C∗-algebra `∞(I,M)/cU (M) is a von Neumann
algebra again, called the tracial ultraproduct of the familyM
with respect to the ultrafilter U , denoted

∏
U Mi .

We denote the coset of (ai) by (ai)U .∏
U Mi has a natural trace: τ((ai)U ) := limU τMi (ai).

If each Mi = M, we write MU , and call this the ultrapower of M
with respect to the ultrafilter U .
There is a natural diagonal embedding M ↪→ MU given by
a 7→ (a,a,a, . . .)U .
MU is nonseparable as soon as U is sufficiently incomplete and M
is infinite-dimensional.
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Property Gamma and McDuff

The tracial ultraproduct construction is a useful way to succintly
express some important properties that a tracial von Neumann
algebra may or may not have.
We set M ′ ∩MU := {(ai)U ∈ MU : [b, (ai)U ] = 0 for all b ∈ M}.

Definition

A II1 factor M has:
property Gamma if M ′ ∩MU 6= C;
the McDuff property if M ′ ∩MU is not abelian.

Does not depend on the choice of nonprincipal ultrapower.
R is McDuff.
L(F2) does not have property Gamma.
Dixmier and Lance constructed algebras with property Gamma
but that are not McDuff.
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Some syntax

An atomic formula is one of the form < tr(p(x)) or = tr(p(x)) for
some *-polynomial p(x).
We obtain the class of all formulae by closing under the following
two operations:

If ϕ1, . . . , ϕn are formulae and f : Rn → R is continuous, then
f (ϕ1, . . . , ϕn) is also a formula.
If ϕ is a formula and x is a variable, then for every n, inf‖x‖≤n ϕ and
sup‖x‖≤n ϕ are formulae. (Operator norm balls)

If ϕ(x) is a formula with free variables x = (x1, . . . , xn) and M is a
tracial von Neumann algebra, we get a natural interpretation
function ϕM : Mn → R.
A sentence is a formula without free variables. If σ is a sentence
and M is a tracial von Neumann algebra, then σM ∈ R.
For example, σ := inf‖x‖≤1 max(‖x − x∗‖2, ‖x − x2‖2, | tr(x)− 1

π |) is
a sentence and σM = 0 if and only if M has a projection of trace 1

π .
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Elementary equivalence and elementary embeddings

Definition

II1 factors M and N are elementarily equivalent, denoted M ≡ N, if
σM = σN for every sentence σ.

Definition

An embedding i : M ↪→ N is elementary if ϕ(a)M = ϕ(i(a))N for all
formulae ϕ(x) and all a ∈ M. If M is a subalgebra of N and the
inclusion is an elementary embedding, we say that M is an
elementary substructure of N, denoted M � N.

Theorem (Downward Löwenheim-Skolem)

Given any II1 factor N and separable X ⊆ N, there is a separable
M � N with X ⊆ M.
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inclusion is an elementary embedding, we say that M is an
elementary substructure of N, denoted M � N.

Theorem (Downward Löwenheim-Skolem)

Given any II1 factor N and separable X ⊆ N, there is a separable
M � N with X ⊆ M.
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Łos’ theorem

Theorem (Łos’ theorem or the Fundamental Theorem of Ultraproducts)

Fix a family (Mi)i∈I of tracial von Neumann algebras, an ultrafilter U on
I, a formula ϕ(x), and (ai)U ∈

∏
U Mi . Then

ϕ((ai)U )
∏

U Mi = lim
U
ϕ(ai)

Mi .

The ultraproduct is democratic!

Corollary

The diagonal embedding M ↪→ MU is an elementary embedding. In
particular, if MU ∼= NV , then M ≡ N.
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The Keisler-Shelah Theorem

We just saw: if MU ∼= NV , then M ≡ N. Amazingly, the converse holds,
giving a “logic-free” characterization of elementary equivalence:

Theorem (Keisler-Shelah)

Tracial von Neumann algebras M and N are elementarily equivalent if
and only if there are ultrafilters U and V such that MU ∼= NV .

M and N need not be separable. If they are not, then U and V may
need to “live” on larger index sets.
If M and N are separable, it is unknown if one can take U and V to
live on N. (More on this later...)
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How many ultrapowers of a given factor? (CH)

Question

If M is a separable II1 factor, do there exist nonprincipal ultrafilters U
and V (on N) such that MU 6∼= MV?

Theorem (Ge-Hadwin; Farah-Hart-Sherman)

If the Continuum Hypothesis (CH) holds, then for all nonprincipal
ultrafilters U and V on N, MU ∼= MV .

The model-theoretic explanation: MU has density character 2ℵ0

and is ℵ1-saturated.
If CH holds, then one can do a “back-and-forth argument” to
inductively build an isomorphism between MU and MV .
This shows that in fact MU ∼= NV whenever M ≡ N are both
separable.
The same argument shows that M ′ ∩MU ∼= M ′ ∩MV .

Isaac Goldbring (UCI) Model theory and vNas GOALS July 2020 10 / 26



How many ultrapowers of a given factor? (CH)

Question

If M is a separable II1 factor, do there exist nonprincipal ultrafilters U
and V (on N) such that MU 6∼= MV?

Theorem (Ge-Hadwin; Farah-Hart-Sherman)

If the Continuum Hypothesis (CH) holds, then for all nonprincipal
ultrafilters U and V on N, MU ∼= MV .

The model-theoretic explanation: MU has density character 2ℵ0

and is ℵ1-saturated.
If CH holds, then one can do a “back-and-forth argument” to
inductively build an isomorphism between MU and MV .
This shows that in fact MU ∼= NV whenever M ≡ N are both
separable.
The same argument shows that M ′ ∩MU ∼= M ′ ∩MV .

Isaac Goldbring (UCI) Model theory and vNas GOALS July 2020 10 / 26



How many ultrapowers of a given factor? (CH)

Question

If M is a separable II1 factor, do there exist nonprincipal ultrafilters U
and V (on N) such that MU 6∼= MV?

Theorem (Ge-Hadwin; Farah-Hart-Sherman)

If the Continuum Hypothesis (CH) holds, then for all nonprincipal
ultrafilters U and V on N, MU ∼= MV .

The model-theoretic explanation: MU has density character 2ℵ0

and is ℵ1-saturated.
If CH holds, then one can do a “back-and-forth argument” to
inductively build an isomorphism between MU and MV .
This shows that in fact MU ∼= NV whenever M ≡ N are both
separable.
The same argument shows that M ′ ∩MU ∼= M ′ ∩MV .

Isaac Goldbring (UCI) Model theory and vNas GOALS July 2020 10 / 26



How many ultrapowers of a given factor? (CH)

Question

If M is a separable II1 factor, do there exist nonprincipal ultrafilters U
and V (on N) such that MU 6∼= MV?

Theorem (Ge-Hadwin; Farah-Hart-Sherman)

If the Continuum Hypothesis (CH) holds, then for all nonprincipal
ultrafilters U and V on N, MU ∼= MV .

The model-theoretic explanation: MU has density character 2ℵ0

and is ℵ1-saturated.
If CH holds, then one can do a “back-and-forth argument” to
inductively build an isomorphism between MU and MV .
This shows that in fact MU ∼= NV whenever M ≡ N are both
separable.
The same argument shows that M ′ ∩MU ∼= M ′ ∩MV .

Isaac Goldbring (UCI) Model theory and vNas GOALS July 2020 10 / 26



How many ultrapowers of a given factor? (CH)

Question

If M is a separable II1 factor, do there exist nonprincipal ultrafilters U
and V (on N) such that MU 6∼= MV?

Theorem (Ge-Hadwin; Farah-Hart-Sherman)

If the Continuum Hypothesis (CH) holds, then for all nonprincipal
ultrafilters U and V on N, MU ∼= MV .

The model-theoretic explanation: MU has density character 2ℵ0

and is ℵ1-saturated.
If CH holds, then one can do a “back-and-forth argument” to
inductively build an isomorphism between MU and MV .
This shows that in fact MU ∼= NV whenever M ≡ N are both
separable.
The same argument shows that M ′ ∩MU ∼= M ′ ∩MV .

Isaac Goldbring (UCI) Model theory and vNas GOALS July 2020 10 / 26



How many ultrapowers of a given factor? (CH)

Question

If M is a separable II1 factor, do there exist nonprincipal ultrafilters U
and V (on N) such that MU 6∼= MV?

Theorem (Ge-Hadwin; Farah-Hart-Sherman)

If the Continuum Hypothesis (CH) holds, then for all nonprincipal
ultrafilters U and V on N, MU ∼= MV .

The model-theoretic explanation: MU has density character 2ℵ0

and is ℵ1-saturated.
If CH holds, then one can do a “back-and-forth argument” to
inductively build an isomorphism between MU and MV .
This shows that in fact MU ∼= NV whenever M ≡ N are both
separable.
The same argument shows that M ′ ∩MU ∼= M ′ ∩MV .

Isaac Goldbring (UCI) Model theory and vNas GOALS July 2020 10 / 26



How many ultrapowers of a given factor? (¬CH)

Theorem (Farah-Hart-Sherman; Farah-Shelah)

If CH fails, then there exist nonprincipal ultrafilters U and V on N such
that MU 6∼= MV . (In fact, there exist 22ℵ0 many such nonisomorphic
ultrapowers.)

II1 factors have a model-theoretically nasty property called the
order property, which roughly means that one can encode
something resembling an order in a II1 factor.
This allows one to use old set-theoretic techniques which show
that the poset (NN, <) has nonisomorphic ultrapowers (assuming
that CH fails).
Fancier model theory (stability theory) shows that the order
property is precisely the reason for the nonisomorphic
ultrapowers.
The above arguments yield M ′ ∩MU 6∼= M ′ ∩MV (M McDuff).
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How many ultraroots?

Question

Suppose that M and N are separable and U is a nonprincipal ultrafilter
on N such that MU ∼= NU . Must it be the case that M ∼= N?

Theorem (Farah-Hart-Sherman)

For any separable II1 factor M, there are continuum many separable II1
factors N such that M ≡ N.

Nicoara, Popa, and Sasyk constructed a family (Mα) of separable
II1 factors indexed by 2ω, each of which embeds into RU , such
that only countably many can embed into any given separable II1
factor.
Given M, consider Mα ↪→ RU ↪→ MU .
By DLS, there exists separable Nα � MU such that Mα ↪→ Nα.
There must be continuum many nonisomorphic Nα.
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How many elementary equivalence classes are there?

Progress on the number of nonisomorphic separable II1 factors was
slow. A major breakthrough was the following:

Theorem (McDuff)

There is a family of countable groups Γα indexed by 2ω such that,
setting Mα := L(Γα), one has Mα 6∼= Mβ for all α < β < 2ω.

Progress on the number of nonisomorphic ultrapowers of separable II1
factors was also slow, until:

Theorem (Boutonnet-Chifan-Ioana)

The McDuff factors Mα are such that, for any ultrafilters U and V (on
any index set), MUα 6∼= MVβ for all α < β < 2ω.

G.-Hart-Towsner gave explicit sentences distinguishing these factors.
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CEP

In his seminal paper on the classification of injective factors from
1976, Connes proved that L(F2) embeds into RU (we simply say
embeddable).
He then “suggested” that all II1 factors are embeddable; this is
known as the Connes embedding problem (CEP).
The CEP was one of the most famous unsolved problems in
operator algebras until earlier this year, when a group of computer
scientists proved a complexity result called MIP∗ = RE.
Via detours through quantum information theory (Tsirelson’s
problem) and C*-algebra theory (Kirchberg’s QWEP problem), this
showed that CEP failed.
Last month, Bradd Hart and I used model theory to show that
MIP∗ = RE implies that the universal theory of R is not
computable, which we had already showed implies the failure of
CEP using a little more model theory.
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Universal theories

A sentence σ is universal if it is of the form sup~x ϕ(~x), where ϕ
has no quantifiers in it.
If M ↪→ N and σ is universal, then σM ≤ σN .

Proposition

If σM ≤ σN for all universal sentences σ, then M ↪→ NU for some U .

Corollary

CEP is equivalent to the statement that σM = σR for all II1 factors M.

So the failure of CEP tells us that there are at least two distinct
universal theories of II1 factors.
We believe there should be 2ℵ0 many such distinct universal
theories.
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universal theories of II1 factors.
We believe there should be 2ℵ0 many such distinct universal
theories.
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CEP and computability of the universal theory of R

Suppose that σ is a universal sentence.
By plugging in elements from Mn(C) for larger n, we can start
“effectively” enumerating lower bounds for σR.
But what effectively enumerating upper bounds for σR?
There is a proof system for continuous logic and the
Completeness Theorem tells us that if something is a
(first-order) theorem about II1 factors, then there will be a formal
proof of it from the axioms of II1 factors.
If σR ≤ r , then by CEP, “σ ≤ r ” is a theorem about II1 factors, so
by running our “proof machine” we will eventually know this fact.
This effectively enumerates upper bounds for σR. (Soundness
makes sure we make no mistakes.)
Thus, CEP implies that the universal theory of R is computable,
meaning we can effectively approximate σR to within any desired
tolerance.
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Locally universal factors

Definition

A II1 factor M is called locally universal if every II1 factor embeds into
an ultrapower of M.

So CEP asks if R is locally universal.

Theorem (Farah-Hart-Sherman)

A separable locally universal II1 factor exists.

Clearly any factor extending a locally universal factor is also locally
universal. Using a technique known as model-theoretic forcing, one
can construct locally universal factors with a wide variety of extra
properties.
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Popa’s Factorial Commutant Embedding Problem

In connection with the CEP, Popa asked the following question:

Popa’s FCEP

Suppose that M is embeddable. Must there exist an embedding
i : M ↪→ RU such that i(M)′ ∩RU is a factor?

R satisfies the FCEP. (Dixmier and Lance)
L(SL3(Z)) satisfies the FCEP. (Popa)
Brown showed that embeddings i as above are the extreme points
in a convex-like space of embeddings from M to RU .
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Recent progress on the FCEP

Theorem (Atkinson-G.-Your friend Sri, 2020)

If M ≡ R, then M satisfies the FCEP.

The proof uses the model-theoretic notion of heir along with the above
work of Nate Brown.

Theorem (G.)

There is a locally universal II1 factor M such that, for all property (T)
factors N, there is an embedding i : N ↪→ MU such that i(N)′ ∩MU is a
factor.

The proof uses the model-theoretic notion of infinitely generic
factor as well as a model-theoretic bicommutant theorem.
One can identify two precise hurdles from adapting this argument
to establishing the original FCEP for property (T) factors.
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The Jung property

Theorem (Jung)

If M is a separable embeddable factor, then any two embeddings
π, ρ : M ↪→ RU are unitarily conjugate if and only if M ∼= R.

Theorem (Atksinon-Kunnawalkam Elayavalli)

If M is a separable embeddable factor, then any two embeddings
π, ρ : M ↪→ MU are unitarily conjugate if and only if M ∼= R.

Theorem (Atkinson-G.-Kunnawalkam Elayavalli)

1 If M is a separable embeddable factor, then any two embeddings
π, ρ : M ↪→ MU are conjugate by an automorphism if and only if
M ∼= R.

2 There is a nonembeddable M with this property.
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Definable sets

Exercise

Suppose that p ∈
∏
U Mi is a projection. Then there are projections

pi ∈ Mi such that p = (pi)U . Ditto for unitaries.

For a formula ϕ(~x) and M, set Z (ϕM) := {~a ∈ M : ϕ(~a)M = 0}.

Theorem/Definition

Fix a formula ϕ(~x). The following are equivalent:
1 Z (ϕ

∏
U Mi ) =

∏
U Z (ϕMi ).

2 For any formula ψ(~x , ~y), sup~x∈Z (ϕ) ψ(~x , ~y) and inf~x∈Z (ϕ) ψ(~x , ~y)
“are” formulae again.

In this case, we call Z (ϕ) a definable set.

So projections and unitaries form definable sets.
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Property (T) and definability

Theorem (G., Hart, and Sinclair)

Given a II1 factor N, we can treat N-N bimodules (see Corey’s talk) as
structures in an appropriate language just like we have been doing for
tracial von Neumann algebras.

If H is an N-N bimodule, we call ξ ∈ H central if xξ = ξx for all x ∈ N.

Theorem (G., Hart, and Sinclair)

N has property (T) if and only if the set of central vectors forms a
definable set for the class of N-N bimodules.
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Existentially closed tracial von Neumann algebras

Theorem/Definition

Given an inclusion M ⊆ N of tracial von Neumann algebras, the
following are equivalent:

for any quantifier-free formula ϕ(~x , ~y) and any ~a ∈ M, we have:

(inf~x ϕ(~x , ~a))M = (inf~x ϕ(~x , ~a))N .

There is an embedding N ↪→ MU such that the restriction
M ↪→ MU is the diagonal embedding.

In this case, we say that M is existentially closed (e.c.) in N. M is
existentially closed if it is e.c. in all extensions. Can also relativize to
the embeddable case.

This is the model-theoretic generalization of algebraically closed field.
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Some facts about e.c. tracial von Neumann algebras

Every tracial von Neumann algebra embeds into an e.c. tracial
von Neumann algebra (of the same density character).
E.c. tracial von Neumann algebras are locally universal McDuff II1
factors.
(G., Hart, Sinclair) You cannot axiomatize the e.c. factors.
(G.) Suppose that N has property (T) and N ⊆ M with M e.c.
Then (N ′ ∩M)′ ∩M = N. (Model-theoretic bicommutant theorem.)
CEP is equivalent to the statement that R is e.c.

Questions

1 Is there a “concrete” e.c. factor?
2 Are all e.c. factors elementarily equivalent?

Isaac Goldbring (UCI) Model theory and vNas GOALS July 2020 24 / 26



Some facts about e.c. tracial von Neumann algebras

Every tracial von Neumann algebra embeds into an e.c. tracial
von Neumann algebra (of the same density character).
E.c. tracial von Neumann algebras are locally universal McDuff II1
factors.
(G., Hart, Sinclair) You cannot axiomatize the e.c. factors.
(G.) Suppose that N has property (T) and N ⊆ M with M e.c.
Then (N ′ ∩M)′ ∩M = N. (Model-theoretic bicommutant theorem.)
CEP is equivalent to the statement that R is e.c.

Questions

1 Is there a “concrete” e.c. factor?
2 Are all e.c. factors elementarily equivalent?

Isaac Goldbring (UCI) Model theory and vNas GOALS July 2020 24 / 26



Some facts about e.c. tracial von Neumann algebras

Every tracial von Neumann algebra embeds into an e.c. tracial
von Neumann algebra (of the same density character).
E.c. tracial von Neumann algebras are locally universal McDuff II1
factors.
(G., Hart, Sinclair) You cannot axiomatize the e.c. factors.
(G.) Suppose that N has property (T) and N ⊆ M with M e.c.
Then (N ′ ∩M)′ ∩M = N. (Model-theoretic bicommutant theorem.)
CEP is equivalent to the statement that R is e.c.

Questions

1 Is there a “concrete” e.c. factor?
2 Are all e.c. factors elementarily equivalent?

Isaac Goldbring (UCI) Model theory and vNas GOALS July 2020 24 / 26



Some facts about e.c. tracial von Neumann algebras

Every tracial von Neumann algebra embeds into an e.c. tracial
von Neumann algebra (of the same density character).
E.c. tracial von Neumann algebras are locally universal McDuff II1
factors.
(G., Hart, Sinclair) You cannot axiomatize the e.c. factors.
(G.) Suppose that N has property (T) and N ⊆ M with M e.c.
Then (N ′ ∩M)′ ∩M = N. (Model-theoretic bicommutant theorem.)
CEP is equivalent to the statement that R is e.c.

Questions

1 Is there a “concrete” e.c. factor?
2 Are all e.c. factors elementarily equivalent?

Isaac Goldbring (UCI) Model theory and vNas GOALS July 2020 24 / 26



Some facts about e.c. tracial von Neumann algebras

Every tracial von Neumann algebra embeds into an e.c. tracial
von Neumann algebra (of the same density character).
E.c. tracial von Neumann algebras are locally universal McDuff II1
factors.
(G., Hart, Sinclair) You cannot axiomatize the e.c. factors.
(G.) Suppose that N has property (T) and N ⊆ M with M e.c.
Then (N ′ ∩M)′ ∩M = N. (Model-theoretic bicommutant theorem.)
CEP is equivalent to the statement that R is e.c.

Questions

1 Is there a “concrete” e.c. factor?
2 Are all e.c. factors elementarily equivalent?

Isaac Goldbring (UCI) Model theory and vNas GOALS July 2020 24 / 26



Some facts about e.c. tracial von Neumann algebras

Every tracial von Neumann algebra embeds into an e.c. tracial
von Neumann algebra (of the same density character).
E.c. tracial von Neumann algebras are locally universal McDuff II1
factors.
(G., Hart, Sinclair) You cannot axiomatize the e.c. factors.
(G.) Suppose that N has property (T) and N ⊆ M with M e.c.
Then (N ′ ∩M)′ ∩M = N. (Model-theoretic bicommutant theorem.)
CEP is equivalent to the statement that R is e.c.

Questions

1 Is there a “concrete” e.c. factor?
2 Are all e.c. factors elementarily equivalent?

Isaac Goldbring (UCI) Model theory and vNas GOALS July 2020 24 / 26



Some facts about e.c. tracial von Neumann algebras

Every tracial von Neumann algebra embeds into an e.c. tracial
von Neumann algebra (of the same density character).
E.c. tracial von Neumann algebras are locally universal McDuff II1
factors.
(G., Hart, Sinclair) You cannot axiomatize the e.c. factors.
(G.) Suppose that N has property (T) and N ⊆ M with M e.c.
Then (N ′ ∩M)′ ∩M = N. (Model-theoretic bicommutant theorem.)
CEP is equivalent to the statement that R is e.c.

Questions

1 Is there a “concrete” e.c. factor?
2 Are all e.c. factors elementarily equivalent?

Isaac Goldbring (UCI) Model theory and vNas GOALS July 2020 24 / 26



Thanks for your attention!
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Suggestions for future reading

S. Atkinson, I. Goldbring, and S. Kunnawalkam Elayavalli,
Factorial commutants and II1 factors with the generalized Jung
property.
I. Farah, I. Goldbring, B. Hart, and D. Sherman, Existentially
closed II1 factors.
I. Farah, B. Hart, and D. Sherman, Model theory of operator
algebras I, II, and III.
I. Goldbring, Spectral gap and definability.
I. Goldbring, Enforceable operator algebras.
I. Goldbring and B. Hart, The universal theory of the hyperfinite II1
factor is not computable.
I. Goldbring, B. Hart, and T. Sinclair, The theory of tracial von
Neumann algebras does not have a model companion.
I. Goldbring, B. Hart, and H. Towsner, Explicit sentences
distinguishing McDuff’s II1 factors.

Isaac Goldbring (UCI) Model theory and vNas GOALS July 2020 26 / 26


