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Quantum graphs

G = (Vertex set, Edge set, Adjacency matrix)

Classical reflexive graph

V = {1, 2, 3}

E = {(1, 1), (2, 2), (3, 3), (1, 2), (1, 3)}

AG =

1 1 1
1 1 0
1 0 1

 ∗ ∗ ∗∗ ∗ 0
∗ 0 ∗

 1

2

3

SG :=


∗ ∗ ∗∗ ∗ 0
∗ 0 ∗

 where ∗ ∈ C

 ⊆ M3(C)
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Operator generalization of classical graphs

SG :=


∗ ∗ ∗∗ ∗ 0
∗ 0 ∗

 where ∗ ∈ C

 ⊆ M3(C)

1

2

3

Properties of SG :

Linear subspace

Self-adjointness (A ∈ SG ⇐⇒ A∗ ∈ SG )

Contains identity

SG is an operator system!

Operator System

A subspace S ⊆ B(H) is called an operator system if

I ∈ S

A ∈ S =⇒ A∗ ∈ S
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Quantum Graphs

Graph Operator System

Let G = (V ,E ) be a classical graph on n vertices. The graph operator
system SG associated to G is defined as

SG = span{eij : (i , j) ∈ E or i = j , ∀i , j ∈ V } ⊆Mn ,

where eij are matrix units in Mn.

More generally,

Matrix Quantum Graph

An operator system S in Mn is called a matrix quantum graph.

S = SG ⇐⇒ DnSDn ⊆ S ,

where Dn is the diagonal subalgebra in Mn.
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Motivation from information theory

Generalize the confusability graph of classical channels.

Classical confusability graph

Classical channel Φ : {x1, x2, . . . xm} −→ {y1, y2, . . . yn}

Φ = probability transition matrix [P(yj |xi )]

Input messages (X ) Output messages(Y )

X1 Y1

X2 Y2

X3 Y3

X4 Y4

X5 Y5

Φ X1

X2

X4 X5

X3

Classical channels − > classical confusability graphs

Quantum channels − > quantum graphs
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Quantum graphs as non-commutative confusability graphs

Quantum channel

Quantum communication channel take quantum states to quantum states.

Φ : B(HA)
linear−→ B(HB)

Trace preserving (TP): Tr(ρ) = Tr(Φ(ρ)).

Completely positive (CP): Φ is positive and all extensions Φ⊗ IE are
also positive.

Krauss representation: Φ(ρ) =
∑r

i=1 KiρK
∗
i , where Ki ∈ B(HA,HB),

∑r
i=1 K

∗
i Ki = IA

Non-commutative confusability graph [DSW, 2013]

Given a quantum channel Φ : Mm →Mn with Φ(x) =
∑r

i=1 KixK
∗
i , the

confusability graph of Φ is the operator system:

SΦ = span{K ∗i Kj : 1 ≤ i , j ≤ r} ⊆Mm.
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Significance of quantum graphs

X1 Y1

X2 Y2

X3 Y3

X4 Y4

X5 Y5

X1

X2

X4 X5

X3

Independence number of
confusability graph
=
one-shot zero error capacity
of channel

Input messages x , y are not confusable ⇐⇒ |x〉 〈y | ⊥ SΦ

Useful in zero-error quantum communication
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Mathematical interest in quantum graphs

Quantum graphs are closely related to:

Operator theory, C*-algebras

Non-commutative topology

Category theory, quantum symmetries, quantum groups

Operator theory approach to quantum graphs:

Quantize edge set
View as quantum relations [Weaver]

Non-commutative topology approach to quantum graphs:

Quantize adjacency matrix [MRV ’18, BCE+ ’20]
Use categorical theory of quantum sets and quantum functions

Different yet equivalent notions!
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Quantum graphs as quantum relations

Quantum set: von-Neumann algebra M⊆ B(H).

Quantum relation [Kuperberg-Weaver, 2010]

A quantum relation on M is a weak*-closed subspace S ⊆ B(H) that is a
bi-module over its commutant M′.

Classical graph: E ⊆ V × V is a reflexive, symmetric relation on V

Quantum graph: reflexive & symmetric quantum relation on M

Quantum Graph [Weaver, 2015]

A quantum graph on M is a weak*-closed operator system S ⊆ B(H)
that is a bi-module over M′.

M′SM′ ⊆
operator system

B(H)
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The quantum adjacency matrix formalism

Quantum set: finite dimensional C*-algebra with a faithful tracial state.

Quantum graphs [Musto-Reutter-Verdon, 2018]

A quantum graph is a pair (M,AG ) containing

Quantum set (M, ψ)

Quantum adjacency matrix AG :M linear−→ M with

Schur Idempotency: m(AG ⊗ AG )m∗ = AG

Reflexivity: m(AG ⊗ I )m∗ = I

Symmetry: (η∗m ⊗ I )(I ⊗ AG ⊗ I )(I ⊗m∗η) = AG

m :M⊗M→M is the multiplication map, η : C→M is the unit map.

m∗, η∗ are their duals w.r.t Hilbert space structure on L2(M, ψ).
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Translating different notions of quantum graphs

Quantum set M: finite dimensional C*-algebra with faithful tracial state ψ.

CLASSICAL
GRAPH

MATRIX
Q.GRAPH

QUANTUM
RELATIONS

PROJECTION ADJACENCY
MATRIX

G = (V ,E ,AG )

AG ∈ Mn{0, 1}

S ⊆ Mn is an
operator sys-
tem.

(M,M′SM′ ) (M, p)

p ∈ M ⊗Mop

(M,AG )

AG : M → M

Idempotency:
AG � AG = AG

AG �Mn = S M′SM′ ⊆ S p = p2 m(AG⊗AG )m∗ = AG

Reflexivity: 1s
on the diagonal

1 ∈ S M′ ⊆ S m(p) = 1M m(AG ⊗ I )m∗ = I

Irreflexivity: 0s
on the diagonal

Tr(S) = 0 M′ ⊥ S m(p) = 0 m(AG ⊗ I )m∗ = 0

Undirected:
AG = AT

G

S = S∗ S = S∗ σ(p) = p (η∗m ⊗ I )(I ⊗ AG ⊗
I )(I ⊗m∗η) = AG
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Graph coloring

Coloring problem

Assign colors to vertices of
graph such that no adjacent
vertices get same color.

Chromatic number

Least number of colors
required to color that graph.
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Quantum graph coloring

Classical
Graph

Quantum
Graph

C
la
ss
ic
a
l

C
h
ro
m
a
ti
c
N
o
.

Q
u
a
n
tu
m

C
h
ro
m
a
ti
c
N
o
.
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Non-local graph coloring game

For a classical graph G = (V ,E ):

The referee sends questions (vertices) to Alice and Bob separately. They
respond with answers (colors), without communicating with one another.

Inputs: Ialice = Ibob = V .

Outputs: Oalice = Obob = {1, 2, 3 . . . k}
Rule function λ : Ialice × Ibob × Oalice × Obob −→ {0, 1}.
Winning condition: λ(v ,w , a, b) = 1

Adjacency rule: (v ,w) ∈ E =⇒ a 6= b
Same vertex rule: v = w =⇒ a = b

Players can use different strategies (local (loc), quantum (q), quantum
approximate (qa) and quantum commuting (qc)) to win the game.
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The quantum-to-classical graph coloring game

Let G = (M, S ,Mn) be a quantum graph;

F be a quantum edge basis for S and {v1, v2, . . . vn} be a basis for Cn

satisfying certain properties.

Definition (Brannan-Ganesan-Harris, 2020)

The quantum-to-classical graph coloring game for G has:

Inputs: Yα :=
∑
p,q

yα,pq vp ⊗ vq ∈ F .

Alice gets left leg and Bob gets right leg of Yα.

Outputs: colors {1, 2, . . . k}.
Winning Criteria:

Synchronicity: If Yα ∈M′, then respond with the same color.
Adjacency: If Yα ⊥M′, then respond with different colors.

The t-chromatic number χt(G) is the least k needed to win the game with
strategy t ∈ {loc, q, qa, qs, qc}.
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Winning Criteria:

Synchronicity: If Yα ∈M′, then respond with the same color.
Adjacency: If Yα ⊥M′, then respond with different colors.

The t-chromatic number χt(G) is the least k needed to win the game with
strategy t ∈ {loc, q, qa, qs, qc}.
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Combinatorial characterization of quantum graph coloring

[Brannan-Ganesan-Harris, 2020]

A quantum graph G = (M,S ,Mn) has a k-coloring if there exists a finite
von-Neumann algebra N with a faithful normal trace and projections
{Pa}ka=1 ⊆M⊗N such that

1 P2
a = Pa = P∗a , ∀a,

2
∑k

a=1 Pa = IM ⊗ IN ,

which satisfy Pa(X ⊗ IN )Pa = 0 , for all X ∈ S and 1 ≤ a ≤ k .

Chromatic number of quantum graphs:

χloc(G): least k with dim(N ) = 1

χq(G): least k with dim(N ) <∞
χqc(G): least k with finite N (possibly infinite dimensional)
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Quantum graph coloring results [Brannan-Ganesan-Harris, 2020]

Let G = (M, S ,Mn) be a quantum graph.

If T ⊆ S , then χt(M,T ,Mn) ≤ χt(M,S ,Mn) (t ∈ {loc, q, qa, qs, qc})

For complete quantum graphs: χq(G) = dim(M).

Every quantum graph has a finite quantum coloring.

χq(G) ≤ dim(M) but χloc(G) =∞ unless G is classical.

Let A(G → K4) be the game algebra associated to the quantum
graph coloring game on four colors. Then, A(G → K4) 6= 0.

χalg (G) ≤ 4

Every quantum graph is four-colorable in the algebraic model.

χalg (G) ≤ χqc(G) ≤ χqa(G) ≤ χq(G) ≤ χloc(G).
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Bounds for the chromatic numbers of quantum graphs

Can we estimate these chromatic numbers?

IDEA: Use eigenvalues of the quantum adjacency matrix to bound χq(G).

Tool

If {Pa}ka=1 ⊆M⊗N is a quantum coloring of G, then

Pa(A⊗ IN )Pa = 0, ∀a,

where A is the unique self-adjoint quantum adjacency operator of G.
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Hoffman’s bound

Let λmax = λ1 ≥ λ2 ≥ λ3 ≥ . . . ≥ λmin be all the eigenvalues of A.

Hoffman’s bound for classical graphs (Hoffman, 1970)

For a classical graph G = (V ,E ,A),

1 +
λmax

|λmin|
≤ χ(G )

Hoffman’s bound for quantum graphs (Ganesan, 2021)

For a quantum graph G = (M, ψ, S ,A),

1 +
λmax

|λmin|
≤ χq(G)

Example: For a quantum complete graph, λmax = dim(M)− 1, λmin = −1:

χq(G) ≤ dim(M)
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More bounds

Let G = (M, ψ,A, S) be an irreflexive quantum graph

Spectral bounds [Ganesan, 2021]

1 + max

{
λmax

|λmin|
,

2m

2m − nγmin
,
s±

s∓
,
n±

n∓
,

λmax

λmax − γmax + θmax

}
≤ χq(G),

where

λmax, λmin are the maximum and minimum eigenvalues of A

s+, s− are the sum of the squares of the positive and negative
eigenvalues of A respectively

n+, n− are the number of positive and negative eigenvalues of A
including multiplicities

γmax, γmin are the maximum and minimum eigenvalues of the signless
Laplacian operator

θmax is the maximum eigenvalue of the Laplacian operator.
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