# Quantum graphs and colorings 

Priyanga Ganesan<br>University of California, San Diego

GOALS workshop 2022

## Research area

MATHEMATICS

## COMPUTER SCIENCE



## PHYSICS

## Quantum graphs

$G=($ Vertex set, Edge set, Adjacency matrix)
Classical reflexive graph

- $V=\{1,2,3\}$
- $E=\{(1,1),(2,2),(3,3),(1,2),(1,3)\}$
- $A_{G}=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]\left[\begin{array}{lll}* & * & * \\ * & * & 0 \\ * & 0 & *\end{array}\right]$


$$
S_{G}:=\left\{\left[\begin{array}{lll}
* & * & * \\
* & * & 0 \\
* & 0 & *
\end{array}\right] \text { where } * \in \mathbb{C}\right\} \subseteq M_{3}(\mathbb{C})
$$

## Operator generalization of classical graphs

$$
S_{G}:=\left\{\left[\begin{array}{lll}
* & * & * \\
* & * & 0 \\
* & 0 & *
\end{array}\right] \text { where } * \in \mathbb{C}\right\} \subseteq M_{3}(\mathbb{C})
$$

Properties of $S_{G}$ :

- Linear subspace

■ Self-adjointness $\left(A \in S_{G} \Longleftrightarrow A^{*} \in S_{G}\right)$

- Contains identity



## Operator generalization of classical graphs

$$
S_{G}:=\left\{\left[\begin{array}{lll}
* & * & * \\
* & * & 0 \\
* & 0 & *
\end{array}\right] \text { where } * \in \mathbb{C}\right\} \subseteq M_{3}(\mathbb{C})
$$

Properties of $S_{G}$ :

- Linear subspace
- Self-adjointness $\left(A \in S_{G} \Longleftrightarrow A^{*} \in S_{G}\right)$
- Contains identity
$S_{G}$ is an operator system!


## Operator generalization of classical graphs

$$
S_{G}:=\left\{\left[\begin{array}{lll}
* & * & * \\
* & * & 0 \\
* & 0 & *
\end{array}\right] \text { where } * \in \mathbb{C}\right\} \subseteq M_{3}(\mathbb{C})
$$

## Properties of $S_{G}$ :

- Linear subspace

■ Self-adjointness $\left(A \in S_{G} \Longleftrightarrow A^{*} \in S_{G}\right)$

- Contains identity


## $S_{G}$ is an operator system!

## Operator System

A subspace $S \subseteq B(H)$ is called an operator system if
$\square I \in S$

- $A \in S \Longrightarrow A^{*} \in S$


## Quantum Graphs

## Graph Operator System

Let $G=(V, E)$ be a classical graph on $n$ vertices. The graph operator system $S_{G}$ associated to $G$ is defined as

$$
S_{G}=\operatorname{span}\left\{e_{i j}:(i, j) \in E \text { or } i=j, \forall i, j \in V\right\} \subseteq \mathbb{M}_{n}
$$

where $e_{i j}$ are matrix units in $\mathbb{M}_{n}$.

## Quantum Graphs

## Graph Operator System

Let $G=(V, E)$ be a classical graph on $n$ vertices. The graph operator system $S_{G}$ associated to $G$ is defined as

$$
S_{G}=\operatorname{span}\left\{e_{i j}:(i, j) \in E \text { or } i=j, \forall i, j \in V\right\} \subseteq \mathbb{M}_{n}
$$

where $e_{i j}$ are matrix units in $\mathbb{M}_{n}$.
More generally,

## Matrix Quantum Graph

An operator system $S$ in $\mathbb{M}_{n}$ is called a matrix quantum graph.

## Quantum Graphs

## Graph Operator System

Let $G=(V, E)$ be a classical graph on $n$ vertices. The graph operator system $S_{G}$ associated to $G$ is defined as

$$
S_{G}=\operatorname{span}\left\{e_{i j}:(i, j) \in E \text { or } i=j, \forall i, j \in V\right\} \subseteq \mathbb{M}_{n}
$$

where $e_{i j}$ are matrix units in $\mathbb{M}_{n}$.
More generally,

## Matrix Quantum Graph

An operator system $S$ in $\mathbb{M}_{n}$ is called a matrix quantum graph.

$$
S=S_{G} \Longleftrightarrow D_{n} S D_{n} \subseteq S
$$

where $D_{n}$ is the diagonal subalgebra in $\mathbb{M}_{n}$.

## Motivation from information theory

■ Generalize the confusability graph of classical channels.

## Motivation from information theory

- Generalize the confusability graph of classical channels.


## Classical confusability graph

Classical channel $\Phi:\left\{x_{1}, x_{2}, \ldots x_{m}\right\} \longrightarrow\left\{y_{1}, y_{2}, \ldots y_{n}\right\}$

$$
\Phi=\text { probability transition matrix }\left[P\left(y_{j} \mid x_{i}\right)\right]
$$

## Input messages $(X) \xrightarrow{\Phi}$ Output messages $(Y)$



## Motivation from information theory

- Generalize the confusability graph of classical channels.


## Classical confusability graph

Classical channel $\Phi:\left\{x_{1}, x_{2}, \ldots x_{m}\right\} \longrightarrow\left\{y_{1}, y_{2}, \ldots y_{n}\right\}$

$$
\Phi=\text { probability transition matrix }\left[P\left(y_{j} \mid x_{i}\right)\right]
$$

$$
\text { Input messages }(X) \xrightarrow{\Phi} \text { Output messages }(Y)
$$



■ Classical channels - > classical confusability graphs

- Quantum channels - > quantum graphs


## Quantum graphs as non-commutative confusability graphs

## Quantum channel

Quantum communication channel take quantum states to quantum states.

$$
\Phi: B\left(H_{A}\right) \xrightarrow{\text { linear }} B\left(H_{B}\right)
$$

- Trace preserving (TP): $\operatorname{Tr}(\rho)=\operatorname{Tr}(\Phi(\rho))$.
- Completely positive (CP): $\Phi$ is positive and all extensions $\Phi \otimes I_{E}$ are also positive.


## Quantum graphs as non-commutative confusability graphs

## Quantum channel

Quantum communication channel take quantum states to quantum states.

$$
\Phi: B\left(H_{A}\right) \xrightarrow{\text { linear }} B\left(H_{B}\right)
$$

- Trace preserving (TP): $\operatorname{Tr}(\rho)=\operatorname{Tr}(\Phi(\rho))$.
- Completely positive (CP): $\Phi$ is positive and all extensions $\Phi \otimes I_{E}$ are also positive.

Krauss representation: $\Phi(\rho)=\sum_{i=1}^{r} K_{i} \rho K_{i}^{*}$, where $K_{i} \in B\left(H_{A}, H_{B}\right), \sum_{i=1}^{r} K_{i}^{*} K_{i}=I_{A}$

## Quantum graphs as non-commutative confusability graphs

## Quantum channel

Quantum communication channel take quantum states to quantum states.

$$
\Phi: B\left(H_{A}\right) \xrightarrow{\text { linear }} B\left(H_{B}\right)
$$

- Trace preserving (TP): $\operatorname{Tr}(\rho)=\operatorname{Tr}(\Phi(\rho))$.
- Completely positive (CP): $\Phi$ is positive and all extensions $\Phi \otimes I_{E}$ are also positive.

Krauss representation: $\Phi(\rho)=\sum_{i=1}^{r} K_{i} \rho K_{i}^{*}$, where $K_{i} \in B\left(H_{A}, H_{B}\right), \sum_{i=1}^{r} K_{i}^{*} K_{i}=I_{A}$

## Non-commutative confusability graph [DSW, 2013]

Given a quantum channel $\Phi: \mathbb{M}_{m} \rightarrow \mathbb{M}_{n}$ with $\Phi(x)=\sum_{i=1}^{r} K_{i} x K_{i}^{*}$, the confusability graph of $\Phi$ is the operator system:

$$
S_{\Phi}=\operatorname{span}\left\{K_{i}^{*} K_{j}: 1 \leq i, j \leq r\right\} \subseteq \mathbb{M}_{m}
$$

## Significance of quantum graphs



## Significance of quantum graphs



## Independence number of confusability graph <br> one-shot zero error capacity of channel

## Significance of quantum graphs



> Independence number of confusability graph
> $=$
> one-shot zero error capacity of channel

■ Input messages $x, y$ are not confusable $\Longleftrightarrow|x\rangle\langle y| \perp S_{\Phi}$
■ Useful in zero-error quantum communication

## Mathematical interest in quantum graphs

## Mathematical interest in quantum graphs

Quantum graphs are closely related to:

- Operator theory, C*-algebras
- Non-commutative topology

■ Category theory, quantum symmetries, quantum groups

## Mathematical interest in quantum graphs

Quantum graphs are closely related to:

- Operator theory, C*-algebras
- Non-commutative topology

■ Category theory, quantum symmetries, quantum groups

■ Operator theory approach to quantum graphs:
■ Quantize edge set

- View as quantum relations [Weaver]


## Mathematical interest in quantum graphs

Quantum graphs are closely related to:

- Operator theory, C*-algebras
- Non-commutative topology

■ Category theory, quantum symmetries, quantum groups

■ Operator theory approach to quantum graphs:

- Quantize edge set
- View as quantum relations [Weaver]
- Non-commutative topology approach to quantum graphs:
- Quantize adjacency matrix [MRV '18, BCE ' '20]
- Use categorical theory of quantum sets and quantum functions


## Mathematical interest in quantum graphs

Quantum graphs are closely related to:

- Operator theory, C*-algebras
- Non-commutative topology

■ Category theory, quantum symmetries, quantum groups

■ Operator theory approach to quantum graphs:

- Quantize edge set
- View as quantum relations [Weaver]
- Non-commutative topology approach to quantum graphs:
- Quantize adjacency matrix [MRV '18, BCE ' '20]
- Use categorical theory of quantum sets and quantum functions

Different yet equivalent notions!

## Quantum graphs as quantum relations

Quantum set: von-Neumann algebra $\mathcal{M} \subseteq B(H)$.

## Quantum relation [Kuperberg-Weaver, 2010]

A quantum relation on $\mathcal{M}$ is a weak*-closed subspace $S \subseteq B(H)$ that is a bi-module over its commutant $\mathcal{M}^{\prime}$.

## Quantum graphs as quantum relations

Quantum set: von-Neumann algebra $\mathcal{M} \subseteq B(H)$.

## Quantum relation [Kuperberg-Weaver, 2010]

A quantum relation on $\mathcal{M}$ is a weak*-closed subspace $S \subseteq B(H)$ that is a bi-module over its commutant $\mathcal{M}^{\prime}$.

■ Classical graph: $E \subseteq V \times V$ is a reflexive, symmetric relation on $V$

## Quantum graphs as quantum relations

Quantum set: von-Neumann algebra $\mathcal{M} \subseteq B(H)$.

## Quantum relation [Kuperberg-Weaver, 2010]

A quantum relation on $\mathcal{M}$ is a weak*-closed subspace $S \subseteq B(H)$ that is a bi-module over its commutant $\mathcal{M}^{\prime}$.

- Classical graph: $E \subseteq V \times V$ is a reflexive, symmetric relation on $V$

■ Quantum graph: reflexive \& symmetric quantum relation on $\mathcal{M}$

## Quantum graphs as quantum relations

Quantum set: von-Neumann algebra $\mathcal{M} \subseteq B(H)$.

## Quantum relation [Kuperberg-Weaver, 2010]

A quantum relation on $\mathcal{M}$ is a weak*-closed subspace $S \subseteq B(H)$ that is a bi-module over its commutant $\mathcal{M}^{\prime}$.

■ Classical graph: $E \subseteq V \times V$ is a reflexive, symmetric relation on $V$
■ Quantum graph: reflexive \& symmetric quantum relation on $\mathcal{M}$

## Quantum Graph [Weaver, 2015]

A quantum graph on $\mathcal{M}$ is a weak*-closed operator system $S \subseteq B(H)$ that is a bi-module over $\mathcal{M}^{\prime}$.

$$
\mathcal{M}^{\prime} S_{\mathcal{M}^{\prime}} \underset{\text { operator system }}{\subseteq} B(H)
$$

Quantum set: finite dimensional C*-algebra with a faithful tracial state.

The quantum adjacency matrix formalism

Quantum set: finite dimensional C*-algebra with a faithful tracial state.

## Quantum graphs [Musto-Reutter-Verdon, 2018]

A quantum graph is a pair $\left(\mathcal{M}, A_{G}\right)$ containing

- Quantum set $(\mathcal{M}, \psi)$
- Quantum adjacency matrix $A_{G}: \mathcal{M} \xrightarrow{\text { linear }} \mathcal{M}$ with
- Schur Idempotency: $m\left(A_{G} \otimes A_{G}\right) m^{*}=A_{G}$
- Reflexivity: $m\left(A_{G} \otimes I\right) m^{*}=I$
- Symmetry: $\left(\eta^{*} m \otimes I\right)\left(I \otimes A_{G} \otimes I\right)\left(I \otimes m^{*} \eta\right)=A_{G}$
$m: \mathcal{M} \otimes \mathcal{M} \rightarrow \mathcal{M}$ is the multiplication map, $\eta: \mathbb{C} \rightarrow \mathcal{M}$ is the unit map. $m^{*}, \eta^{*}$ are their duals w.r.t Hilbert space structure on $L^{2}(\mathcal{M}, \psi)$.


## Translating different notions of quantum graphs

Quantum set $M$ : finite dimensional $C^{*}$-algebra with faithful tracial state $\psi$.

| CLASSICAL <br> GRAPH | MATRIX <br> Q.GRAPH | QUANTUM <br> RELATIONS | PROJECTION | ADJACENCY <br> MATRIX |
| :--- | :--- | :--- | :--- | :--- |
| $G=\left(V, E, A_{G}\right)$ <br> $A_{G} \in \mathbb{M}_{n}\{0,1\}$ | $S \subseteq \mathbb{M}_{n}$ is an <br> operator sys- <br> tem. | $\left(M, M^{\prime} S_{M^{\prime}}\right)$ | $(M, p)$ | $\left(M, A_{G}\right)$ |
| Idempotency: <br> $A_{G} \odot A_{G}=A_{G}$ | $A_{G} \odot \mathbb{M}_{n}=S$ | $M^{\prime} S M^{\prime} \subseteq S$ | $p=p^{2}$ | $m\left(A_{G} \otimes A_{G}\right) m^{*}=A_{G}$ |
| Reflexivity: 1s <br> on the diagonal | $1 \in S$ | $M^{\prime} \subseteq S$ | $m(p)=1_{M}$ | $m\left(A_{G} \otimes I\right) m^{*}=I$ |
| Irreflexivity: 0s <br> on the diagonal | $\operatorname{Tr}(S)=0$ | $M^{\prime} \perp S$ | $m(p)=0$ | $m\left(A_{G} \otimes I\right) m^{*}=0$ |
| Undirected: <br> $A_{G}=A_{G}^{T}$ | $S=S^{*}$ | $S=S^{*}$ | $\sigma(p)=p$ | $\left(\eta^{*} m \otimes I\right)\left(I \otimes A_{G} \otimes\right.$ <br> $I)\left(I \otimes m^{*} \eta\right)=A_{G}$ |

## Graph coloring

## Coloring problem <br> Assign colors to vertices of graph such that no adjacent vertices get same color.



## Chromatic number <br> Least number of colors required to color that graph.

## Quantum graph coloring

|  | Classical Graph | Quantum Graph |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  |

## Quantum graph coloring

|  | Classical Graph | Quantum Graph |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  |

## Quantum graph coloring

|  | Classical Graph | Quantum Graph |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  |

## Quantum graph coloring



## Quantum graph coloring

|  | Classical Graph | Quantum Graph |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  |

## Non-local graph coloring game

For a classical graph $G=(V, E)$ :

## Non-local graph coloring game

For a classical graph $G=(V, E)$ :
The referee sends questions (vertices) to Alice and Bob separately. They respond with answers (colors), without communicating with one another.

## Non-local graph coloring game

For a classical graph $G=(V, E)$ :
The referee sends questions (vertices) to Alice and Bob separately. They respond with answers (colors), without communicating with one another.

■ Inputs: $I_{\text {alice }}=I_{b o b}=V$.

## Non-local graph coloring game

For a classical graph $G=(V, E)$ :
The referee sends questions (vertices) to Alice and Bob separately. They respond with answers (colors), without communicating with one another.

- Inputs: $I_{\text {alice }}=I_{b o b}=V$.
- Outputs: $O_{\text {alice }}=O_{b o b}=\{1,2,3 \ldots k\}$


## Non-local graph coloring game

For a classical graph $G=(V, E)$ :
The referee sends questions (vertices) to Alice and Bob separately. They respond with answers (colors), without communicating with one another.

- Inputs: $I_{\text {alice }}=I_{b o b}=V$.
- Outputs: $O_{\text {alice }}=O_{b o b}=\{1,2,3 \ldots k\}$
- Rule function $\lambda: I_{\text {alice }} \times I_{\text {bob }} \times O_{\text {alice }} \times O_{b o b} \longrightarrow\{0,1\}$.


## Non-local graph coloring game

For a classical graph $G=(V, E)$ :
The referee sends questions (vertices) to Alice and Bob separately. They respond with answers (colors), without communicating with one another.

- Inputs: $I_{\text {alice }}=I_{b o b}=V$.
- Outputs: $O_{\text {alice }}=O_{b o b}=\{1,2,3 \ldots k\}$

■ Rule function $\lambda: I_{\text {alice }} \times I_{\text {bob }} \times O_{\text {alice }} \times O_{b o b} \longrightarrow\{0,1\}$.

- Winning condition: $\lambda(v, w, a, b)=1$
- Adjacency rule: $(v, w) \in E \Longrightarrow a \neq b$
- Same vertex rule: $v=w \Longrightarrow a=b$


## Non-local graph coloring game

For a classical graph $G=(V, E)$ :
The referee sends questions (vertices) to Alice and Bob separately. They respond with answers (colors), without communicating with one another.

- Inputs: $I_{\text {alice }}=I_{\text {bob }}=V$.
- Outputs: $O_{\text {alice }}=O_{b o b}=\{1,2,3 \ldots k\}$
- Rule function $\lambda$ : I Ialice $\times I_{\text {bob }} \times O_{\text {alice }} \times O_{b o b} \longrightarrow\{0,1\}$.
- Winning condition: $\lambda(v, w, a, b)=1$
- Adjacency rule: $(v, w) \in E \Longrightarrow a \neq b$
- Same vertex rule: $v=w \Longrightarrow a=b$

Players can use different strategies (local (loc), quantum ( $q$ ), quantum approximate ( $q a$ ) and quantum commuting ( $q c)$ ) to win the game.

The quantum-to-classical graph coloring game

Let $\mathcal{G}=\left(\mathcal{M}, S, M_{n}\right)$ be a quantum graph;

Let $\mathcal{G}=\left(\mathcal{M}, S, M_{n}\right)$ be a quantum graph; $\mathcal{F}$ be a quantum edge basis for $S$ and $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ be a basis for $\mathbb{C}^{n}$ satisfying certain properties.

The quantum-to-classical graph coloring game

Let $\mathcal{G}=\left(\mathcal{M}, S, M_{n}\right)$ be a quantum graph; $\mathcal{F}$ be a quantum edge basis for $S$ and $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ be a basis for $\mathbb{C}^{n}$ satisfying certain properties.

## Definition (Brannan-Ganesan-Harris, 2020)

The quantum-to-classical graph coloring game for $\mathcal{G}$ has:

The quantum-to-classical graph coloring game

Let $\mathcal{G}=\left(\mathcal{M}, S, M_{n}\right)$ be a quantum graph;
$\mathcal{F}$ be a quantum edge basis for $S$ and $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ be a basis for $\mathbb{C}^{n}$ satisfying certain properties.

## Definition (Brannan-Ganesan-Harris, 2020)

The quantum-to-classical graph coloring game for $\mathcal{G}$ has:

- Inputs: $Y_{\alpha}:=\sum_{p, q} y_{\alpha, p q} v_{p} \otimes v_{q} \in \mathcal{F}$.

Alice gets left leg and Bob gets right leg of $Y_{\alpha}$.

The quantum-to-classical graph coloring game

Let $\mathcal{G}=\left(\mathcal{M}, S, M_{n}\right)$ be a quantum graph;
$\mathcal{F}$ be a quantum edge basis for $S$ and $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ be a basis for $\mathbb{C}^{n}$ satisfying certain properties.

## Definition (Brannan-Ganesan-Harris, 2020)

The quantum-to-classical graph coloring game for $\mathcal{G}$ has:

- Inputs: $Y_{\alpha}:=\sum_{p, q} y_{\alpha, p q} \quad v_{p} \otimes v_{q} \in \mathcal{F}$.

Alice gets left leg and Bob gets right leg of $Y_{\alpha}$.

- Outputs: colors $\{1,2, \ldots k\}$.

The quantum-to-classical graph coloring game

Let $\mathcal{G}=\left(\mathcal{M}, S, M_{n}\right)$ be a quantum graph; $\mathcal{F}$ be a quantum edge basis for $S$ and $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ be a basis for $\mathbb{C}^{n}$ satisfying certain properties.

## Definition (Brannan-Ganesan-Harris, 2020)

The quantum-to-classical graph coloring game for $\mathcal{G}$ has:

- Inputs: $Y_{\alpha}:=\sum_{p, q} y_{\alpha, p q} \quad v_{p} \otimes v_{q} \in \mathcal{F}$.

Alice gets left leg and Bob gets right leg of $Y_{\alpha}$.

- Outputs: colors $\{1,2, \ldots k\}$.
- Winning Criteria:
- Synchronicity: If $Y_{\alpha} \in \mathcal{M}^{\prime}$, then respond with the same color.
- Adjacency: If $Y_{\alpha} \perp \mathcal{M}^{\prime}$, then respond with different colors.

The quantum-to-classical graph coloring game

Let $\mathcal{G}=\left(\mathcal{M}, S, M_{n}\right)$ be a quantum graph; $\mathcal{F}$ be a quantum edge basis for $S$ and $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ be a basis for $\mathbb{C}^{n}$ satisfying certain properties.

## Definition (Brannan-Ganesan-Harris, 2020)

The quantum-to-classical graph coloring game for $\mathcal{G}$ has:

- Inputs: $Y_{\alpha}:=\sum_{p, q} y_{\alpha, p q} v_{p} \otimes v_{q} \in \mathcal{F}$.

Alice gets left leg and Bob gets right leg of $Y_{\alpha}$.

- Outputs: colors $\{1,2, \ldots k\}$.
- Winning Criteria:
- Synchronicity: If $Y_{\alpha} \in \mathcal{M}^{\prime}$, then respond with the same color.
- Adjacency: If $Y_{\alpha} \perp \mathcal{M}^{\prime}$, then respond with different colors.

The $t$-chromatic number $\chi_{t}(\mathcal{G})$ is the least $k$ needed to win the game with strategy $t \in\{l o c, q, q a, q s, q c\}$.

## Combinatorial characterization of quantum graph coloring

[Brannan-Ganesan-Harris, 2020]

A quantum graph $\mathcal{G}=\left(\mathcal{M}, S, M_{n}\right)$ has a $k$-coloring if there exists a finite von-Neumann algebra $\mathcal{N}$ with a faithful normal trace and projections $\left\{P_{a}\right\}_{a=1}^{k} \subseteq \mathcal{M} \otimes \mathcal{N}$ such that
$1 P_{a}^{2}=P_{a}=P_{a}^{*}, \forall a$,
2. $\sum_{a=1}^{k} P_{a}=I_{\mathcal{M}} \otimes I_{\mathcal{N}}$,
which satisfy $P_{a}\left(X \otimes I_{\mathcal{N}}\right) P_{a}=0$, for all $X \in S$ and $1 \leq a \leq k$.

## Combinatorial characterization of quantum graph coloring

[Brannan-Ganesan-Harris, 2020]

A quantum graph $\mathcal{G}=\left(\mathcal{M}, S, M_{n}\right)$ has a $k$-coloring if there exists a finite von-Neumann algebra $\mathcal{N}$ with a faithful normal trace and projections $\left\{P_{a}\right\}_{a=1}^{K} \subseteq \mathcal{M} \otimes \mathcal{N}$ such that
$1 P_{a}^{2}=P_{a}=P_{a}^{*}, \forall a$,
2. $\sum_{a=1}^{k} P_{a}=I_{\mathcal{M}} \otimes I_{\mathcal{N}}$,
which satisfy $P_{a}\left(X \otimes \mathbb{I}_{\mathcal{N}}\right) P_{a}=0$, for all $X \in S$ and $1 \leq a \leq k$.
Chromatic number of quantum graphs:

- $\chi_{\text {loc }}(\mathcal{G})$ : least $k$ with $\operatorname{dim}(\mathcal{N})=1$
- $\chi_{q}(\mathcal{G})$ : least $k$ with $\operatorname{dim}(\mathcal{N})<\infty$
- $\chi_{q c}(\mathcal{G})$ : least $k$ with finite $\mathcal{N}$ (possibly infinite dimensional)


## Quantum graph coloring results [Brannan-Ganesan-Harris, 2020]

Let $\mathcal{G}=\left(\mathcal{M}, S, \mathbb{M}_{n}\right)$ be a quantum graph.

## Quantum graph coloring results [Brannan-Ganesan-Haris, 2020]

Let $\mathcal{G}=\left(\mathcal{M}, S, \mathbb{M}_{n}\right)$ be a quantum graph.
■ If $T \subseteq S$, then $\chi_{t}\left(\mathcal{M}, T, \mathbb{M}_{n}\right) \leq \chi_{t}\left(\mathcal{M}, S, \mathbb{M}_{n}\right) \quad(t \in\{\nmid o c, q, q, q s, q c\})$

## Quantum graph coloring results [Brannan-Ganesan-Harris, 2020]

Let $\mathcal{G}=\left(\mathcal{M}, S, \mathbb{M}_{n}\right)$ be a quantum graph.
■ If $T \subseteq S$, then $\chi_{t}\left(\mathcal{M}, T, \mathbb{M}_{n}\right) \leq \chi_{t}\left(\mathcal{M}, S, \mathbb{M}_{n}\right) \quad(t \in\{1 o c, q, q, q s, q c\})$
■ For complete quantum graphs: $\chi_{q}(\mathcal{G})=\operatorname{dim}(\mathcal{M})$.

## Quantum graph coloring results [Brannan-Ganesan-Haris, 2020]

Let $\mathcal{G}=\left(\mathcal{M}, S, \mathbb{M}_{n}\right)$ be a quantum graph.
■ If $T \subseteq S$, then $\chi_{t}\left(\mathcal{M}, T, \mathbb{M}_{n}\right) \leq \chi_{t}\left(\mathcal{M}, S, \mathbb{M}_{n}\right) \quad(t \in\{1 o c, q, q, q s, q c\})$

- For complete quantum graphs: $\chi_{q}(\mathcal{G})=\operatorname{dim}(\mathcal{M})$.
- Every quantum graph has a finite quantum coloring.


## Quantum graph coloring results [Brannan-Ganesan-Haris, 2020]

Let $\mathcal{G}=\left(\mathcal{M}, S, \mathbb{M}_{n}\right)$ be a quantum graph.
■ If $T \subseteq S$, then $\chi_{t}\left(\mathcal{M}, T, \mathbb{M}_{n}\right) \leq \chi_{t}\left(\mathcal{M}, S, \mathbb{M}_{n}\right) \quad(t \in\{1 o c, q, q z, q s, q c\})$

- For complete quantum graphs: $\chi_{q}(\mathcal{G})=\operatorname{dim}(\mathcal{M})$.
- Every quantum graph has a finite quantum coloring.
$\chi_{q}(\mathcal{G}) \leq \operatorname{dim}(\mathcal{M})$ but $\chi_{\text {loc }}(\mathcal{G})=\infty$ unless $\mathcal{G}$ is classical.


## Quantum graph coloring results [Brannan-Ganesan-Harris, 2020]

Let $\mathcal{G}=\left(\mathcal{M}, S, \mathbb{M}_{n}\right)$ be a quantum graph.
■ If $T \subseteq S$, then $\chi_{t}\left(\mathcal{M}, T, \mathbb{M}_{n}\right) \leq \chi_{t}\left(\mathcal{M}, S, \mathbb{M}_{n}\right) \quad(t \in\{1 o c, q, q, q s, q c\})$
■ For complete quantum graphs: $\chi_{q}(\mathcal{G})=\operatorname{dim}(\mathcal{M})$.

- Every quantum graph has a finite quantum coloring.
$\chi_{q}(\mathcal{G}) \leq \operatorname{dim}(\mathcal{M})$ but $\chi_{\text {loc }}(\mathcal{G})=\infty$ unless $\mathcal{G}$ is classical.
■ Let $\mathcal{A}\left(\mathcal{G} \rightarrow K_{4}\right)$ be the game algebra associated to the quantum graph coloring game on four colors. Then, $\mathcal{A}\left(\mathcal{G} \rightarrow K_{4}\right) \neq 0$.


## Quantum graph coloring results [Brannan-Ganesan-Harris, 2020]

Let $\mathcal{G}=\left(\mathcal{M}, S, \mathbb{M}_{n}\right)$ be a quantum graph.
■ If $T \subseteq S$, then $\chi_{t}\left(\mathcal{M}, T, \mathbb{M}_{n}\right) \leq \chi_{t}\left(\mathcal{M}, S, \mathbb{M}_{n}\right) \quad(t \in\{1 o c, q, q a, q s, q c\})$

- For complete quantum graphs: $\chi_{q}(\mathcal{G})=\operatorname{dim}(\mathcal{M})$.
- Every quantum graph has a finite quantum coloring.

$$
\chi_{q}(\mathcal{G}) \leq \operatorname{dim}(\mathcal{M}) \text { but } \chi_{\text {loc }}(\mathcal{G})=\infty \text { unless } \mathcal{G} \text { is classical. }
$$

■ Let $\mathcal{A}\left(\mathcal{G} \rightarrow K_{4}\right)$ be the game algebra associated to the quantum graph coloring game on four colors. Then, $\mathcal{A}\left(\mathcal{G} \rightarrow K_{4}\right) \neq 0$.

$$
\chi_{\mathrm{alg}}(\mathcal{G}) \leq 4
$$

Every quantum graph is four-colorable in the algebraic model.

## Quantum graph coloring results [Brannan-Ganesan-Harris, 2020]

Let $\mathcal{G}=\left(\mathcal{M}, S, \mathbb{M}_{n}\right)$ be a quantum graph.
■ If $T \subseteq S$, then $\chi_{t}\left(\mathcal{M}, T, \mathbb{M}_{n}\right) \leq \chi_{t}\left(\mathcal{M}, S, \mathbb{M}_{n}\right) \quad(t \in\{1 o c, q, q, q s, q c\})$

- For complete quantum graphs: $\chi_{q}(\mathcal{G})=\operatorname{dim}(\mathcal{M})$.
- Every quantum graph has a finite quantum coloring.

$$
\chi_{q}(\mathcal{G}) \leq \operatorname{dim}(\mathcal{M}) \text { but } \chi_{\text {loc }}(\mathcal{G})=\infty \text { unless } \mathcal{G} \text { is classical. }
$$

■ Let $\mathcal{A}\left(\mathcal{G} \rightarrow K_{4}\right)$ be the game algebra associated to the quantum graph coloring game on four colors. Then, $\mathcal{A}\left(\mathcal{G} \rightarrow K_{4}\right) \neq 0$.

$$
\chi_{\operatorname{alg}}(\mathcal{G}) \leq 4
$$

Every quantum graph is four-colorable in the algebraic model.

- $\chi_{a l g}(\mathcal{G}) \leq \chi_{q c}(\mathcal{G}) \leq \chi_{q a}(\mathcal{G}) \leq \chi_{q}(\mathcal{G}) \leq \chi_{\text {loc }}(\mathcal{G})$.


## Bounds for the chromatic numbers of quantum graphs

Can we estimate these chromatic numbers?

## Bounds for the chromatic numbers of quantum graphs

Can we estimate these chromatic numbers?
IDEA: Use eigenvalues of the quantum adjacency matrix to bound $\chi_{q}(\mathcal{G})$.

## Bounds for the chromatic numbers of quantum graphs

Can we estimate these chromatic numbers?
IDEA: Use eigenvalues of the quantum adjacency matrix to bound $\chi_{q}(\mathcal{G})$.
Tool
If $\left\{P_{a}\right\}_{a=1}^{k} \subseteq \mathcal{M} \otimes \mathcal{N}$ is a quantum coloring of $\mathcal{G}$, then

$$
P_{a}\left(A \otimes I_{\mathcal{N}}\right) P_{a}=0, \quad \forall a,
$$

where $A$ is the unique self-adjoint quantum adjacency operator of $\mathcal{G}$.

## Hoffman's bound

Let $\lambda_{\text {max }}=\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \ldots \geq \lambda_{\text {min }}$ be all the eigenvalues of $A$. Hoffman's bound for classical graphs (Hoffman, 1970)
For a classical graph $G=(V, E, A)$,

$$
1+\frac{\lambda_{\max }}{\left|\lambda_{\min }\right|} \leq \chi(G)
$$

## Hoffman's bound

Let $\lambda_{\max }=\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \ldots \geq \lambda_{\text {min }}$ be all the eigenvalues of $A$. Hoffman's bound for classical graphs (Hoffman, 1970)
For a classical graph $G=(V, E, A)$,

$$
1+\frac{\lambda_{\max }}{\left|\lambda_{\min }\right|} \leq \chi(G)
$$

Hoffman's bound for quantum graphs (Ganesan, 2021)
For a quantum graph $\mathcal{G}=(\mathcal{M}, \psi, S, A)$,

$$
1+\frac{\lambda_{\max }}{\left|\lambda_{\min }\right|} \leq \chi_{q}(\mathcal{G})
$$

## Hoffman's bound

Let $\lambda_{\max }=\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \ldots \geq \lambda_{\text {min }}$ be all the eigenvalues of $A$.

## Hoffman's bound for classical graphs (Hoffman, 1970)

For a classical graph $G=(V, E, A)$,

$$
1+\frac{\lambda_{\max }}{\left|\lambda_{\min }\right|} \leq \chi(G)
$$

## Hoffman's bound for quantum graphs (Ganesan, 2021)

For a quantum graph $\mathcal{G}=(\mathcal{M}, \psi, S, A)$,

$$
1+\frac{\lambda_{\max }}{\left|\lambda_{\min }\right|} \leq \chi_{q}(\mathcal{G})
$$

Example: For a quantum complete $\operatorname{graph}, \lambda_{\max }=\operatorname{dim}(\mathcal{M})-1, \quad \lambda_{\min }=-1$ :

$$
\chi_{q}(\mathcal{G}) \leq \operatorname{dim}(\mathcal{M})
$$

## More bounds

Let $\mathcal{G}=(\mathcal{M}, \psi, A, S)$ be an irreflexive quantum graph

## Spectral bounds [Ganesan, 2021]

$1+\max \left\{\frac{\lambda_{\max }}{\left|\lambda_{\min }\right|}, \frac{2 m}{2 m-n \gamma_{\text {min }}}, \frac{s^{ \pm}}{s^{\mp}}, \frac{n^{ \pm}}{n^{\mp}}, \frac{\lambda_{\max }}{\lambda_{\max }-\gamma_{\max }+\theta_{\max }}\right\} \leq \chi_{q}(\mathcal{G})$,
where
■ $\lambda_{\text {max }}, \lambda_{\text {min }}$ are the maximum and minimum eigenvalues of $A$

- $s^{+}, s^{-}$are the sum of the squares of the positive and negative eigenvalues of $A$ respectively
- $n^{+}, n^{-}$are the number of positive and negative eigenvalues of $A$ including multiplicities
- $\gamma_{\text {max }}, \gamma_{\text {min }}$ are the maximum and minimum eigenvalues of the signless Laplacian operator
- $\theta_{\text {max }}$ is the maximum eigenvalue of the Laplacian operator.


## THANK YOU FOR YOUR ATTENTION

