



Operator Algebras 
$$\longrightarrow$$
 Function Algebras  
Unital C\*-Algebras  $\longrightarrow$   $G(X)$  for X compact, Hausdorff  
Von Neumann Algebras  $\longrightarrow$   $L^{\infty}(X, \mu)$ 

A concrete example:  

$$A = \mathcal{F}([0,1]) \subset \mathcal{B}(L^{2}([0,1],d\lambda))$$

$$A'' = \overline{A}^{00T} = \overline{A}^{00T} = L^{\infty}([0,1],d\lambda) \subset \mathcal{B}(L^{2}([0,1],d\lambda))$$
So we should be thinking measure theory or probability.

Probability Crash Course  
A probability space is a triple 
$$(\Omega, \mathcal{F}, \mathbb{P})$$
 where:  
 $\Omega$  is a set;  
 $\mathcal{F}$  is a  $\mathcal{G}$ -algebra; and  
 $\mathcal{P}$  is a gositive measure on  $(\Omega, \mathcal{F})$  with  $\mathbb{P}(\Omega) = 1$   
These give rise to an expectation  
 $\mathbb{E}: L'(\Omega, \mathbb{P}) \longrightarrow \Omega$   
 $\mathbb{E}: L'(\Omega, \mathbb{P}) \longrightarrow \Omega$   
 $\mathbb{E}$   
We have the space of essentially bounded random variables  $L^{\infty}(\Omega, \mathbb{P})$  which give  
bounded operators on  $L^{1}(\Omega, \mathbb{P})$  by multiplication.

Probability Crash Course  
let's record some properties:  

$$\cdot [\mathbb{P}(\Omega, P)] = L^{\infty}(\Omega, P)'$$
 is a von Neumann algebra  
 $\cdot \mathbb{E}[1] = 1$   
 $\cdot [\mathbb{F} | X = 0 \text{ in } L^{\infty}(\Omega, P) \text{ then } \mathbb{E}[X] = 0$   
 $\cdot [\mathbb{F} | 0 \leq X_1 \leq X_2 \leq \dots \leq \infty, \text{ then } \lim_{n \to \infty} \mathbb{E}[X_n] = \mathbb{E}[\lim_{n \to \infty} X_n]$   
(Mondene convergence theorem)  
 $\cdot \mathbb{E}[XT] = \mathbb{E}[XX]$   
A key property is independence:  
(unital) subalgebras  $(A_1)_{i \in I}$  of  $L^{\infty}(X, P)$  are independent if  
(unital) subalgebras  $(A_1)_{i \in I}$  of  $L^{\infty}(X, P)$  are independent if  
whenever nelly,  $i_{1,2-y}$  in  $\mathbb{E}[X \text{ ore } distint,$   
and  $X_i \in A_{i_1,2-y_1} = \mathbb{E}[X_{i_1} - \mathbb{E}[X_{i_1}] = \dots = \mathbb{E}[X_{i_n}] = 0$   
We have  $\mathbb{E}[X_{i_1} - \mathbb{E}[X_{i_n}] = 0$ .  
Variables are independent if the van Neumann algebras they generate are

Wait, what? That isn't the usual definition!  
Wait, what? That isn't the usual definition!  
Well, suppose 
$$T_1, T_2$$
 are independent variables  
and  $f_1, f_2$  are measurable functions.  
Write  $\alpha_1 = \mathbb{E}[\mathcal{F}_1(\mathbb{F}_1)], \ \alpha_2 = \mathbb{E}[\mathcal{F}_2(\mathbb{F}_2)].$   
Then

$$O = \mathbb{E}\left[\left(\mathcal{Y}_{1}(\mathcal{I}_{1}) - \alpha_{1}\right)\left(\mathcal{Y}_{2}(\mathcal{I}_{2}) - \alpha_{2}\right)\right]$$
  
$$= \mathbb{E}\left[\mathcal{Y}_{1}(\mathcal{Y}_{1})\mathcal{Y}_{2}(\mathcal{I}_{2})\right] - \alpha_{1}\mathbb{E}\left[\mathcal{Y}_{2}(\mathcal{I}_{2})\right] - \alpha_{2}\mathbb{E}\left[\mathcal{Y}_{1}(\mathcal{I}_{2})\right] + \alpha_{1}\alpha_{2}$$
  
$$\mathbb{E}\left[\mathcal{Y}_{1}(\mathcal{I}_{1})\mathcal{Y}_{2}(\mathcal{I}_{2})\right] = \alpha_{1}\alpha_{2}$$

Using similar tricks, independence prescribes all mixed moments in terms of pure moments.

Theorem : The (Weekened) Central Limit Theorem  
Suppose 
$$(X_n)_{n \in \mathbb{N}}$$
 are independent random variables in  $L^{\infty}(\Omega, \mathbb{P})$ ,  
so that:  
 $E[X_n] = E[X_n] \quad \forall k$  (they are identically distributed)  
 $E[X_n] = 0$   
 $E[X_n] = 0$   
 $E[X_n]^2 = 1$ .  
Let  $S_N = \int_N \sum_{i=1}^N X_i$ .  
Then for all  $k$ ,  $\lim_{N \to \infty} E[S_N^k] = \{(k-i)!\}$  if  $k$  is even  
 $0$  else

Note: The Gaussian distribution N(0, i) is the unique distribution with these moments, but it is not bounded and so doesn't quite fit in this simplified framework.

Proof: Write 
$$M_{L} = \mathbb{E}[X_{1}^{L}]$$
.  

$$\mathbb{E}\left[S_{N}^{L}\right] = N^{\frac{1}{2}} \mathbb{E}\left[\left(\sum_{i=1}^{N} X_{i}\right)^{k}\right]$$

$$= N^{\frac{1}{2}} \mathbb{E}\left[\left(\sum_{i=1}^{N} X_{i}\right)^{k}\right]$$

$$= N^{\frac{1}{2}} \mathbb{E}\left[X_{alo} - X_{all}\right]$$

$$= N^{\frac{1}{2}} \mathbb{E}\left[X_{alo} - X_{alo}\right]$$

$$= N^{\frac{1}{2}} \mathbb{E}\left[X_{alo} - X_{alo}$$

Frequencies Course  
. Suppose M is a von Neumann algebra with trace 
$$\tau$$
.  
.  $\tau[1] = 1$   
. If  $X \ge 0$  in M then  $\tau[X] \ge 0$   
.  $|f \quad X \nearrow X$  . then  $\lim_{X \to X} \mathbb{E}[X_{n}] = \mathbb{E}[\lim_{X \to X} X_{n}]$   
.  $\tau[XY] = \tau[XX]$   
A key property is Frequence integradence:  
(unital) subalgebras  $(M_{1})_{ieT}$  of M are independent if  
whenever neW,  $i_{1}, \dots, i_{n} \in T$  with  $\tau[X_{1}] = \dots = \tau[X_{n}] = 0$   
We have  $\tau[X_{1}, \dots, X_{n} \in A_{1}]$  with  $\tau[X_{1}] = \dots = \tau[X_{n}] = 0$   
We have  $\tau[X_{1}, \dots, X_{n} \in A_{1}]$  for Neumann algebras they generate are

Why do we need a new definition of independence?  
The commutative one doesn't tell us how to evaluate products with  
repeated terms, since they can always be reduced in that settings  
e.g. 
$$\Sigma_1 \Sigma_2 \Sigma_1 \Sigma_2 = \Sigma_1^2 \Sigma_2^2$$
,  
Why not try a simpler rule, like factor  $\tau$  across independent dyebres or just group  
variables by algebra? E.g., ask for  $\tau(\Sigma_1 \Sigma_2 \Sigma_3 \Sigma_3) = c(\Sigma_1) \tau(\Sigma_1) \tau(\Sigma_2)$  or  
 $= \tau(\Sigma_1^2) \tau(\Sigma_2^2)?$ .  
In the first case, the constants work be independent from most algebras; in the second,  
things are only independent if they commute under  $\tau$ , which isn't great.  
Using the same centring trick, we can compute for  $\Sigma_1, \Sigma_2$  free, that  
 $\tau[\Sigma_1 \Sigma_2 \Sigma, \Sigma_2] = \tau[\Sigma_1^2] \tau[\Sigma_2]^2 + \tau[\Sigma_2]^2 \tau[\Sigma_2^2] - \tau[\Sigma_1]^2 \tau[\Sigma_2]^2$ 

Theorem : The (Weekened) Central Limit Theorem  
Suppose 
$$(X_n)_{n \in \mathbb{N}}$$
 are subsciented random variables in  $M$   
so that :  $\tau[X_n^k] = \tau[X_n^k] \quad \forall k \quad (they are identically distributed)$   
 $\cdot \tau[X_n^k] = \tau[X_n^k] \quad \forall k \quad (they are identically distributed)$   
 $\cdot \tau[X_n^k] = 0$   
 $\cdot \tau[X_n^k] = 1$ .  
Let  $S_N = \frac{1}{N} \sum_{i=1}^{N} X_i$ .  
Then for all  $k$ ,  $\lim_{N \to \infty} \tau[S_N^k] = \begin{cases} C_{k/2} & \text{if } k \text{ is even} \\ 0 & \text{else} \end{cases}$   
where  $C_b = \frac{1}{b+1} {2b \choose b}$  is the b-th Catalan number.

Notice 
$$\tau \left[ X_1 X_2 X_1 X_2 \right] = 0$$
  
 $\tau \left[ X_1^2 X_2^2 \right] = \tau \left[ X_1^2 \right] \tau \left[ X_2^2 \right] = 1$ .  
If  $\pi \in P_2(k)$ , we can compute  $m_{\pi \tau}$  recursively.  
If  $k = 0$ ,  $\pi = \emptyset$ , then  $m_{\pi} = 1$ .  
If  $\tau$  has a block  $\{d, d+1\}$ , then  
 $m_{\pi} = \mathbb{E} \left[ \dots X_{\pi(d)}^2 \dots \right] = \mathbb{E} \left[ X_{\pi(d)}^2 \right] M_{\pi \tau} \{\{d, d+1\}\}$ .  
If  $\pi$  has no such block,  $m_{\pi} = 0$ .  
So  $m_{\pi} = 1$  precisely when  $\pi$  can be reduced to the empty partition by removing blocks of consecutive ekments.

Combinatorial fact: these are precisely the non-crossing partitions.

A partition 
$$\pi \in \mathbb{P}(k)$$
 is non-crossing if whenever  
 $1 \notin \mathbb{W} < \mathfrak{X} < \mathfrak{Y} < \mathfrak{Z} \notin \mathbb{W}$  with  $\mathbb{W} \sim \mathfrak{Y}, \ \mathfrak{X} \sim \mathfrak{Z}, \ \mathbb{W}$  have  $\mathbb{W} \sim \mathfrak{Z}$ .  
The set of such is denoted NC(M).



Proof: Write 
$$M_{k} = \mathbb{E}[X_{1}^{k}]$$
.  

$$\mathbb{E}[S_{N}^{k}] = N^{k/2} \mathbb{E}[\left(\sum_{i=1}^{k} X_{1}\right)^{k}\right]$$

$$= N^{k/2} \mathbb{E}\left[\left(\sum_{i=1}^{k} X_{1}\right)^{k}\right]$$

$$= N^{k/2} \sum_{\alpha \in [1 \to [N]} \mathbb{E}[X_{\alpha(\alpha)} - X_{\alpha(\alpha)}]$$

$$= N^{k/2} \sum_{\alpha \in [1 \to [N]} \mathbb{E}[X_{\alpha(\alpha)} - X_{\alpha(\alpha)}]$$

$$= N^{-k/2} \sum_{\alpha \in [n]} \mathbb{E}\left[X_{\alpha(\alpha)} - X_{\alpha(\alpha)}\right]$$

$$= N^{-k/2} \sum_{\alpha \in [n]} \mathbb{E}\left[X_{\alpha(\alpha)} - X_{\alpha(\alpha)}\right]$$

$$= N^{-k/2} \sum_{\alpha \in [n]} \mathbb{N}_{\alpha \in [n]} \mathbb{E}\left[X_{\alpha(\alpha)} - X_{\alpha(\alpha)}\right]$$

$$= N^{-k/2} \sum_{\alpha \in [n]} \mathbb{N}_{\alpha \in [n]} \mathbb{E}\left[X_{\alpha(\alpha)} - X_{\alpha(\alpha)}\right]$$

$$= N^{-k/2} \sum_{\alpha \in [n]} \mathbb{N}_{\alpha \in [n]} \mathbb{E}\left[X_{\alpha(\alpha)} - (N - \sigma \tau_{\alpha})\right]$$

$$= N^{-k/2} \sum_{\alpha \in [n]} \mathbb{N}_{\alpha \in [n]} \mathbb{E}\left[X_{\alpha(\alpha)} - (N - \sigma \tau_{\alpha})\right]$$

$$= N^{-k/2} \sum_{\alpha \in [n]} \mathbb{N}_{\alpha \in [n]} \mathbb{E}\left[X_{\alpha(\alpha)} - (N - \sigma \tau_{\alpha})\right]$$

$$= N^{-k/2} \sum_{\alpha \in [n]} \mathbb{N}_{\alpha \in [n]} \mathbb{E}\left[X_{\alpha(\alpha)} - (N - \sigma \tau_{\alpha})\right]$$

$$= N^{-k/2} \sum_{\alpha \in [n]} \mathbb{N}_{\alpha \in [n]} \mathbb{E}\left[X_{\alpha(\alpha)} - (N - \sigma \tau_{\alpha})\right]$$

$$= N^{-k/2} \sum_{\alpha \in [n]} \mathbb{N}_{\alpha \in [n]} \mathbb{E}\left[X_{\alpha(\alpha)} - (N - \sigma \tau_{\alpha})\right]$$

$$= N^{-k/2} \sum_{\alpha \in [n]} \mathbb{N}_{\alpha \in [n]} \mathbb{E}\left[X_{\alpha(\alpha)} - (N - \sigma \tau_{\alpha})\right]$$

$$= N^{-k/2} \sum_{\alpha \in [n]} \mathbb{E}\left[X_{\alpha(\alpha)} - (N - \sigma \tau_{\alpha})\right]$$

$$= N^{-k/2} \sum_{\alpha \in [n]} \mathbb{E}\left[X_{\alpha(\alpha)} - (N - \sigma \tau_{\alpha})\right]$$

$$= N^{-k/2} \sum_{\alpha \in [n]} \mathbb{E}\left[X_{\alpha(\alpha)} - (N - \sigma \tau_{\alpha})\right]$$

$$= N^{-k/2} \sum_{\alpha \in [n]} \mathbb{E}\left[X_{\alpha(\alpha)} - (N - \sigma \tau_{\alpha})\right]$$

$$= N^{-k/2} \sum_{\alpha \in [n]} \mathbb{E}\left[X_{\alpha(\alpha)} - (N - \sigma \tau_{\alpha})\right]$$

$$= N^{-k/2} \sum_{\alpha \in [n]} \mathbb{E}\left[X_{\alpha(\alpha)} - (N - \sigma \tau_{\alpha})\right]$$

$$= N^{-k/2} \sum_{\alpha \in [n]} \mathbb{E}\left[X_{\alpha(\alpha)} - (N - \sigma \tau_{\alpha})\right]$$

$$= \sum_{\alpha \in [n]} \mathbb{E}\left[X_{\alpha(\alpha)} - (N - \sigma \tau_{\alpha})\right]$$

$$= \sum_{\alpha \in [n]} \mathbb{E}\left[X_{\alpha(\alpha)} - (N - \sigma \tau_{\alpha})\right]$$

$$= \sum_{\alpha \in [n]} \mathbb{E}\left[X_{\alpha(\alpha)} - (N - \sigma \tau_{\alpha})\right]$$

$$= \sum_{\alpha \in [n]} \mathbb{E}\left[X_{\alpha(\alpha)} - (N - \sigma \tau_{\alpha})\right]$$

$$= \sum_{\alpha \in [n]} \mathbb{E}\left[X_{\alpha(\alpha)} - (N - \sigma \tau_{\alpha})\right]$$

$$= \sum_{\alpha \in [n]} \mathbb{E}\left[X_{\alpha(\alpha)} - (N - \sigma \tau_{\alpha})\right]$$

$$= \sum_{\alpha \in [n]} \mathbb{E}\left[X_{\alpha(\alpha)} - (N - \sigma \tau_{\alpha})\right]$$

$$= \sum_{\alpha \in [n]} \mathbb{E}\left[X_{\alpha(\alpha)} - (N - \sigma \tau_{\alpha})\right]$$

$$= \sum_{\alpha \in [n]} \mathbb{E}\left[X_{\alpha(\alpha)} - (N - \sigma \tau_{\alpha})\right]$$

$$= \sum_{\alpha \in [n]} \mathbb{E}\left[X_{\alpha(\alpha)} - (N - \sigma \tau_{\alpha})\right]$$

$$= \sum_{\alpha \in [n]} \mathbb{E}\left[X_{\alpha(\alpha)} - (N - \sigma \tau_{\alpha})\right]$$

$$= \sum_{\alpha \in [n]} \mathbb{E}\left[X_{\alpha(\alpha)} - (N - \sigma \tau_{\alpha})\right]$$

$$= \sum_{\alpha \in [n]} \mathbb{E}\left[X_{\alpha(\alpha)} - (N - \sigma \tau$$

Is this the distribution of some random variable?  
Consider 
$$\mathcal{M} = \mathbb{P}^{2}(\mathbb{IN})$$
 and let  $a \in \mathbb{B}(\mathcal{M})$  be the unilateral  
shift, so  $a \delta_{j} = \delta_{j+1}$ . Note that  $a^{*}\delta_{j} = \begin{cases} 0 & \text{if } j=1 \\ \delta_{j-1} & \text{else} \end{cases}$   
Then  $a^{*}a = 1$  and  $aa^{*} = 1 - \operatorname{Proj}_{\delta_{1}}$ .  
Set  $S = a + a^{*}$ .  
What is  $\langle \delta_{1}, S^{k} \delta_{1} \rangle$ ?  
A term in the expansion of  $S^{k}$  corresponds to a path  
stepping up at each  $a^{*}$  and down at each  $a_{2}$   
 $c_{3}$ .  $a^{*}a^{*}aa^{*}aa$   
To contribute, it must begin and end at the same level,  
and never cross below where it started. These are the Dyck  
paths, which are counted by  $C_{kh}$ .



Fact: The von Neumann algebra generated by n independent Gaussians is  
isomosphic to the algebra generated by 
$$1: L^{\infty}(\mathbb{R}^n, d\mathbb{X}^n) \cong L^{\infty}(\mathbb{R}, d\mathbb{X})$$
  
Ruestion: What about for free semicircular variables ?

 $\left(L^{\infty}(\Omega, d\mathbb{P}), \mathbb{E}\right)$ < >> Semicircular distribution Gaussian distribution Ind ependence Free independence Partitions < Non-crossing partitions Log Fourier transform 2 -> R transform Conditional expectation <>> Conditional expectation Entropy / information theory Free entropy Brownian motion Free Brownian motion (Lévy process with ind. stationary Gaussian increments) Free Brownian motion (Lévy process with find. stationary ( increments)