$$
\begin{aligned}
& \text { Yree Tobability } \\
& \text { YOAzs } 2020
\end{aligned}
$$

Operator Algebras $\leadsto \sim$ Function Algebras Unital C^{*}.Algebras $\leadsto \zeta(X)$ for X compact, Hausdorff) vow Newman Algebras ~~~ $L^{\infty}(X, \mu)$

A concrete example:

$$
\begin{aligned}
& A=\zeta([0,1]) \subset B\left(L^{2}([0,1], d \lambda)\right) \\
& A^{\prime \prime}=\bar{A}^{\text {DOT }}=\bar{A}^{\text {SOT }}=L^{\infty}([0,1], d \lambda) \subset B\left(L^{2}([0,1], d \lambda)\right)
\end{aligned}
$$

So we should be thinking measure theory or probability.

Proloability Crash Course
A probability space is a triple $(\Omega, \mathcal{F}, \mathbb{P})$ where:

- Ω is a set;
- \exists is a σ-algebra; and
- \mathbb{P} is a positive message on $(\Omega, Э)$ with $\mathbb{P}(\Omega)=1$

These give rise to an expectation

$$
\begin{aligned}
\mathbb{E}: L^{\prime}(\Omega, \mathbb{P}) & \longmapsto C \\
\underline{X} & \longmapsto \int_{\Omega} X(\omega) d \mathbb{P}(\omega)
\end{aligned}
$$

We have the space of essentially bounded random variables $L^{\infty}(\Omega, \mathbb{P})$ which give bounded operators on $L^{2}(\Omega, \mathbb{P})$ by mn'tiplication.

Proloability Crash Course
Let's record some properties:

- $L^{\infty}(\Omega, \mathbb{P})=L^{\infty}(\Omega, \mathbb{P})^{\prime}$ is a von Neumenn algebra
- $\mathbb{E}[1]=1$
- If $X \geq 0$ in $L^{\infty}(\Omega, \mathbb{P})$ then $\mathbb{E}[\mathbb{X}] \geq 0$
- If $0 \leq \mathbb{Z}_{1} \leq \mathbb{Z}_{2} \leq \ldots \leq \infty$, then $\lim _{n \rightarrow \infty} \mathbb{E}\left[\mathbb{Z}_{n}\right]=\mathbb{E}\left[\lim _{n \rightarrow \infty} \mathbb{Z}_{n}\right]$
(Mondore convergence theorem)

$$
\mathbb{E}[\bar{X} \bar{Y}]=\mathbb{E}[\underline{X}]
$$

A key property is independence:
(unital) subalgeloras $\left(\mathcal{A}_{i}\right)_{i c \mathbb{T}}$ of $L^{\infty}(\mathbb{X}, \mathbb{P})$ are independent if whenever $n \in \mathbb{N}, i_{1}, \ldots, i_{n} \in I$ are distinct, and $\mathbb{Z}_{1} \in \mathcal{A}_{i}, \ldots, \mathbb{X}_{n} \in \mathcal{A}_{\text {in }}$ with $\mathbb{E}\left[\mathbb{X}_{i}\right]=\ldots=\mathbb{E}\left[\mathbb{X}_{i n}\right]=0$ we have $\mathbb{E}\left[\bar{X}_{i}, \cdots \bar{X}_{i_{n}}\right]=0$.
Variables are independent if the Non Nenmem algeloras they generate are.

Wait, what? That isnit the usual definition!
Well, suppose $Y_{1,} Y_{2}$ are independent variables
and f_{1}, f_{2} are measurable functions.
Write $a_{1}=\mathbb{E}\left[y_{1}\left(\Psi_{1}\right)\right], \quad a_{2}=\mathbb{E}\left[f_{2}\left(I_{2}\right)\right]$.
Then

$$
\begin{aligned}
0= & \mathbb{E}\left[\left(f_{1}\left(I_{1}\right)-a_{1}\right)\left(f\left(I_{2}\right)-a_{2}\right)\right] \\
= & \mathbb{E}\left[f\left(\Psi_{1}\right) f_{2}\left(I_{2}\right)\right]-a_{1} \mathbb{E}\left[f_{2}\left(I_{2}\right)\right]-a_{2} \mathbb{E}\left[f_{1}\left(I_{1}\right)\right]+a_{1} a_{2} \\
& \mathbb{E}\left[y_{1}\left(I_{1}\right) f_{2}\left(I_{2}\right)\right]=a_{1} a_{2}
\end{aligned}
$$

Using similar tricks, independence prescribes all mixed moments in terms of pure moments.

Theorem: The (Weakened) Central Limit Theoreal
Suppose $\left(\mathbb{Z}_{n}\right)_{n \in \mathbb{N}}$ are independent randoen variables in $L^{\infty}(\Omega, \mathbb{P})$, so that:

- $\mathbb{E}\left[\underline{X}_{n}^{k}\right]=\mathbb{E}\left[\mathbb{Z}_{1}^{k}\right] \quad \forall k$ (they are identically distributed)
- $\mathbb{E}\left[\hat{X}_{1}\right]=0$
- $\mathbb{E}\left[\mathbb{X}_{1}^{2}\right]=1$.

Let $S_{N}=\frac{1}{\sqrt{N}} \sum_{i=1}^{N} X_{i}$

Mole: The Gaussian distribution $\mathcal{N}(0,1)$ is the unique distribution with these moments, but if is not bounded and so doesn't quite fit in this simplified framework. If

Proof: Write $m_{b}=\mathbb{E}\left[x_{1}^{b}\right]$.

$$
\begin{aligned}
& \mathbb{E}\left[S_{N}^{k}\right]=N^{-k / 2} \mathbb{E}\left[\left(\sum_{i=1}^{N} \mathbb{X}_{i}\right)^{k}\right] \\
& \left.=N^{-k / 2} \sum_{\alpha:[1] \rightarrow[N]} \mathbb{E}\left[\mathbb{X}_{\alpha(1)} \ldots \bar{X}_{\alpha(k)}\right]\right] \\
& =N^{-L / 2} \sum_{\pi \in P(l)} \sum_{z: \pi \rightarrow(N]} \mathbb{E}\left[\bar{X}_{\alpha\left((i 1]_{\pi}\right)} \cdots \bar{X}_{\left.\tilde{\alpha}\left([r]_{\pi}\right)\right]}\right] \\
& =N^{-2 / 2} \sum_{\pi \in P(k)} m_{\pi} N(N-1) \cdots(N-\# \pi+1) \\
& =N^{-k / 2} \sum_{\pi \in P_{2}(k)} N^{k / 2}+O(1) \\
& \longrightarrow \nVdash P_{2}(k)=\left\{\begin{array}{cll}
(k-1)! & \text { if } k \text { is even } \\
0 & \text { if } k \text { is old. }
\end{array}\right.
\end{aligned}
$$

A partition of $[k]$ is a set $\left\{B_{1}, \ldots, B_{n}\right\}$ of disjoint subsets of $[k]$ with $[k]=B_{1} \cup \cdots v B_{m}$. The set of such is denoted by $P(k)$.
A choice of $\alpha:[k] \rightarrow[N]$ is equivalent to choosing $\pi \in P(k)$ and $\tilde{\alpha}: \pi \hookrightarrow[N]$.

But this expectation depends only on π ?
let us write m_{π} for shorthand.

If $\# \pi<\frac{k}{2}$, the contribution vanishes as $N \rightarrow \infty$. But what is m_{π} ? By independence, if π has blocks of sizes $\beta_{1}, \ldots, \beta_{m}$, then

$$
m_{\pi}=\mathbb{E}\left[\mathbb{X}_{1}^{\beta_{1}} \cdots \bar{X}_{m}^{\beta_{m}}\right]=\mathbb{E}\left[X_{1}^{\beta_{1}}\right] \cdots \mathbb{E}\left[\mathbb{X}_{1}^{\beta_{m}}\right]=m_{p_{1}} \cdots m_{\beta_{m}}
$$

In particular, if $\beta_{j}=1$ ever, $m_{\pi}=0$.
The only π satisfying both must have only blocks of size Z_{i} the set of such is denoted $P_{2}(k)$. If $\pi \in P_{2}(t), m_{\pi}=\mathbb{E}\left[\mathbb{Z}_{1}^{2}\right]^{1 / 2}=1$.

Freproloability Crash Course

- Suppose M is a won Nemean algebra with trace τ.
- $\tau[1]=1$
- If $X \geq 0$ in M then $\tau[X] \geq 0$
- If $\underline{X}_{\lambda} \nearrow \mathbb{I}$, then $\operatorname{limem}_{\lambda} \mathbb{E}\left[\mathbb{Z}_{\lambda}\right]=\mathbb{E}\left[\lim \mathbb{X}_{\lambda}\right]$

$$
\tau[\bar{X} \bar{Y}]=\tau[\underline{X}]
$$

A key property is frelndependence:
(unital) subalgeloras $\left(\mathcal{A}_{i}\right)_{i c \pi}$ of M are inch independent if whenever $n \in \mathbb{N}, i_{1}, \ldots, i_{n} \in I$ with $i_{1} \neq i_{2} \neq \cdots \neq i_{n}$ and $\mathbb{Z}_{1} \in \mathcal{A}_{i}, \ldots, \mathbb{X}_{n} \in \mathcal{A}_{i_{n}}$ with $\tau\left[\bar{X}_{i}\right]=\ldots=\tau\left[\bar{X}_{i n}\right]=0$ we have $\tau\left[\bar{X}_{i}, \cdots \bar{X}_{i_{n}}\right]=0$.
Variables are ferny independent if the Jon Nemmem algeloras they generate are.

Why do we need a new definition of independence?
The commutative one doesn't tell us how to evaluate products with repeated terms, since they can always be reduced in that setting,

Why not try a simpler rule, like factor τ across independent algebras or just group variables by algebra? E.g., ask for $\tau\left(\underline{X}_{1} \mathbb{X}_{2} \mathbb{X}_{1} \mathbb{X}_{2}\right)=\tau\left(\underline{X}_{1}\right) \tau\left(\underline{X}_{2}\right) \tau\left(\underline{X}_{1}\right) \tau\left(\bar{X}_{2}\right)$ or

$$
=\tau\left(X_{1}^{2}\right) \tau\left(X_{2}^{2}\right) ?
$$

In the first case, the constants won's be independent from most algebras; in the second, things are only independent if they commute under τ, which isn't great. Using the same centring trick, we can compute for X_{1}, \bar{X}_{2} free, that

$$
\tau\left[\mathbb{X}_{1} \mathbb{X}_{2} \mathbb{X}, \mathbb{E}_{2}\right]=\tau\left[\mathbb{X}_{1}^{2}\right] \tau\left[X_{2}\right]^{2}+\tau\left[\mathbb{X}_{1}\right]^{2} \tau\left[\mathbb{Z}_{2}^{2}\right]-\tau\left[\mathbb{X}_{1}\right]^{2} \tau\left[\mathbb{X}_{2}\right]^{2}
$$

Where does this definition come from?
If Γ, \wedge are groups, this is precisely the relation between $L(\Gamma)$ and $L(\Lambda)$ in $L(\Gamma * \Lambda)$ with respect to usual trace.

Also describes the state on an arbitrary free product of won Neman algebras.

Theorem: The (Weakened) Free Central Limit Theorear
Suppose $\left(\bar{X}_{n}\right)_{n \in \mathbb{N}}$ are feceinydependent randoms variables in so that:

- $\tau\left[\underline{X}_{n}^{k}\right]=\tau\left[\mathbb{Z}_{1}^{k}\right] \quad \forall k \quad$ (they are identically distributed)
- $\tau\left[\hat{X}_{1}\right]=0$
- $\tau\left[X_{1}^{2}\right]=1$.

Let $S_{N}=\frac{1}{\sqrt{N}} \sum_{i=1}^{N} X_{i}$
Then for all $k, \lim _{N \rightarrow \infty} \tau\left[S_{N}^{k}\right]= \begin{cases}C_{k / 2} & \text { if } k \text { is even } \\ O & \text { else }\end{cases}$
where $C_{b}=\frac{1}{b+1}\binom{2 b}{b}$ is the b-th Catalan number.

$$
\begin{aligned}
& \text { Proof: Write } m_{b}=\mathbb{E}\left[x_{1}^{b}\right] \text {. } \\
& \mathbb{E}\left[S_{N}^{k}\right]=N^{-k / 2} \mathbb{E}\left[\left(\sum_{i=1}^{N} X_{i}\right)^{k}\right] \\
& \left.=N^{-k / 2} \sum_{\alpha:[[7] \rightarrow[N]} \mathbb{E}\left[\mathbb{X}_{\alpha(i)} \cdots \bar{X}_{\alpha(k)}\right]\right) \\
& =N^{-K / 2} \sum_{\pi \in p(l)} \sum_{\alpha: \pi \rightarrow(\alpha)]}^{\mathbb{E}}\left[\bar{X}_{\left.\alpha((1)]_{\pi}\right)} \ldots \bar{X}_{\tilde{\alpha}\left([r]_{\pi}\right)}\right] \\
& =N^{-1 / 2} \sum_{\pi \in P(k)} m_{\pi} N(N-1) \cdots(N-\# \pi+1)
\end{aligned}
$$

A partition of $[k]$ is a set $\left\{B_{1}, \ldots, B_{m}\right\}$ of disjoint subsets of $[k]$ with $[k]=B_{1} \cup \cdots \cup B_{m}$. The set of such is denoted by $P(k)$.
A choice of $\alpha:[k] \rightarrow[N]$ is equivalent to choosing $\pi \in P(k)$ and $\tilde{\alpha}: \pi \hookrightarrow[N]$.

If $\# \pi<k / 2$, the contribution vanishes as $N \rightarrow \infty$. But what is m_{π} ?

If π has a singleton, we still get a factor of $m_{1}=\mathbb{E}[\not X]=$,0 .
So only pair partitions contribute as $N \rightarrow \infty$.

But not all the same!

Notice $\tau\left[\underline{\mathbb{X}}_{1} \underline{\mathbb{X}}_{2} \mathbb{X}_{1}, \mathbb{X}_{2}\right]=0$

$$
\tau\left[\bar{X}_{1}^{2} \mathbb{Z}_{2}^{2}\right]=\tau\left[\mathbb{Z}_{1}^{2}\right] \tau\left[\mathbb{X}_{2}^{2}\right]=1 .
$$

IF $\pi \in P_{2}(k)$, we can compute m_{π} recursively.
If $k=0, \pi=\phi$, then $m_{\pi}=1$
If π has a block $\{d, d+1\}$, then

$$
m_{\pi}=\mathbb{E}\left[\begin{array}{cc}
\cdots & \bar{X}_{\alpha(d)}^{2} \\
\cdots & \cdots
\end{array}\right]=\mathbb{f}\left[\begin{array}{l}
\bar{X}_{\alpha(\alpha)}^{2}
\end{array}\right] m_{\pi \backslash\{\{d, d+1\}}\left[\begin{array}{l}
\text { from } \mathbb{Z}_{\alpha(1)}
\end{array}\right.
$$

If π has no such block, $m_{\pi}=0$
So $m_{\pi}=1$ precisely when π can be reduced to the empty partition by removing blocks of consecutive elements.

Combinatorial fact: tHese are precisely the non-crossing partitions.
A partition $\pi \in P(k)$ is non-crossing if whenever
$1 \leqslant \omega<x<y<z \leq k \quad$ with $\omega \sim y_{1} \quad x \sim z$, we have $\omega \sim x$.
The set of such is denoted NC(k).

Proof: Write $m_{b}=\mathbb{E}\left[X_{1}^{b}\right]$.
A partition of $[\hat{k}]$ is a set $\left\{B_{1}, \ldots, B_{m}\right\}$ of disjoint subsets of $[k]$ with $[k]=B_{1} \cup \cdots \cup B_{m}$. The set of such is denoted by $P(k)$.
A choice of $\alpha:[k] \rightarrow[N]$ is equivalent to choosing $\pi \in P(k)$ and $\tilde{\alpha}: \pi \hookrightarrow[N]$.
(But this expectation depends only on π !

If $\# \pi<k / 2$, the contribution vanishes as $N \rightarrow \infty$.

$$
=N^{-k / 2} \sum_{\pi \in N C_{2}(k)} N^{k / 2}+o(1)
$$ But what is m_{π} ?

If π has a singleton, we still

$$
\rightarrow \# N C_{2}(k)
$$

So only pair partitions contribute

$$
= \begin{cases}C_{k / 2} & \text { if } k \text { is even } \\ 0 & \text { else }\end{cases}
$$ as $N \rightarrow \infty$.

But not all the same!

$$
\begin{aligned}
& \mathbb{E}\left[S_{N}^{k}\right]=N^{-k / 2} \mathbb{E}\left[\left(\sum_{i=1}^{N} X_{i}\right)^{k}\right] \\
& \left.=N^{-k / 2} \sum_{\alpha:[[] \rightarrow[N]} \mathbb{E}\left[\mathbb{X}_{\alpha(1)} \cdots \bar{X}_{\alpha(k)}\right]\right) \\
& =N^{-d / 2} \sum_{\pi \in P(l)} \sum_{\alpha: \pi \rightarrow(N]} \mathbb{E}\left[\bar{X}_{\alpha\left((i \cdot]_{\pi}\right)} \cdots \bar{X}_{\tilde{\alpha}\left([i]_{\pi}\right)}\right] \\
& =N^{-2 / 2} \sum_{\pi \in P(k)} m_{\pi} N(N-1) \cdots(N-\pi \pi+1)
\end{aligned}
$$

Is this the distribution of some random variable?
Consider $H y=l^{2}(\mathbb{N})$ and let $a \in B(H)$ be the unilateral shift, so $a \delta_{j}=\delta_{j+1}$. Note that $a^{*} \delta_{j}= \begin{cases}0 & \text { if } j=1 \\ \delta_{j-1} \text { else }\end{cases}$
Then $a^{*} a=1$ and $a a^{*}=1-\operatorname{Proj}_{\delta_{1}}$.
Set $S=a+a^{*}$.
What is $\left\langle\delta_{1}, S^{k} \delta_{1}\right\rangle$?
A term in the expansion of S^{k} corresponds to a path stepping up at each a^{*} and down at each a, egg. $\quad a^{*} a^{*} a a^{x} a d$
To contribute, if must begin and end at the same level, and never cross below where it started. These are the Dyak paths, which are counted by $C_{k / 2}$.

So $S \in B(H l)$ with state $\left\langle\delta_{1}, \cdot \delta_{1}\right\rangle$ is a central limit variable.

It has density $\frac{1}{2 \pi} \sqrt{4-t^{2}} 1_{[-2,2]}$ and is called the semicircular distribution.

Fact: The vo Neumann algebra generated by n independent Gaussians is isomorphic to the algebra generated by $1: L^{\infty}\left(\mathbb{R}^{n}, d \gamma^{n}\right) \cong L^{\infty}(\mathbb{R}, d \gamma)$ Question: What about for free semicircular variables?

$$
\left(L^{\infty}(\Omega, d \mathbb{P}), \mathbb{E}\right) \longleftrightarrow(\mathcal{A}, \tau)
$$

Gaussian distribution Semicircular distribution

Independence Free independence

Partitions \qquad $\rightarrow \quad$ Non -crossing partitions

Log Fourier transform

Conditional expectation \longleftrightarrow Conditional expectation
Entropy/information theory \longleftrightarrow Free entropy
Brownian motion
Free Brownian motion (Lever process with ind. stationary Gaussian incurentis) fitévy process with rime stationary \cap incurmits)

Fact: if u is uniformly distributed on π (a Haar unitary) and \bar{X} is freely independent from u,
then $\left(u^{k} \mathbb{Z} u^{-k}\right)_{k \in \mathbb{Z}}$ are free and identically distributed.
There isn't a way to do this in the commentative world.

