Quantum Groups: What are they and what are they good for?

Michael Brannan

Texas A&M University

GOALS Expository Lecture July 13, 2020

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The Plan

- Introduce the notion of a compact quantum group from an operator algebraic perspective.
- Highlight some examples and illustrate some aspects of their general theory.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

In operator algebras, we learn that unital C*-algebras are the right non-commutative notions of compact spaces.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

Quantizing groups

In operator algebras, we learn that unital C*-algebras are the right non-commutative notions of compact spaces.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ めの(~

 Compact groups are compact spaces with some extra structure (continuous group law etc...)

Quantizing groups

- In operator algebras, we learn that unital C*-algebras are the right non-commutative notions of compact spaces.
- Compact groups are compact spaces with some extra structure (continuous group law etc...)
- How do we get a non-commutative formulation of compact groups?

Definition (Woronowicz)

A compact quantum group (CQG) \mathbb{G} is a pair (A, Δ) where A is a unital C*-algebra and $\Delta : A \to A \otimes_{\min} A$ is a unital *-homomorphism satisfying

Definition (Woronowicz)

A compact quantum group (CQG) \mathbb{G} is a pair (A, Δ) where A is a unital C*-algebra and $\Delta : A \to A \otimes_{\min} A$ is a unital *-homomorphism satisfying

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ めの(~

1. coassociativity property: $(id \otimes \Delta)\Delta = (\Delta \otimes id)\Delta$. (Such a morphism Δ called a comultiplication on A.)

Definition (Woronowicz)

A compact quantum group (CQG) \mathbb{G} is a pair (A, Δ) where A is a unital C*-algebra and $\Delta : A \to A \otimes_{\min} A$ is a unital *-homomorphism satisfying

- 1. coassociativity property: $(id \otimes \Delta)\Delta = (\Delta \otimes id)\Delta$. (Such a morphism Δ called a comultiplication on A.)
- 2. cocancellation property:

$$\overline{\operatorname{span}\{\Delta(A)(1\otimes A)\}} = A \otimes_{\min} A = \overline{\operatorname{span}\{\Delta(A)(A\otimes 1)\}}$$

Definition (Woronowicz)

A compact quantum group (CQG) $\mathbb G$ is a pair (A,Δ) where A is a unital C*-algebra and $\Delta:A\to A\otimes_{\min}A$ is a unital *-homomorphism satisfying

- 1. coassociativity property: $(id \otimes \Delta)\Delta = (\Delta \otimes id)\Delta$. (Such a morphism Δ called a comultiplication on A.)
- 2. cocancellation property:

$$\overline{\operatorname{span}\{\Delta(A)(1\otimes A)\}} = A \otimes_{\min} A = \overline{\operatorname{span}\{\Delta(A)(A\otimes 1)\}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ めの(~

Why is this a "good" definition?

Definition (Woronowicz)

A compact quantum group (CQG) $\mathbb G$ is a pair (A,Δ) where A is a unital C*-algebra and $\Delta: A \to A \otimes_{\min} A$ is a unital *-homomorphism satisfying

- 1. coassociativity property: $(id \otimes \Delta)\Delta = (\Delta \otimes id)\Delta$. (Such a morphism Δ called a comultiplication on A.)
- 2. cocancellation property:

$$\overline{\operatorname{span}\{\Delta(A)(1\otimes A)\}} = A \otimes_{\min} A = \overline{\operatorname{span}\{\Delta(A)(A\otimes 1)\}}$$

Why is this a "good" definition?

Proposition

If $\mathbb{G}=(A,\Delta)$ is a CQG with abelian A. Then $\exists !$ compact group G so that

1.
$$A = C(G)$$

2. $(\Delta f)(s,t) = f(st)$ $(f \in C(G), s, t \in G)$.

Sketch

 $\text{Given } \mathbb{G} = (A, \Delta) \text{, } (\text{id} \otimes \Delta) \Delta = (\Delta \otimes \text{id}) \Delta + \text{cocancellation}.$

By Gelfand: If A is abelian, then A = C(G) for some unique compact Hausdorff space G, moreover the morphism Δ : C(G) → C(G) ⊗_{min} C(G) ≅ C(G × G) comes from a unique continuous map

 $m:G\times G\to G;\quad (s,t)\mapsto st,\quad \Delta f(s,t)=(f\circ m)(s,t)=f(st).$

Sketch

Given $\mathbb{G} = (A, \Delta)$, $(\mathsf{id} \otimes \Delta)\Delta = (\Delta \otimes \mathsf{id})\Delta + \mathsf{cocancellation}$.

By Gelfand: If A is abelian, then A = C(G) for some unique compact Hausdorff space G, moreover the morphism Δ : C(G) → C(G) ⊗_{min} C(G) ≅ C(G × G) comes from a unique continuous map

 $m:G\times G\to G;\quad (s,t)\mapsto st,\quad \Delta f(s,t)=(f\circ m)(s,t)=f(st).$

By coassociativity:

$$\begin{split} [(\mathsf{id} \otimes \Delta)\Delta]f &= [(\Delta \otimes \mathsf{id})\Delta]f \qquad (f \in C(G)) \\ \iff f(r(st)) &= f((rs)t) \qquad (f \in C(G), \ r, s, t \in G) \\ \iff m : G \times G \to G \text{ is associative} \\ \iff (G, m) \text{ is a compact semigroup.} \end{split}$$

Sketch

 $\text{Given } \mathbb{G} = (A, \Delta) \text{, } (\text{id} \otimes \Delta) \Delta = (\Delta \otimes \text{id}) \Delta + \text{cocancellation}.$

By Gelfand: If A is abelian, then A = C(G) for some unique compact Hausdorff space G, moreover the morphism Δ : C(G) → C(G) ⊗_{min} C(G) ≅ C(G × G) comes from a unique continuous map

 $m:G\times G\to G;\quad (s,t)\mapsto st,\quad \Delta f(s,t)=(f\circ m)(s,t)=f(st).$

By coassociativity:

$$\begin{split} [(\mathsf{id} \otimes \Delta)\Delta]f &= [(\Delta \otimes \mathsf{id})\Delta]f \qquad (f \in C(G)) \\ \iff f(r(st)) &= f((rs)t) \qquad (f \in C(G), \ r, s, t \in G) \\ \iff m : G \times G \to G \text{ is associative} \\ \iff (G, m) \text{ is a compact semigroup.} \end{split}$$

► By cocancellation: G has left/right cancellation property: ${st = rt \forall t \implies s = r} \& {ts = tr \forall t \implies s = r} = s = r}$

Basic Examples of Compact Quantum Groups

Standard Notation: Given any CQG $\mathbb{G} = (A, \Delta)$, we typically write $A = C(\mathbb{G})$. Morally, we think of $C(\mathbb{G})$ as the "C*-algebra of continuous functions on \mathbb{G} ".

Basic Examples of Compact Quantum Groups

Standard Notation: Given any CQG $\mathbb{G} = (A, \Delta)$, we typically write $A = C(\mathbb{G})$. Morally, we think of $C(\mathbb{G})$ as the "C*-algebra of continuous functions on \mathbb{G} ".

Example

Any compact group G gives a CQG: $\mathbb{G}=(C(G),\Delta)$ as above.

Basic Examples of Compact Quantum Groups

Standard Notation: Given any CQG $\mathbb{G} = (A, \Delta)$, we typically write $A = C(\mathbb{G})$. Morally, we think of $C(\mathbb{G})$ as the "C*-algebra of continuous functions on \mathbb{G} ".

Example

Any compact group G gives a CQG: $\mathbb{G}=(C(G),\Delta)$ as above.

Example (Pontryagin duals of discrete groups) Let Γ be a discrete group. Put $A = C^*(\Gamma)$, and define

$$\Delta(\gamma) = \gamma \otimes \gamma \qquad (\gamma \in \Gamma \subset \mathbb{C}[\Gamma] \subset A).$$

Fact: Δ linearly and continuously extends to a comultiplication $\Delta: A \to A \otimes_{\min} A$ with the cocancellation property.

 \implies Get a CQG $\hat{\Gamma} = (C^*(\Gamma), \Delta)$, the Pontryagin Dual of Γ .

Note: When Γ is abelian, $\hat{\Gamma}$ is *exactly* the Pontryagin dual of Γ .

q-deformed SU(2)

Here's a first example that doesn't come from groups: q-deformed SU(2) quantum group.

 $\blacktriangleright \text{ Fix } q \in [-1,1] \setminus \{0\}.$

▶ Define a universal C*-algebra $C(SU_q(2))$ with generators $\alpha, \gamma \in C(SU_q(2))$ and relations making the matrix

$$u = \begin{bmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{bmatrix} \text{ unitary in } M_2(C(SU_q(2))): \ u^*u = uu^* = 1.$$

q-deformed SU(2)

Here's a first example that doesn't come from groups: q-deformed SU(2) quantum group.

▶ Fix $q \in [-1,1] \setminus \{0\}$.

▶ Define a universal C*-algebra $C(SU_q(2))$ with generators $\alpha, \gamma \in C(SU_q(2))$ and relations making the matrix

$$u = \begin{bmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{bmatrix} \text{ unitary in } M_2(C(SU_q(2))): \ u^*u = uu^* = 1.$$

▶ $C(SU_q(2))$ admits a comultiplication Δ given by

$$\Delta(u_{ij}) = \sum_{k=1}^{2} u_{ik} \otimes u_{kj}, \quad (u_{ij} = (i, j) \text{th entry of } u).$$

q-deformed SU(2)

Here's a first example that doesn't come from groups: q-deformed SU(2) quantum group.

 $\blacktriangleright \text{ Fix } q \in [-1,1] \setminus \{0\}.$

▶ Define a universal C*-algebra $C(SU_q(2))$ with generators $\alpha, \gamma \in C(SU_q(2))$ and relations making the matrix

$$u = \begin{bmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{bmatrix} \text{ unitary in } M_2(C(SU_q(2))): \ u^*u = uu^* = 1.$$

• $C(SU_q(2))$ admits a comultiplication Δ given by

$$\Delta(u_{ij}) = \sum_{k=1}^{2} u_{ik} \otimes u_{kj}, \quad (u_{ij} = (i, j) \text{th entry of } u).$$

• (Woronowicz) Get a CQG $SU_q(2) = (C(SU_q(2)), \Delta)$, "q-deformed SU(2)".

$$C(SU_q(2)) = C^* \left(\alpha, \gamma \middle| u = [u_{ij}] = \begin{bmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{bmatrix} \text{ unitary} \right)$$
$$\Delta(u_{ij}) = \sum_k u_{ik} \otimes u_{kj}$$

-

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 めへぐ

$$C(SU_q(2)) = C^* \left(\alpha, \gamma \middle| u = [u_{ij}] = \begin{bmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{bmatrix} \text{ unitary} \right)$$
$$\Delta(u_{ij}) = \sum_k u_{ik} \otimes u_{kj}$$

• When q = 1, $C(SU_1(2)) = C(SU(2))$. In fact, the generators $\{u_{ij}\}_{i,j=1}^2 = \{\alpha, \gamma\}$ can be identified with the standard coordinate functions on SU(2), and Δ comes from the "usual" group law:

$$\Delta(u_{ij})(s,t) = \sum_{k} (u_{ik} \otimes u_{kj})(s,t) = \sum_{k} u_{ik}(s)u_{kj}(t) = u_{ij}(st).$$

$$C(SU_q(2)) = C^* \left(\alpha, \gamma \middle| u = [u_{ij}] = \begin{bmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{bmatrix} \text{ unitary} \right)$$
$$\Delta(u_{ij}) = \sum_k u_{ik} \otimes u_{kj}$$

• When q = 1, $C(SU_1(2)) = C(SU(2))$. In fact, the generators $\{u_{ij}\}_{i,j=1}^2 = \{\alpha, \gamma\}$ can be identified with the standard coordinate functions on SU(2), and Δ comes from the "usual" group law:

$$\Delta(u_{ij})(s,t) = \sum_{k} (u_{ik} \otimes u_{kj})(s,t) = \sum_{k} u_{ik}(s)u_{kj}(t) = u_{ij}(st).$$

For $q \neq 1$, $C(SU_q(2))$ is non-abelian, and we think of $SU_q(2)$ as a non-commutative deformation of SU(2).

$$C(SU_q(2)) = C^* \left(\alpha, \gamma \middle| u = [u_{ij}] = \begin{bmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{bmatrix} \text{ unitary} \right)$$
$$\Delta(u_{ij}) = \sum_k u_{ik} \otimes u_{kj}$$

• When q = 1, $C(SU_1(2)) = C(SU(2))$. In fact, the generators $\{u_{ij}\}_{i,j=1}^2 = \{\alpha, \gamma\}$ can be identified with the standard coordinate functions on SU(2), and Δ comes from the "usual" group law:

$$\Delta(u_{ij})(s,t) = \sum_{k} (u_{ik} \otimes u_{kj})(s,t) = \sum_{k} u_{ik}(s)u_{kj}(t) = u_{ij}(st).$$

- For $q \neq 1$, $C(SU_q(2))$ is non-abelian, and we think of $SU_q(2)$ as a **non-commutative deformation of** SU(2).
- ► The above q-deformation procedure SU(2) → SUq(2) is a special case of the very general Drinfeld-Jimbo q-deformations G → Gq (q ∈ (0, 1], G cpt. simply conn. s.-simple Lie gp).

The construction of $SU_q(2)$ as a "non-commutative version of C(SU(2))" can be formalized in the language of compact matrix quantum groups.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ めの(~

Given a compact matrix group $G \subset \mathsf{GL}_n(\mathbb{C})$, we have

The construction of $SU_q(2)$ as a "non-commutative version of C(SU(2))" can be formalized in the language of compact matrix quantum groups.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ めの(~

Given a compact matrix group $G \subset GL_n(\mathbb{C})$, we have

▶ the
$$n^2$$
 coordinate functions $\{u_{ij}\}_{1 \le i,j \le n} \in C(G)$.
 $u_{ij}(g) = (i, j)$ th entry of $g \in G \subset M_n(\mathbb{C})$.

The construction of $SU_q(2)$ as a "non-commutative version of C(SU(2))" can be formalized in the language of compact matrix quantum groups.

Given a compact matrix group $G \subset GL_n(\mathbb{C})$, we have

- ▶ the n^2 coordinate functions $\{u_{ij}\}_{1 \le i,j \le n} \in C(G)$. $u_{ij}(g) = (i, j)$ th entry of $g \in G \subset M_n(\mathbb{C})$.
- ▶ the matrix $u = [u_{ij}] \in M_n(C(G))$ is invertible. This is just the fundamental/defining representation of G.

・ロト・日本・モト・モー ショー ショー

The construction of $SU_q(2)$ as a "non-commutative version of C(SU(2))" can be formalized in the language of compact matrix quantum groups.

Given a compact matrix group $G \subset \operatorname{GL}_n(\mathbb{C})$, we have

- ▶ the n^2 coordinate functions $\{u_{ij}\}_{1 \le i,j \le n} \in C(G)$. $u_{ij}(g) = (i, j)$ th entry of $g \in G \subset M_n(\mathbb{C})$.
- ▶ the matrix $u = [u_{ij}] \in M_n(C(G))$ is invertible. This is just the fundamental/defining representation of G.
- By Stone-Wierstrass, C(G) is generated as a C*-algebra by the u_{ij}'s.

・ロト・日本・モト・モー ショー ショー

The construction of $SU_q(2)$ as a "non-commutative version of C(SU(2))" can be formalized in the language of compact matrix quantum groups.

Given a compact matrix group $G \subset \mathsf{GL}_n(\mathbb{C})$, we have

- ▶ the n^2 coordinate functions $\{u_{ij}\}_{1 \le i,j \le n} \in C(G)$. $u_{ij}(g) = (i, j)$ th entry of $g \in G \subset M_n(\mathbb{C})$.
- ▶ the matrix $u = [u_{ij}] \in M_n(C(G))$ is invertible. This is just the fundamental/defining representation of G.
- By Stone-Wierstrass, C(G) is generated as a C*-algebra by the u_{ij}'s.
- The comultiplication $\Delta: C(G) \to C(G \times G); \ \Delta f(s,t) = f(st)$ is determined by

$$\Delta(u_{ij}) = \sum_{k} u_{ik} \otimes u_{kj}.$$

・ロト・日本・モト・モー ショー ショー

The construction of $SU_q(2)$ as a "non-commutative version of C(SU(2))" can be formalized in the language of compact matrix quantum groups.

Given a compact matrix group $G \subset \operatorname{GL}_n(\mathbb{C})$, we have

- ▶ the n^2 coordinate functions $\{u_{ij}\}_{1 \le i,j \le n} \in C(G)$. $u_{ij}(g) = (i, j)$ th entry of $g \in G \subset M_n(\mathbb{C})$.
- ▶ the matrix $u = [u_{ij}] \in M_n(C(G))$ is invertible. This is just the fundamental/defining representation of G.
- By Stone-Wierstrass, C(G) is generated as a C*-algebra by the u_{ij}'s.
- The comultiplication $\Delta: C(G) \to C(G \times G); \ \Delta f(s,t) = f(st)$ is determined by

$$\Delta(u_{ij}) = \sum_k u_{ik} \otimes u_{kj}.$$

► (For free): The conjugate matrix $\bar{u} = [\overline{u_{ij}}] = [u_{ij}^*] \in M_n(C(G))$ is invertible. (It's the conjugate of the representation u!) Compact matrix quantum groups

Definition

A compact matrix quantum group (CMQG) is a pair (A, u), where A is a unital C*-algebra and $u = [u_{ij}] \in M_n(A)$ satisfies:

- 1. u is invertible in $M_n(A)$.
- 2. A is generated as a C*-algebra by the entries of u.
- 3. There exists a unital *-homomorphism $\Delta: A \to A \otimes_{\min} A$ given by

$$\Delta(u_{ij}) = \sum_k u_{ik} \otimes u_{kj}.$$

4. The conjugate matrix $\bar{u} := [u_{ij}^*]$ is invertible in $M_n(A)$.

Compact matrix quantum groups

Definition

A compact matrix quantum group (CMQG) is a pair (A, u), where A is a unital C*-algebra and $u = [u_{ij}] \in M_n(A)$ satisfies:

- 1. u is invertible in $M_n(A)$.
- 2. A is generated as a C*-algebra by the entries of u.
- 3. There exists a unital *-homomorphism $\Delta: A \to A \otimes_{\min} A$ given by

$$\Delta(u_{ij}) = \sum_k u_{ik} \otimes u_{kj}.$$

4. The conjugate matrix $\bar{u} := [u_{ij}^*]$ is invertible in $M_n(A)$.

Theorem (Woronowicz)

Every CMQG (A, Δ) is a CQG with coproduct Δ .

Compact matrix quantum groups

Definition

A compact matrix quantum group (CMQG) is a pair (A, u), where A is a unital C*-algebra and $u = [u_{ij}] \in M_n(A)$ satisfies:

- 1. u is invertible in $M_n(A)$.
- 2. A is generated as a C*-algebra by the entries of u.
- 3. There exists a unital *-homomorphism $\Delta: A \to A \otimes_{\min} A$ given by

$$\Delta(u_{ij}) = \sum_k u_{ik} \otimes u_{kj}.$$

4. The conjugate matrix $\bar{u} := [u_{ij}^*]$ is invertible in $M_n(A)$.

Theorem (Woronowicz)

Every CMQG (A, Δ) is a CQG with coproduct Δ .

Upshot: Gives a practical way to construct CQGs using mainly "algebraic" generators and relations data.

Liberations of Matrix Lie Groups

Using the CMQG formalism, we can define "free versions" of the classical matrix Lie groups like $G = U_n, O_n, S_n, \dots$

Basic strategy:

- 1. Take the coordinates $u_{ij} \in C(G)$.
- 2. They satisfy some algebraic relations R_G comming from G, which includes commutation.
- 3. "Liberate" G by throwing away the commutation relation. Define

$$C(G^+) = C^*(u_{ij}, 1 \le i, j \le n \mid R_G \setminus \{\text{commutation}\})$$

4. In nice situations, get a new CMQG $G^+ = (C(G^+), u)$, called the free version of G.

Liberations of Matrix Lie Groups

Using the CMQG formalism, we can define "free versions" of the classical matrix Lie groups like $G = U_n, O_n, S_n, \dots$

Basic strategy:

- 1. Take the coordinates $u_{ij} \in C(G)$.
- 2. They satisfy some algebraic relations R_G comming from G, which includes commutation.
- 3. "Liberate" G by throwing away the commutation relation. Define

 $C(G^+) = C^*(u_{ij}, 1 \le i, j \le n \mid R_G \setminus \{\text{commutation}\})$

4. In nice situations, get a new CMQG $G^+ = (C(G^+), u)$, called the free version of G.

In short, we want to "Liberate Michigan! matrix Lie groups!"

The free unitary quantum group U_n^+

Let $n \ge 2$ and let $C(U_n^+)$ be the universal C*-algebra with generators $\{u_{ij}\}_{1\le i,j\le n}$ with the relations

 $u = [u_{ij}] \in M_n(C(U_n^+))$ & $\bar{u} = [u_{ij}^*] \in M_n(C(U_n^+))$ are unitary.

The free unitary quantum group U_n^+

Let $n \ge 2$ and let $C(U_n^+)$ be the universal C*-algebra with generators $\{u_{ij}\}_{1\le i,j\le n}$ with the relations

 $u = [u_{ij}] \in M_n(C(U_n^+))$ & $\bar{u} = [u_{ij}^*] \in M_n(C(U_n^+))$ are unitary.

- ▶ $C(U_n^+)$ is the free version of $C(U_n)$: $C(U_n)$ is the **abelianization** of $C(U_n^+)$.
- The formula

$$\Delta u_{ij} = \sum_k u_{ik} \otimes u_{kj}$$

defines a comultiplication $\Delta : C(U_n^+) \to C(U_n^+) \otimes_{\min} C(U_n^+)$. Stetch:

$$\begin{array}{rcl} u \And \bar{u} \text{ unitary } & \Longrightarrow & [\sum_k u_{ik} \otimes u_{kj}] \And [\sum_k u_{ik}^* \otimes u_{kj}^*] \text{ unitary} \\ & \Longrightarrow & \Delta \text{ well-defined by universality!.} \end{array}$$

 $U_n^+ = (C(U_n^+), u)$ is a CMQG, the free unitary quantum group.

Aside: U_n^+ vs. Brown's Algebras

There is a related (older) liberation of the unitary groups U_n , due to L. Brown: Define

$$\mathcal{B}_n = C^* \Big(u_{ij}, 1 \le i, j \le n \mid u = [u_{ij}] \in M_n(\mathcal{B}_n)$$
 is unitary $\Big).$

So C(U_n⁺) is a quotient of B_n by the relation "ū is unitary".
 B_n has a comultiplication ∆ : B_n → B_n ⊗_{min} B_n given by

$$\Delta u_{ij} = \sum_{k} u_{ik} \otimes u_{kj}.$$

▶ Is $(\mathcal{B}_n, u, \Delta)$ a compact matrix quantum group? **Answer**: No! For \mathcal{B}_n , \bar{u} is **not invertible**. (Exercise: Try to find explicit unitaries $u \in M_n(B(H))$ such that \bar{u} is not invertible).

Free orthogonal and permutation quantum groups

We can play the same game as for U_n to get liberations of the orthogonal groups and permutation groups:

Define

$$\begin{split} C(O_n^+) &= C^* \Big(v_{ij}, 1 \le i, j \le n \mid v = [v_{ij}] \text{ is unitary } \& v_{ij}^* = v_{ij} \Big) \\ C(S_n^+) &= C^* \Big(p_{ij}, 1 \le i, j \le n \mid p = [p_{ij}] \text{ is unitary } \& p_{ij}^2 = p_{ij} = p_{ij}^* \Big). \end{split}$$

These algebras admit comultiplications $\Delta: C(G^+) \to C(G^+) \otimes_{\min} C(G^+) \text{ given by }$

$$\Delta(x_{ij}) = \sum_{k} x_{ik} \otimes x_{kj} \qquad (x \in \{v, p\}).$$

Get two new CMQGs: The free orthogonal quantum groups O_n^+ and the free permutation quantum groups S_n^+ .

The Haar State

Recall: Every compact group G admits a unique translation-invariant Borel probability measure μ , called the Haar measure:

$$\int_G f(st)d\mu(t) = \int_G f(ts)d\mu(t) = \int_G f(t)d\mu(t) \qquad (f \in C(G), \ s \in G).$$

Equivalently, if $h:C(G)\to \mathbb{C},$ $h(f)=\int_G fd\mu$ is the corresponding state, then

$$(\mathsf{id}\otimes h)\Delta(f)=(h\otimes\mathsf{id})\Delta(f)=h(f)1\qquad(f\in C(G)).$$

Definition

A Haar state on a CQG $\mathbb{G}=(C(\mathbb{G}),\Delta)$ is a state $h:C(\mathbb{G})\to\mathbb{C}$ satisfying

$$(\mathsf{id}\otimes h)\Delta(x)=(h\otimes\mathsf{id})\Delta(x)=h(x)1\qquad(x\in C(\mathbb{G})).$$

Example: On a group dual $\hat{\Gamma} = (C^*(\Gamma), \Delta)$, the Haar state is given by the canonical group trace $h(\gamma) = \tau_{\Gamma}(\gamma) = \delta_{\gamma,e}$. (Check!)

Existence and Uniqueness of Haar State

Theorem (Woronowicz)

Every CQG \mathbb{G} admits a unique Haar state h. (which could be non-tracial or non-faithful).

Sketch:

▶ Given linear functionals $\varphi, \psi \in C(\mathbb{G})^*$, define their convolution product $\varphi \star \psi \in C(\mathbb{G})^*$ by

$$\varphi \star \psi = (\varphi \otimes \psi) \Delta.$$

Coassociativity of Δ makes $(C(\mathbb{G})^*, \star)$ into a **Banach** algebra, and the state space $S(C(\mathbb{G}))$ is a subsemigroup. $h \in S(C(\mathbb{G}))$ is a Haar state if and only if

$$\varphi \star h = h \star \varphi = h \qquad \varphi \in S(C(\mathbb{G})).$$

▶ Start with any faithful state $\psi \in S(C(\mathbb{G}))$, consider the weak*-limit

$$h := \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \psi^{\star k} \in S(C(\mathbb{G})) \implies h \text{ is a Haar state!}.$$

Application: Quantum Group Operator Algebras

Using the Haar state, we can form analogues of our favorite group operator algebras:

- ▶ Do the GNS construction: Let $L^2(\mathbb{G}) = L^2(C(\mathbb{G}), h)$ and $\lambda : C(\mathbb{G}) \to B(L^2(\mathbb{G}))$ be the associated "left-regular representation".
- ► Get the reduced C*-algebra of G:

$$C_r(\mathbb{G}) := \lambda(C(\mathbb{G})) \subseteq B(L^2(\mathbb{G})).$$

► Get the von Neumann algebra of G:

$$L^{\infty}(\mathbb{G}) = \lambda(C(\mathbb{G}))'' \subseteq B(L^2(\mathbb{G})).$$

▶ One can also construct a universal C*-algebra of G, $C^u(G)$: If $G = (C(G), u = [u_{ij}])$ is a CMQG, put

$$\mathcal{O}(\mathbb{G}) = * - \mathsf{alg}\Big(u_{ij}, 1 \le i, j \le n\Big).$$

Fact: Haar state h is always faithful on $\mathcal{O}(\mathbb{G})$. Then define

$$C^{u}(\mathbb{G}) = C^{*}_{\mathrm{univ}}(\mathcal{O}(\mathbb{G})).$$

Application: Quantum Group Operator Algebras

The algebras $C^u(\mathbb{G}), C_r(\mathbb{G})$ and $L^\infty(\mathbb{G})$ simultaneously generalize

1. The algebras of multiplication operators

 $C(G), L^{\infty}(G) \subseteq B(L^{2}(G))$ on compact groups G.

2. The discrete group operator algebras $C^*(\Gamma), C^*_r(\Gamma), L\Gamma$.

Can even generalize the notion of amenability:

Definition

A CQG \mathbb{G} is coamenable iff the canonical quotient map $C^u(\mathbb{G}) \to C_r(\mathbb{G})$ is injective.

- Coamebility $\implies C_r(\mathbb{G})$ nuclear, $L^{\infty}(\mathbb{G})$ injective.
- ▶ $SU_q(2)$ is coamenable.
- ▶ Liberations G⁺ of matrix Lie groups are generally not coamenable. ⇒ C_r(G⁺), L[∞](G⁺) are interesting!

Examples (Many hands)

 $L^{\infty}(U_2^+) \cong L(\mathbb{F}_2).$ $L^{\infty}(G^+)$ is a full, strongly solid, weakly amenable, A-T-menable II₁-factor. $C_r(G^+)$ is simple with unique trace, ... (for $G^+ = U_n^+, O_n^+, S_n^+).$

Other Applications, briefly

Compact quantum groups can be used for many other non-commutative purposes:

- 1. $L^{\infty}(\mathbb{G})$ can be regarded as a non-commutative probability space with respect to the Haar state (See Ian's talk).
- 2. CQGs can be made to **act** on various mathematical structures: graphs, metric spaces, OAs, subfactors.
- 3. CQG's often appear as symmetries in quantum information theory, free probability etc.
- CQG's have a rich representation theory give rise to many interesting examples of rigid C*-tensor categories (see Corey's talk.)

Other Applications, briefly

Compact quantum groups can be used for many other non-commutative purposes:

- 1. $L^{\infty}(\mathbb{G})$ can be regarded as a non-commutative probability space with respect to the Haar state (See Ian's talk).
- 2. CQGs can be made to **act** on various mathematical structures: graphs, metric spaces, OAs, subfactors.
- 3. CQG's often appear as symmetries in quantum information theory, free probability etc.
- CQG's have a rich representation theory give rise to many interesting examples of rigid C*-tensor categories (see Corey's talk.)

Thanks!