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Blanket Assumptions

Throughout this talk

A and D are a unital C ∗-algebra.

G is a discrete group.

α is an action of G on D or A.

The C ∗-algebra crossed product is denoted C ∗(G ,D, α).

If B ⊂ A is said to be a unital subalgebra, then 1B = 1A.
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Motivational Questions-1

We want to answer questions of the type

Vague Question

Suppose

D is MUMBLE, MUMBLE,

G is MUMBLE, MUMBLE, and

α satisfies MUMBLE, MUMBLE.

What can we say about C ∗(G ,D, α)?
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Refined Motivational Question

We want to prove theorems of the type

Theorem Type

Suppose

D is MUMBLE, MUMBLE,

G is MUMBLE, MUMBLE, and

α satisfies MUMBLE, MUMBLE.

If D has stable rank 1, then C ∗(G ,D, α) has stable rank 1.
OR
If D has real rank zero, then C ∗(G ,D, α) has real rank zero.
OR
If D is Z-absorbing, then C ∗(G ,D, α) is Z-absorbing.
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Constructing the Crossed Product

Ingredients

A a C ∗-algebra, preferably unital.

G a locally compact discrete group.

A group action α of G on A, α : G → Aut(A)

Step 1 The Algebra AG

Elements are finite sums
∑

g∈G agug

Multiplication ugau
−1
g = αg (a).

Adjoint u∗g = ug−1
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Constructing the Crossed Product 2

Step 2 Define a norm

For f =
∑

g∈G agug ∈ AG , define ‖f ‖1 =
∑

g∈G ‖ag‖

By GNS theorem there actually are some representations.

Step 3 Complete

As usual, let `1(G ,A, α) be the Banach ∗-Algebra obtained by
completing AG in ‖ · ‖1.
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Constructing the Crossed Product 3

Step 4 Represent

Define the Universal Representation σ of `1(G ,A, α) to be the
direct sum of all nondegenerate representations of `1(G ,A, α) on
Hilbert Spaces.

Step 5 complete again

The crossed product C ∗(G ,A, α) is the norm closure of
σ
(
`1(G ,A, α)

)
Reduced Crossed Product

To get the Reduced crossed product, use only only regular
representations.
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Observation about crossed products

If G is amenable, The crossed product and reduced crossed
product are the same.
Remember that C ∗(G ,A, α) is generated by finite sums of the form∑

g∈G
agug

where ag ∈ A and ug is a unitary.
A embeds unitally into C ∗(G ,A, α) as a 7→ aue .
If A is unital, C ∗(G ,A, α) conatains a unitary subgroup isomorphic
to G .
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Irrational Rotation Algebras

Fix θ ∈ R \Q.

Fact

Aθ
∼= C ∗(Z,C (S1), τ)

Where Aθ = C ∗
(
{u, vunitaries : uv = e2πiθvu}

)
And τ : Z→ Aut(C (S1)) by τ(f )(z) = f (e−2πiθz) = f ◦ R−1θ (z)

Actually τ is τ1 and for other integers τn = (τ)n
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Action of Z/2Z

Fact

C ∗(Z/2Z,C (S1), α)
∼= {f ∈ C ([−1, 1],M2) : f (1) and f (−1) are diagonal}

Where α : Z/2Z→ Aut(C (S1)) is defined by α1(f )(z) = f (z).
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Better Notation

Recall the previous two examples.

τ : Z→ Aut(C (S1)) by τ(f )(z) = f (e−2πiθz) = f ◦ R−1θ (z)

α : Z/2Z→ Aut(C (S1)) is defined by α1(f )(z) = f (z).

In both,

The group is singly generated, so only need one
automorphism.

Automorphism is given by composing with a homeomorphism
of the space X = S1.
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Better Notation 2

If A = C (X ) and h : X → X is a homeomorphism, then
α : C (X )→ C (X ) given by α(f ) = f ◦ h determines an action of Z
on C (X ).
Crossed product is denoted C ∗(Z,C (X ), h).
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Simplicity

Definition

Let h : X → X be a homeomorphism. We say (x , h) is a minimal
dynamical system if X has no proper closed h invariant subsets.

Theorem

Let X be a an infinite, compact, Hausdorff space. Then
C ∗(Z,C (X ), h) is simple if and only if (X , h) is minimal.
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Example Theorem

Theorem (Putnum 1989)

Let X be the Cantor set. Let h be a minimal homeomorphism of
X . There exists an embedding of A = C ∗(Z,C (X ), h) into an AF
algebra such that the induced map on K0 is an order isomorphism.
We also have

K0(C ∗(Z,C (X ), h)) ∼= C (X ,Z)/Im(id− h∗)

K1(C ∗(Z,C (X ), h)) ∼= Z
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Example Theorem

Theorem

Let X be the Cantor set and (h,X ) be minimal. Then
C ∗(Z,C (X ), h) is an AT-algebra.
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Pimsner-Voiculescu Exact Sequence

K0(A)
id∗−α∗−−−−→ K0(A)

ι∗−−−−→ K0(C ∗(Z,A, α))x y
K1(C ∗(Z,A, α)) ←−−−−

ι∗
K1(A) ←−−−−

id∗−α∗
K1(A).
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Outer Actions
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Outer Actions

Let G be a discrete group and α an action of G on a unital
C ∗-Algebra A.

Definition

We say α is inner if there is a homeomorphism g 7→ ug , from G to
the unitary group of M(A), such that αg = Ad(ug ) for all
g ∈ G \ {1}.

Definition

We say α is (pointwise) outer if αg is not inner for all g ∈ G \ {1}.

Bad News

There are examples of actions which are not inner even though
every αg is inner. (Ex: using A = M2 and G = (Z/2Z)2.)
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Simplicity in the Finite Group Case

Theorem

Let G be a finite group, and let A be a simple unital C ∗-Algebra.
Let α : G → Aut(A) be a pointwise outer action. Then
C ∗(G ,A, α) is simple.
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Stable Rank One

Definition

If A is a unital, then A has stable rank one (tsr(A) = 1), if the
invertible elements in A are dense in A.

Remark

If X is a compact metric space, then tsr(C (X )) = [dimX
2 ] + 1.

Stable rank is approximately the dimension of X as a complex
vector space.
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Long Open Problem

Question

If A is a simple unital C ∗-Algebra with tsr(A) = 1 and if G is a
finite group acting on A by α, does it follow that C ∗(G ,A, α) has
stable rank one?

Remark

The answer is not known even if G = Z/2Z and A is an AF
algebra.
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But can we bound it?

Theorem (Jeong-Osaka-Phillips-Teruya)

Let A be a C ∗-Algebra, let G be a finite group and let
α : G → Aut(A) be an action. Then

tsr (C ∗ (G ,A, α)) ≤ tsr(A) + card(G )− 1
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Let A be a unital C ∗-algebra, and let α : G → Aut(A) be an action
of a finite group G on A. We say that α has the Rokhlin property
if for every finite set S ⊂ A and every ε > 0, there are mutually
orthogonal projections eg ∈ A for g ∈ G such that:

1 ‖αg (eh)− egh‖ < ε for all g , h ∈ G .

2 ‖ega− aeg‖ < ε for all g ∈ G and all a ∈ S .

3
∑

g∈G eg = 1.

We call (eg )g∈G a family of Rokhlin projections for α, S , and ε.
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The Rokhlin Property is Strong

Crossed products by actions of finite groups with the Rokhlin
prperty preserve the following classes of C ∗-algebras.

AT algebras

D-absorbing separable unital C ∗-algebras for a strongly
self-absorbing C ∗-algebra D.

Unital C ∗-algebras with stable rank one.

Many more.
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Too Strong

An action α on A with the Rokhlin property implies strong
restrictions on the K -theory.

There is no action of Z/2/Z on the 3∞ UHF algebra.

There is no action of any nontrivial finite group on O∞ which
has the Rokhlin property.
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Definition

Let G be a finite group, let A be an infinite dimensional simple
unital C ∗-Algebra, and let α : G → Aut(A) be an action of G
on A. We say that α has the tracial Rokhlin property if for every
finite set F ⊂ A, every ε > 0, and every positive element x ∈ A
with ‖x‖ = 1, there are nonzero mutually orthogonal projections
eg ∈ A for g ∈ G such that:

1 ‖αg (eh)− egh‖ < ε for all g , h ∈ G .

2 ‖ega− aeg‖ < ε for all g ∈ G and all a ∈ F .

3 With e =
∑

g∈G eg , the projection 1− e is MvN equivalent to
a projection in the hereditary subalgbra of A generated by x .

4 With e as in (3), we have ‖exe‖ > 1− ε.
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Permenance Theorems

Theorem (H. Osaka and N.C. Phillips, 2006)

Let D be a stably finite simple unital C ∗-algebra, and let α be an
action of Z on D which has the tracial Rokhlin property. Let
A = C∗(Z,D, α).

RR(D) = 0
⇒

RR(A) = 0
and and

order on projections over D order on projections over A
determined by traces determined by traces

If also tsr(D) = 1 then tsr(A) = 1

Theorem (D.A. 2008)

The above results hold if Z is replaced by a finite group.
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Real Rank Zero and Order on Projections

Definition

Let A be a C ∗-algebra. We say that A has real rank zero if the
invertible selfadjoint elements are dense in the selfadjoint part of A.

Definition

Let A be a simple exact unital C ∗-algebra. The order on
projections over A is determined by traces if, as happens for type
II1 factors, whenever p, q ∈ M∞(A) are projections such that for
all τ ∈ T (A) we have τ(p) < τ(q), then p 4 q.
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Example Theorem

Theorem (Putnum 1989)
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Example of a Large Subalgebra

Let A = C ∗(Z,C (X ), h).
Putnum used the Y-Orbit breaking subalgebra
AY = C ∗(C (X ) ∪ {fu : f ∈ C (X ) and f (y) = 0 for all y ∈ Y })
where u is the standard unitary implementing h.

Theorem (N.C. Phillips)

If hn(Y ) ∩ Y = ∅ for all n ∈ Z \ {0}, then the Y-orbit breaking
subalgebra is large in the crossed product.
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Theorem (Osaka-Phillips, DA)

Let G be a finite group or Z. Let D be a stably finite simple unital
C ∗-algebra, and let α be an action of G on D which has the tracial
Rokhlin property. Let A = C∗(G ,D, α).

RR(D) = 0
⇒

RR(A) = 0
and and

order on projections over D order on projections over A
determined by traces determined by traces

If also tsr(D) = 1 then tsr(A) = 1

Osaka-Phillips and I used a collection of subalgebras each
isomorphic to Mn(fDf ), where f is a projection in D.
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Large Subalgebra Approach

Abstraction to hide irrelevant details.

Lets us provide proofs that are more generalizable.

Lets us prove new theorems.
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Stable Rank 1 and Real Rank 0

Theorem (D.A., N.C. Phillips)

Suppose A is an infinite dimensional simple separable unital
C ∗-algebra. Let B ⊂ A be a centrally large subalgebra. Then

tsr(B) = 1 ⇒ tsr(A) = 1.

Theorem (D.A., N.C. Phillips)

Suppose A is an infinite dimensional simple separable unital
C ∗-algebra. Let B ⊂ A be a centrally large subalgebra. Then
Suppose A has a centrally large subalgebra B

tsr(B) = 1 and RR(B) = 0 ⇒ RR(A) = 0.
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Z-stability

Theorem (D.A., J. Buck, N.C. Phillips)

Let A be a simple separable infinite dimensional nuclear unital
C ∗-algebra, and let B ⊂ A be a centrally large subalgebra. Then

Z ⊗ B ∼= B ⇐⇒ Z ⊗ A ∼= A.
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