A Crash Course in Crossed Product C*-Algebras

Dawn Archey

University of Detroit Mercy

July 13, 2020

Image: A matrix and a matrix

Table of contents

- Blanket Assumptions
- Motivation
- 2 The Crossed Product C*-algebra
- 3 Crossed Products by the Integers
- 4 Crossed Products by Finite Groups
 - Outer Actions
 - Stable Rank One
 - Rokhlin Type Properties

5 Large Subalgebras

Motivation

The Crossed Product C*-algebra Crossed Products by the Integers Crossed Products by Finite Groups Large Subalgebras

Blanket Assumptions Motivation

Blanket Assumptions

Throughout this talk

- A and D are a unital C^* -algebra.
- G is a discrete group.
- α is an action of G on D or A.
- The C*-algebra crossed product is denoted $C^*(G, D, \alpha)$.
- If $B \subset A$ is said to be a unital subalgebra, then $1_B = 1_A$.

Image: A math a math

Motivation

The Crossed Product C*-algebra Crossed Products by the Integers Crossed Products by Finite Groups Large Subalgebras

Blanket Assumptions Motivation

Motivational Questions-1

We want to answer questions of the type

Vague Question

Suppose

- D is MUMBLE, MUMBLE,
- G is MUMBLE, MUMBLE, and
- α satisfies MUMBLE, MUMBLE.

What can we say about $C^*(G, D, \alpha)$?

Motivation

The Crossed Product C*-algebra Crossed Products by the Integers Crossed Products by Finite Groups Large Subalgebras

Blanket Assumptions Motivation

Refined Motivational Question

We want to prove theorems of the type

Theorem Type

Suppose

- D is MUMBLE, MUMBLE,
- G is MUMBLE, MUMBLE, and
- α satisfies MUMBLE, MUMBLE.

If D has stable rank 1, then $C^*(G, D, \alpha)$ has stable rank 1. OR

If D has real rank zero, then $C^*(G, D, \alpha)$ has real rank zero. OR

If D is \mathbb{Z} -absorbing, then $C^*(G, D, \alpha)$ is \mathbb{Z} -absorbing.

< ロ > < 同 > < 三 > < 三 >

Constructing the Crossed Product

Ingredients

- A a C*-algebra, preferably unital.
- G a locally compact discrete group.
- A group action α of G on A, $\alpha: G \to \operatorname{Aut}(A)$

Step 1 The Algebra AG

- Elements are finite sums $\sum_{g\in G} a_g u_g$
- Multiplication $u_g a u_g^{-1} = \alpha_g(a)$.
- Adjoint $u_g^* = u_{g^{-1}}$

イロン イヨン イヨン イヨン

Constructing the Crossed Product 2

Step 2 Define a norm

For
$$f = \sum_{g \in G} a_g u_g \in AG$$
, define $\|f\|_1 = \sum_{g \in G} \|a_g\|$

By GNS theorem there actually are some representations.

Step 3 Complete

As usual, let $\ell^1(G, A, \alpha)$ be the Banach *-Algebra obtained by completing AG in $\|\cdot\|_1$.

イロト イヨト イヨト イヨト

Constructing the Crossed Product 3

Step 4 Represent

Define the Universal Representation σ of $\ell^1(G, A, \alpha)$ to be the direct sum of all nondegenerate representations of $\ell^1(G, A, \alpha)$ on Hilbert Spaces.

Step 5 complete again

The crossed product $C^*(G, A, \alpha)$ is the norm closure of $\sigma(\ell^1(G, A, \alpha))$

Reduced Crossed Product

To get the Reduced crossed product, use only only regular representations.

Observation about crossed products

If G is amenable, The crossed product and reduced crossed product are the same.

Remember that $C^*(G, A, \alpha)$ is generated by finite sums of the form

$$\sum_{g \in G} a_g u_g$$

where $a_g \in A$ and u_g is a unitary. A embeds unitally into $C^*(G, A, \alpha)$ as $a \mapsto au_e$. If A is unital, $C^*(G, A, \alpha)$ conatains a unitary subgroup isomorphic to G.

Irrational Rotation Algebras

Fix $\theta \in \mathbb{R} \setminus \mathbb{Q}$.

Fact

 $A_{ heta} \cong C^*(\mathbb{Z}, C(S^1), \tau)$

Where $A_{\theta} = C^* (\{u, v \text{unitaries} : uv = e^{2\pi i \theta} v u\})$

And $\tau : \mathbb{Z} \to \operatorname{Aut}(C(S^1))$ by $\tau(f)(z) = f(e^{-2\pi i\theta}z) = f \circ R_{\theta}^{-1}(z)$

イロン 不同 とうほう 不同 とう

æ

Irrational Rotation Algebras

Fix $\theta \in \mathbb{R} \setminus \mathbb{Q}$.

Fact

 $A_{ heta} \cong C^*(\mathbb{Z}, C(S^1), \tau)$

Where $A_{\theta} = C^* (\{u, v \text{unitaries} : uv = e^{2\pi i \theta} v u\})$

And $\tau : \mathbb{Z} \to \operatorname{Aut}(C(S^1))$ by $\tau(f)(z) = f(e^{-2\pi i\theta}z) = f \circ R_{\theta}^{-1}(z)$

Actually τ is τ_1 and for other integers $\tau_n = (\tau)^n$

イロン 不同 とうほう 不同 とう

Fact

$$C^*(\mathbb{Z}/2\mathbb{Z}, C(S^1), \alpha) \cong \{f \in C([-1, 1], M_2) : f(1) \text{ and } f(-1) \text{ are diagonal}\}\$$

Where $\alpha : \mathbb{Z}/2\mathbb{Z} \to \operatorname{Aut}(C(S^1))$ is defined by $\alpha_1(f)(z) = f(\overline{z})$.

イロト イヨト イヨト イヨト

臣

Better Notation

Recall the previous two examples.

$$au:\mathbb{Z}
ightarrow \mathsf{Aut}(\mathcal{C}(S^1))$$
 by $au(f)(z)=f(e^{-2\pi i heta z})=f\circ R_{ heta}^{-1}(z)$

$$\alpha : \mathbb{Z}/2\mathbb{Z} \to \operatorname{Aut}(C(S^1))$$
 is defined by $\alpha_1(f)(z) = f(\overline{z})$.

In both,

- The group is singly generated, so only need one automorphism.
- Automorphism is given by composing with a homeomorphism of the space $X = S^1$.

Better Notation 2

If A = C(X) and $h: X \to X$ is a homeomorphism, then $\alpha: C(X) \to C(X)$ given by $\alpha(f) = f \circ h$ determines an action of \mathbb{Z} on C(X). Crossed product is denoted $C^*(\mathbb{Z}, C(X), h)$.

Simplicity

Definition

Let $h: X \to X$ be a homeomorphism. We say (x, h) is a *minimal dynamical system* if X has no proper closed h invariant subsets.

Theorem

Let X be a an infinite, compact, Hausdorff space. Then $C^*(\mathbb{Z}, C(X), h)$ is simple if and only if (X, h) is minimal.

Example Theorem

Theorem (Putnum 1989)

Let X be the Cantor set. Let h be a minimal homeomorphism of X. There exists an embedding of $A = C^*(\mathbb{Z}, C(X), h)$ into an AF algebra such that the induced map on K_0 is an order isomorphism. We also have

•
$$K_0(C^*(\mathbb{Z}, C(X), h)) \cong C(X, \mathbb{Z})/\mathrm{Im}(\mathrm{id} - h_*)$$

•
$$K_1(C^*(\mathbb{Z}, C(X), h)) \cong \mathbb{Z}$$

Example Theorem

Theorem

Let X be the Cantor set and (h, X) be minimal. Then $C^*(\mathbb{Z}, C(X), h)$ is an AT-algebra.

Dawn Archey Crossed Products

イロト イヨト イヨト イヨト

臣

Pimsner-Voiculescu Exact Sequence

イロン イヨン イヨン イヨン

Outer Actions Stable Rank One Rokhlin Type Properties

Outer Actions

Let G be a discrete group and α an action of G on a unital C*-Algebra A.

Definition

We say α is *inner* if there is a homeomorphism $g \mapsto u_g$, from G to the unitary group of M(A), such that $\alpha_g = \operatorname{Ad}(u_g)$ for all $g \in G \setminus \{1\}$.

Definition

We say α is *(pointwise) outer* if α_g is not inner for all $g \in G \setminus \{1\}$.

Bad News

There are examples of actions which are not inner even though every α_g is inner. (Ex: using $A = M_2$ and $G = (\mathbb{Z}/2\mathbb{Z})^2$.)

Outer Actions Stable Rank One Rokhlin Type Properties

Simplicity in the Finite Group Case

Theorem

Let G be a finite group, and let A be a simple unital C*-Algebra. Let $\alpha : G \to Aut(A)$ be a pointwise outer action. Then $C^*(G, A, \alpha)$ is simple.

Outer Actions Stable Rank One Rokhlin Type Properties

Stable Rank One

Definition

If A is a unital, then A has stable rank one (tsr(A) = 1), if the invertible elements in A are dense in A.

Remark

If X is a compact metric space, then $tsr(C(X)) = \left[\frac{\dim X}{2}\right] + 1$. Stable rank is approximately the dimension of X as a complex vector space.

Image: A match the second s

Outer Actions Stable Rank One Rokhlin Type Properties

Long Open Problem

Question

If A is a simple unital C*-Algebra with tsr(A) = 1 and if G is a finite group acting on A by α , does it follow that $C^*(G, A, \alpha)$ has stable rank one?

Remark

The answer is not known even if $G = \mathbb{Z}/2\mathbb{Z}$ and A is an AF algebra.

Image: A match the second s

Outer Actions Stable Rank One Rokhlin Type Properties

But can we bound it?

Theorem (Jeong-Osaka-Phillips-Teruya)

Let A be a C*-Algebra, let G be a finite group and let $\alpha : G \rightarrow Aut(A)$ be an action. Then

$$\operatorname{tsr}\left(\mathcal{C}^{*}\left(\mathcal{G},\mathcal{A},lpha
ight)
ight)\leq\operatorname{tsr}(\mathcal{A})+\operatorname{card}(\mathcal{G})-1$$

(日)、<回)、<三)、</p>

Outer Actions Stable Rank One Rokhlin Type Properties

Let A be a unital C*-algebra, and let $\alpha: G \to \operatorname{Aut}(A)$ be an action of a finite group G on A. We say that α has the *Rokhlin property* if for every finite set $S \subset A$ and every $\varepsilon > 0$, there are mutually orthogonal projections $e_g \in A$ for $g \in G$ such that:

< ロ > < 同 > < 三 > < 三 >

Outer Actions Stable Rank One Rokhlin Type Properties

The Rokhlin Property is Strong

Crossed products by actions of finite groups with the Rokhlin prperty preserve the following classes of C^* -algebras.

- AT algebras
- *D*-absorbing separable unital *C**-algebras for a strongly self-absorbing *C**-algebra D.
- Unital C*-algebras with stable rank one.
- Many more.

Outer Actions Stable Rank One Rokhlin Type Properties

Too Strong

An action α on A with the Rokhlin property implies strong restrictions on the *K*-theory.

- There is no action of $\mathbb{Z}/2/Z$ on the 3^{∞} UHF algebra.
- There is no action of any nontrivial finite group on \mathcal{O}_∞ which has the Rokhlin property.

Outer Actions Stable Rank One Rokhlin Type Properties

Definition

Let G be a finite group, let A be an infinite dimensional simple unital C^* -Algebra, and let $\alpha \colon G \to \operatorname{Aut}(A)$ be an action of G on A. We say that α has the *tracial Rokhlin property* if for every finite set $F \subset A$, every $\varepsilon > 0$, and every positive element $x \in A$ with ||x|| = 1, there are nonzero mutually orthogonal projections $e_g \in A$ for $g \in G$ such that:

$$\|\alpha_g(e_h) - e_{gh}\| < \varepsilon \text{ for all } g, h \in G.$$

$$||e_g a - ae_g|| < \varepsilon \text{ for all } g \in G \text{ and all } a \in F.$$

• With $e = \sum_{g \in G} e_g$, the projection 1 - e is MvN equivalent to a projection in the hereditary subalgbra of A generated by x.

• With e as in (3), we have $||exe|| > 1 - \varepsilon$.

イロト イヨト イヨト イヨト

Outer Actions Stable Rank One Rokhlin Type Properties

Permenance Theorems

Theorem (H. Osaka and N.C. Phillips, 2006)

Let D be a stably finite simple unital C^* -algebra, and let α be an action of \mathbb{Z} on D which has the tracial Rokhlin property. Let $A = \mathbb{C}^*(\mathbb{Z}, D, \alpha)$.

RR(D) = 0		RR(A) = 0
and	\Rightarrow	and
order on projections over D		order on projections over A
determined by traces		determined by traces
If also $tsr(D) = 1$	then	tsr(A) = 1

Theorem (D.A. 2008) The above results hold if \mathbb{Z} is replaced by a finite group.

Outer Actions Stable Rank One Rokhlin Type Properties

Real Rank Zero and Order on Projections

Definition

Let A be a C^* -algebra. We say that A has *real rank zero* if the invertible selfadjoint elements are dense in the selfadjoint part of A.

Definition

Let A be a simple exact unital C*-algebra. The order on projections over A is determined by traces if, as happens for type II₁ factors, whenever $p, q \in M_{\infty}(A)$ are projections such that for all $\tau \in T(A)$ we have $\tau(p) < \tau(q)$, then $p \preccurlyeq q$.

イロト イヨト イヨト イヨト

Example Theorem

Theorem (Putnum 1989)

Let X be the Cantor set. Let h be a minimal homeomorphism of X. There exists an embedding of $A = C^*(\mathbb{Z}, C(X), h)$ into an AF algebra such that the induced map on K_0 is an order isomorphism. We also have

•
$$K_0(C^*(\mathbb{Z}, C(X), h)) \cong C(X, \mathbb{Z}) / \operatorname{Im}(\operatorname{id} - h_*)$$

•
$$K_1(C^*(\mathbb{Z}, C(X), h)) \cong \mathbb{Z}$$

Example of a Large Subalgebra

Let $A = C^*(\mathbb{Z}, C(X), h)$. Putnum used the Y-**Orbit breaking subalgebra** $A_Y = C^*(C(X) \cup \{fu : f \in C(X) \text{ and } f(y) = 0 \text{ for all } y \in Y\})$ where *u* is the standard unitary implementing *h*.

Theorem (N.C. Phillips)

If $h^n(Y) \cap Y = \emptyset$ for all $n \in \mathbb{Z} \setminus \{0\}$, then the Y-orbit breaking subalgebra is large in the crossed product.

< ロ > < 同 > < 回 > < 回 >

Theorem (Osaka-Phillips, DA)

Let G be a finite group or \mathbb{Z} . Let D be a stably finite simple unital C^* -algebra, and let α be an action of G on D which has the tracial Rokhlin property. Let $A = \mathbb{C}^*(G, D, \alpha)$.

RR(D) = 0		RR(A) = 0
and	\Rightarrow	and
order on projections over D		order on projections over A
determined by traces		determined by traces
If also $tsr(D) = 1$	then	tsr(A) = 1

Osaka-Phillips and I used a collection of subalgebras each isomorphic to $M_n(fDf)$, where f is a projection in D.

< □ > < □ > < □ > < □ >

Large Subalgebra Approach

• Abstraction to hide irrelevant details.

イロト イヨト イヨト イヨト

Large Subalgebra Approach

- Abstraction to hide irrelevant details.
- Lets us provide proofs that are more generalizable.

< □ > < □ > < □ > < □ >

- Abstraction to hide irrelevant details.
- Lets us provide proofs that are more generalizable.
- Lets us prove new theorems.

Stable Rank 1 and Real Rank 0

Theorem (D.A., N.C. Phillips)

Suppose A is an infinite dimensional simple separable unital C^* -algebra. Let $B \subset A$ be a centrally large subalgebra. Then

$$\operatorname{tsr}(B) = 1 \Rightarrow \operatorname{tsr}(A) = 1.$$

Theorem (D.A., N.C. Phillips)

Suppose A is an infinite dimensional simple separable unital C^* -algebra. Let $B \subset A$ be a centrally large subalgebra. Then Suppose A has a centrally large subalgebra B

$$\operatorname{tsr}(B) = 1$$
 and $\operatorname{RR}(B) = 0 \Rightarrow \operatorname{RR}(A) = 0$.

イロト イヨト イヨト イヨト

臣

Theorem (D.A., J. Buck, N.C. Phillips)

Let A be a simple separable infinite dimensional nuclear unital C^* -algebra, and let $B \subset A$ be a centrally large subalgebra. Then

$\mathcal{Z}\otimes B\cong B \iff \mathcal{Z}\otimes A\cong A.$

< ロ > < 同 > < 三 > < 三 >