Free transport for interpolated free group factors

Mike Hartglass
Joint with Brent Nelson

November 11, 2017

Free group factors

» Voiculescu's construction:

Free group factors

» Voiculescu's construction:
» Real Hilbert space, Hg, with complexification H

Free group factors

» Voiculescu's construction:

» Real Hilbert space, Hg, with complexification ‘H
> Form the full Fock Space F(H) = CQ & HH®"

n>1

Free group factors

» Voiculescu’s construction:
» Real Hilbert space, Hg, with complexification ‘H
> Form the full Fock Space F(H) = CQ & HH®"
n>1
» For £ € Hg, have the creation operator £(£):

E)Q)=Eand £(§) (&, @ ®E,) =E®&, @

® &,

Free group factors

» Voiculescu’s construction:
» Real Hilbert space, Hg, with complexification ‘H
> Form the full Fock Space F(H) = CQ & @ H™"
n>1
» For £ € Hg, have the creation operator £(£):

E)Q)=Eand £(§) (&, @ ®E,) =E®&, @

» Pick &1,&,... and o.n.b of Hg.

® &,

Free group factors

» Voiculescu's construction:

» Real Hilbert space, Hg, with complexification ‘H
> Form the full Fock Space F(H) = CQ & @ H™"

n>1
» For £ € Hg, have the creation operator £(£):

L)) =Eand (&) (&, @ ®&,) =E@&, @ @&,

» Pick &1,&,... and o.n.b of Hg. Set X; = £(&;) + £(&)*.
(Semicircular element)

Free group factors

» Voiculescu's construction:

» Real Hilbert space, Hg, with complexification ‘H
> Form the full Fock Space F(H) = CQ & @ H™"

n>1
For £ € Hg, have the creation operator £(£):

L)) =Eand (&) (&, @ ®&,) =E@&, @ @&,

v

v

Pick &1,&2,... and o.n.b of Hg. Set X; = £(&;) + £(&)*.
(Semicircular element)
W*(X1, Xa,---) = L(F,), n = dim(H).

v

Free group factors

» Voiculescu's construction:
» Real Hilbert space, Hg, with complexification ‘H
> Form the full Fock Space F(H) = CQ & @ H™"

n>1
For £ € Hg, have the creation operator £(£):

v

L)) =Eand (&) (&, @ ®&,) =E@&, @ @&,

v

Pick &1,&2,... and o.n.b of Hg. Set X; = £(&;) + £(&)*.
(Semicircular element)

W*(X1,Xa,) 2 L(F,), n = dim(H).

Trace vector: tr(z) = (Qaf), x € W* (X1, Xa,-).

v

v

Free group factors

» Voiculescu's construction:
» Real Hilbert space, Hg, with complexification ‘H
> Form the full Fock Space F(H) = CQ & @ H™"

n>1
» For £ € Hg, have the creation operator £(£):

L)) =Eand (&) (&, @ ®&,) =E@&, @ @&,

» Pick &1,&,... and o.n.b of Hg. Set X; = £(&;) + £(&;)*.
(Semicircular element)

» W*(Xy,Xs,--) = L(F,), n=dim(H).

» Trace vector: tr(z) = (QzQ), v € W* (X1, Xo,---).

» Key property:

tr(XilXig e X,Ln) = Z tI'(XiQ e Xik—l) tI'(Xik_H s Xz)

=11

Interpolated free group factors

» Factors L(F;) t € (1, 00] discovered independently by Dykema
and Rddulescu.

Interpolated free group factors

» Factors L(F;) t € (1, 00] discovered independently by Dykema
and Rddulescu.
» Properties

1. Agree with the usual free group factors when
te{2,3,...} U{oo}

Interpolated free group factors

» Factors L(F;) t € (1, 00] discovered independently by Dykema
and Rddulescu.
» Properties
1. Agree with the usual free group factors when
t€{2,3,...}U{oo}
2. L(F,) % L(F,) = L(Fy ;)

Interpolated free group factors

» Factors L(F;) t € (1, 00] discovered independently by Dykema
and Rddulescu.

» Properties

1.

2.
3.

Agree with the usual free group factors when
te{2,3,...} U{oo}

L(Fy) * L(Fy) = L(Fs1y)

PL(F)p = L(E(L + {=1) for p € P(L(F,))

Constructions

» R3duescu’s and Dykema's constructions:
» Ridulescu (1990s) Ingredients:

Constructions

» R3duescu’s and Dykema's constructions:
» Ridulescu (1990s) Ingredients:
> Free semicircular family (Xs)ses.

Constructions

» R3duescu’s and Dykema's constructions:
» Ridulescu (1990s) Ingredients:

> Free semicircular family (Xs)ses.
> 09,01 €8

Constructions

» R3duescu’s and Dykema's constructions:
» Ridulescu (1990s) Ingredients:

> Free semicircular family (Xs)ses.
> 090,01 € S
> Projections es, fs € (Xo,)” mutually orthogonal or equal.

Constructions

» R3duescu’s and Dykema's constructions:
» Ridulescu (1990s) Ingredients:

>

>
>
>

Free semicircular family (Xs)ses.

00,01 € S

Projections e, fs € (X,,)" mutually orthogonal or equal.
VN(Xoy, (s Xy fs)s'es\{o0,01}) depends only on

t=1+4) kotr(es)tr(fs)

with ks = 1 ifes = fs and ko =2 if es L fs.

Constructions

» R3duescu’s and Dykema's constructions:
» Ridulescu (1990s) Ingredients:

>

>
>
>

Free semicircular family (Xs)ses.

00,01 € S

Projections e, fs € (X,,)" mutually orthogonal or equal.
VN(Xoy, (s Xy fs)s'es\{o0,01}) depends only on

t=1+4) kotr(es)tr(fs)

with ks = 1 if es = fs and ka = 2 if es L fs. This is L(IFy).

Constructions

» R3duescu’s and Dykema's constructions:
» Ridulescu (1990s) Ingredients:
> Free semicircular family (Xs)ses.
00,01 € S
Projections e, fs € (X,,)" mutually orthogonal or equal.
VN(Xoy, (s Xy fs)s'es\{o0,01}) depends only on

t=1+4) kotr(es)tr(fs)

vvyy

with ks = 1 if es = fs and ka = 2 if es L fs. This is L(IFy).
» Dykema (1990s) Ingredients:

Constructions

» R3duescu’s and Dykema's constructions:
» Ridulescu (1990s) Ingredients:
> Free semicircular family (Xs)ses.
00,01 € S
Projections e, fs € (X,,)" mutually orthogonal or equal.
VN(Xoy, (s Xy fs)s'es\{o0,01}) depends only on

t=1+4) kotr(es)tr(fs)

vvyy

with ks = 1 if es = fs and ka = 2 if es L fs. This is L(IFy).
» Dykema (1990s) Ingredients:
> The hyperfinite Il; factor R

Constructions

» R3duescu’s and Dykema's constructions:
» Ridulescu (1990s) Ingredients:
> Free semicircular family (Xs)ses.
00,01 € S
Projections e, fs € (X,,)" mutually orthogonal or equal.
VN(Xoy, (s Xy fs)s'es\{o0,01}) depends only on

t=1+4) kotr(es)tr(fs)

vvyy

with ks = 1 if es = fs and ka = 2 if es L fs. This is L(IFy).
» Dykema (1990s) Ingredients:

> The hyperfinite Il; factor R
> Projections {ps}scs in R

Constructions

» R3duescu’s and Dykema's constructions:
» Ridulescu (1990s) Ingredients:
> Free semicircular family (Xs)ses.
00,01 € S
Projections e, fs € (X,,)" mutually orthogonal or equal.
VN(Xoy, (s Xy fs)s'es\{o0,01}) depends only on

t=1+4) kotr(es)tr(fs)

vvyy

with ks = 1 if es = fs and ka = 2 if es L fs. This is L(IFy).
» Dykema (1990s) Ingredients:
> The hyperfinite Il; factor R
> Projections {ps}scs in R
> A free semicircular family {X;}scs free from R.

Constructions

» R3duescu’s and Dykema's constructions:
» Ridulescu (1990s) Ingredients:
> Free semicircular family (Xs)ses.
00,01 € S
Projections e, fs € (X,,)" mutually orthogonal or equal.
VN(Xoy, (s Xy fs)s'es\{o0,01}) depends only on

t=1+4) kotr(es)tr(fs)

vvyy

with ks = 1 if es = fs and ka = 2 if es L fs. This is L(IFy).
» Dykema (1990s) Ingredients:
> The hyperfinite Il; factor R
> Projections {ps}scs in R
> A free semicircular family {X;}scs free from R.
> VN(R, psXsps) depends only on >~ tr(ps)2.

Constructions

» R3duescu’s and Dykema's constructions:
» Ridulescu (1990s) Ingredients:
> Free semicircular family (Xs)ses.
00,01 € S
Projections e, fs € (X,,)" mutually orthogonal or equal.
VN(Xoy, (s Xy fs)s'es\{o0,01}) depends only on

t=1+4) kotr(es)tr(fs)

vvyy

with ks = 1 if es = fs and ka = 2 if es L fs. This is L(IFy).
» Dykema (1990s) Ingredients:
> The hyperfinite Il; factor R
> Projections {ps}scs in R
> A free semicircular family {X;}scs free from R.
> VN(R, psX.ps) depends only on > _tr(ps)®. Get L(F;)
with t =1+ Eses tr(ps)2

Weighted graphs, free graph algebra

» (I',V, E, i) a connected, finite, weighted graph.

Weighted graphs, free graph algebra

» (I',V, E, i) a connected, finite, weighted graph. Require
> ey M) =1

Weighted graphs, free graph algebra

» (I',V, E, i) a connected, finite, weighted graph. Require
> ey M) =1
» Directed version (f, V,E,u)

Weighted graphs, free graph algebra

» (I',V, E, i) a connected, finite, weighted graph. Require
> ey M) =1
» Directed version (f, V,E,u)

» Undirected edges e.

Weighted graphs, free graph algebra

» (I',V, E, i) a connected, finite, weighted graph. Require
> ey M) =1
» Directed version (f, V,E,u)

» Undirected edges e. Directed versions ¢, €°P

Weighted graphs, free graph algebra

» (I',V, E, i) a connected, finite, weighted graph. Require
> ey M) =1

» Directed version (f, V,E,u)

» Undirected edges e. Directed versions ¢, €?P

» (>°(V): functions on V.

Weighted graphs, free graph algebra

» (I',V, E, i) a connected, finite, weighted graph. Require
> ey M) =1

» Directed version (f, V,E,u)

» Undirected edges e. Directed versions ¢, €?P

» (°°(V): functions on V. p, indicator function at v € V.

Weighted graphs, free graph algebra

» (I',V, E, i) a connected, finite, weighted graph. Require
> ey M) =1
Directed version (f, V,E,)

Undirected edges e. Directed versions ¢, P

v

v

v

¢°(V'): functions on V. p, indicator function at v € V.
Fock space representation of operators (p,)yev and (x.)

v

ecE

Weighted graphs, free graph algebra

» (I',V, E, i) a connected, finite, weighted graph. Require
> ey M) =1
Directed version (f, V,E,)

Undirected edges e. Directed versions ¢, P

v

v

v

¢°(V'): functions on V. p, indicator function at v € V.

Fock space representation of operators (p,)yev and (x.)
Relations:

L 1= Zyevpv

v

ecE

Weighted graphs, free graph algebra

» (I',V, E, i) a connected, finite, weighted graph. Require
> ey M) =1
Directed version (f, V,E,)

Undirected edges e. Directed versions ¢, P

v

v

v

¢°(V'): functions on V. p, indicator function at v € V.
Fock space representation of operators (p,)yev and (x.)
Relations:

L 1= ZUEVPU
2. Te = ps(e)xépt(e)

v

ecE

Weighted graphs, free graph algebra

» (I',V, E, i) a connected, finite, weighted graph. Require
> ey M) =1
Directed version (f, V,E,)

Undirected edges e. Directed versions ¢, P

v

v

v

¢°(V'): functions on V. p, indicator function at v € V.

Fock space representation of operators (p,)yev and (x.)
Relations:
L 1= ZUEV Po

2. x. = Ps(e)TePt(e)
3. Leop = J?:

v

ecE

Weighted graphs, free graph algebra

» (I',V, E, i) a connected, finite, weighted graph. Require
> ey M) =1
Directed version (f, V,E,)

Undirected edges e. Directed versions ¢, P

v

v

v

¢°(V'): functions on V. p, indicator function at v € V.

Fock space representation of operators (p,)yev and (x.)
Relations:

1']' = ZUEVPU

2. x. = Ps(e)TePt(e)

3. Leor = J?:

4. xe -+ 2, =0 unless €1 - - - ¢, is a path.

v

ecE

Weighted graphs, free graph algebra

» (I',V, E, i) a connected, finite, weighted graph. Require
> ey M) =1
Directed version (f, V,E,)

Undirected edges e. Directed versions ¢, P

v

v

v

¢°(V'): functions on V. p, indicator function at v € V.

Fock space representation of operators (p,)yev and (x.)
Relations:

1. 1= Zyevpv

Te = Ps(e)TePt(e)

Leop = J?:

Zey T, = 0 unless €; - - - €, is a path.
tr(ze, - xe,) =

v

ecE

o0

e, 2, e))

Weighted graphs, free graph algebra

» (I',V, E, i) a connected, finite, weighted graph. Require
> ey M) =1

v

v

v

v

Directed version (f, V, E,)

Undirected edges e. Directed versions ¢, P

¢°(V'): functions on V. p, indicator function at v € V.
Fock space representation of operators (py)vey and (7e)

Relations:

1.

o0

1= ngv Do

Te = Ps(e)LePt(e)

Leop = J?:

Zey T, = 0 unless €; - - - €, is a path.
tr(ze, - xe,) =

(e alt(en) Z (e, o ey) (i o)

. If [V] =1, this gives Voiculescu's free semicircular system.

von Neumann algebras

> Set S(I', 1) =C*((pv)vev, (Te) o)

von Neumann algebras

> Set S(T, 1) =C*((po)vev, (%))
» Set M(T, u) = (S(T,), tr)”

von Neumann algebras

> Set S(I', 1) =C*((pu)vev, (xe)eeﬁ)

» Set M(T, u) = (S(T,), tr)”

» Theorem (H. '13): Let V5 be the set of vertices, 3 satisfying
w(B) > > s Napi(a). We have

M(T,) = L(F) & P C
YEVS

where 7, < py and 7(ry) = pu(7) — X4y Napp(a). If
M(T,) is a factor, then

E=1=) p@) 4+ p0) > npwi(w)

veV veV W~

Examples

L(F¢)

t=(n—4)a®+4a

L(Ft)

t =6(a — a?)

C*-algebras

» Theorem (H '16) Let V_ be the set of vertices /3 satisfying
w(B) = > ampNapi(a), and let Vo> = V5 UV, Let I be the
norm-closed ideal generated by generated by (z¢)ccp. Then:

» [is minimal, simple, has unique trace, and has stable rank 1.
» [is unital if and only if V= is empty. If V= is empty, then

STC,p)=I® @ 8

vEVS

with 7, < py and 7(ry) = u(y) = X0y Rapp(a). If Vois
not empty, then

where 7 is unital, and the strong operator closures of I and Z
coincide in L*(S(T,), 7), and Z/T = @4, C.

» Ko(I) 2 Z{[pgl|B € V\V>} and K1(I) = {0} where the
first group is the free abelian group on the classes of
projections [pg]. Furthermore,

Ko(I)T = {z € Ko(I)|tr(z) > 0} U{0}.

Free difference quotient

» Let A be the x-algebra generated by ¢*°(V') and (x¢)cck-

Free difference quotient

» Let A be the x-algebra generated by ¢*°(V') and (x¢)ecE-

> Free difference quotient: for € € E, define
Oc: A— A® AP by:

Oc(Ter) = deerDs(e) DDy Oc(po) =

and extend via derivation.

Free difference quotient

» Let A be the x-algebra generated by ¢*°(V') and (x¢)ecE-

> Free difference quotient: for € € E, define
Oc: A— A® AP by:

Oc(Ter) = deerDs(e) DDy Oc(po) =

and extend via derivation.

> Set () = /u(s())u((e))

Free difference quotient

v

Let A be the *-algebra generated by ¢>°(V) and (z¢)ccp-

v

Free difference quotient: for ¢ € E, define
Oc: A— A® AP by:
Oc(Ter) = deerDs(e) DDy Oc(po) =

and extend via derivation.

Set p(e) = v/A((H(E(E))
Observation: ji(€) tr(zer@) = (tr @ tr)(0:(Q)) for P € A.

v

v

Free difference quotient

» Let A be the x-algebra generated by ¢*°(V') and (x¢)ecE-
> Free difference quotient: for € € E, define

Oc: A— A® AP by:
Oc(Ter) = deerDs(e) DDy Oc(po) =

and extend via derivation.

> Set p(e) = /AN HEE)
» Observation: pi(e) tr(zeor@) = (tr@tr)(0:(Q)) for P € A.

i.e. 07 (Ps(e) @ Py(e)) = ple)we

v

Vector fields and Jacobians

> Set AE —

Vector fields and Jacobians

> Set AE={f:E— A | Dse) f(€)Pi(ey = f€)}

Vector fields and Jacobians

> Set AT = (£ : E = Alpyof (py = £(9)}
> Inner product (f|h) = > tr(fXhe)

Vector fields and Jacobians

> Set AP = {f: ' — Alpyo [()pye) = (€)}

> Inner product (f|h) = > tr(fXhe)

> Given f € AP, define ¢ f € My(A® A%) by
(/f)efﬁ = a¢fe

Vector fields and Jacobians

> Set AE = {f:E—A | Ds(e) fF(€)piey = f(€)}
> Inner product (f|h) = > tr(fXhe)
> Given f € AP, define ¢ f € My(A® A%) by
(J Hep = 01
> Define P € Mz(A® A%) by Py = 0c ¢Ds(c) @ Pi(e)-

Vector fields and Jacobians

> Set AP = {f: E'— A|py f(e)pye) = f(e)}

> Inner product (f|h) = > tr(fXhe)

> Given f € AP, define ¢ f € My(A® A%) by
(J Hep = 01

> Define P € Mz(A® A%) by Py = 0c ¢Ds(c) @ Py(e)- Observe
Fx=P

Vector fields and Jacobians

> Set AP = {f: E = Alpyof(pig = f(0)}

> Inner product (f|h) = > tr(fXhe)

> Given f € AP, define ¢ f € My(A® A%) by
(I fes = Opfe

> Define P € Mz(A® A%) by Py = 0c ¢Ds(c) @ Py(e)- Observe
Fx=P

> Set M(A) = PMp(A® AP)P.

Vector fields and Jacobians

> Set AP = {f: E'— A|py f(e)pye) = f(e)}

> Inner product (f|h) = > tr(fXhe)

> Given f € AP, define ¢ f € My(A® A%) by
(J Hep = 01

> Define P € Mz(A® A%) by Py = 0c ¢Ds(c) @ Py(e)- Observe
Fx=P

> Set M(A) = PM (A ® AP)P. Note that ¢ f € M(A) for
feAE

Vector fields and Jacobians

> Set AP = {f : E = Alpyo f(prg = [(e))

> Inner product (f|h) = > tr(fXhe)

> Given f € AP, define ¢ f € My(A® A%) by
(et = s

> Define P € Mz(A® A%) by Py = 0c ¢Ds(c) @ Py(e)- Observe
Fx=P

> Set M(A) = PM (A ® AP)P. Note that ¢ f € M(A) for
feAE

» Fora®@be A® A, and ¢ € A, define (a ® b)#c = acb.

Vector fields and Jacobians

> Set AP = {f: E = A|pof (Opyo = ()}

> Inner product (f|h) = > tr(fXhe)

> Given f € AP, define ¢ f € My(A® A%) by
(7 Fes = O fe

> Define P € Mz(A® A%) by Py = 0c ¢Ds(c) @ Py(e)- Observe
Fx=P

> Set M(A) = PM (A ® AP)P. Note that ¢ f € M(A) for
feAE

» Fora®@be A® A, and ¢ € A, define (a ® b)#c = acb.
Extend to an action of M(A) acting on AE in obvious way.

Vector fields and Jacobians

> Set AP = {f : E = Alpyo f(prg = [(e))

> Inner product (f|h) = > tr(fXhe)

> Given f € AP, define ¢ f € My(A® A%) by
(et = s

> Define P € Mz(A® A%) by Py = 0c ¢Ds(c) @ Py(e)- Observe
Fx=P

> Set M(A) = PM (A ® AP)P. Note that ¢ f € M(A) for
feAE

» Fora®be A® A, and c € A, define (a ® b)#c = acb.

Extend to an action of M(A) acting on AF in obvious way.
This is well defined!

Vector fields and Jacobians

> Set AP = {f : E = Alpyo f(prg = [(e))

> Inner product (f|h) = > tr(fXhe)

> Given f € AP, define ¢ f € My(A® A%) by
(et = s

> Define P € Mz(A® A%) by Py = 0c ¢Ds(c) @ Py(e)- Observe
Fx=P

> Set M(A) = PM (A ® AP)P. Note that ¢ f € M(A) for
feAE

» Fora®be A® A, and c € A, define (a ® b)#c = acb.

Extend to an action of M(A) acting on AF in obvious way.
This is well defined!

» The Schwinger-Dyson equation is now _#*(P) = M#x

Vector fields and Jacobians

> Set AP = {f : E = Alpyo f(prg = [(e))

> Inner product (f|h) = > tr(fXhe)

> Given f € AP, define ¢ f € My(A® A%) by
(et = s

> Define P € Mz(A® A%) by Py = 0c ¢Ds(c) @ Py(e)- Observe
Fx=P

> Set M(A) = PM (A ® AP)P. Note that ¢ f € M(A) for
feAE

» Fora®be A® A, and c € A, define (a ® b)#c = acb.

Extend to an action of M(A) acting on AF in obvious way.
This is well defined!

» The Schwinger-Dyson equation is now _#*(P) = M#x with
Mep = 6 p11(€)Ps(e) @ Pi(e)

Cyclic gradients and Schwinger-Dyson

» Cyclic partial derivatives Z:

Cyclic gradients and Schwinger-Dyson

» Cyclic partial derivatives Z.: P, = m 0 g © Ocop

Cyclic gradients and Schwinger-Dyson

» Cyclic partial derivatives Z,: Y. = m o 0 0 Ocop
> Z.(P) = ZP:QmeopR RQ

Cyclic gradients and Schwinger-Dyson

» Cyclic partial derivatives Z.: P, = m 0 g © Ocop
> 2e(P) =3 p—gu.opr RQ
» Cyclic gradient: 2 : A — AE given by (29). = Z.(g)

Cyclic gradients and Schwinger-Dyson

» Cyclic partial derivatives Z.: P, = m 0 g © Ocop

> Z.(P) = ZP:QmeopR RQ

» Cyclic gradient: 2 : A — AE given by (29). = Z.(g) Note
that this is well defined!

Cyclic gradients and Schwinger-Dyson

» Cyclic partial derivatives Z,: Y. = m o 0 0 Ocop
> Z.(P) = ZP:QmeopR RQ

» Cyclic gradient: 2 : A — AE given by (Z2g). = Z(g) Note
that this is well defined!

» Note: The Schwinger-Dyson equation is now

/*<P) = @(VM) with VM = %Zu(e)gj:xe

Cyclic gradients and Schwinger-Dyson

» Cyclic partial derivatives Z,: Y. = m o 0 0 Ocop
Pe(P) = 3 p—gu.opr BQ

Cyclic gradient: 2 : A — AE given by (29). = Z.(g) Note
that this is well defined!

v

v

v

Note: The Schwinger-Dyson equation is now

/*<P) = @(VM) with VM = %Zu(e)x:xe

v

A"t: Completion of A with respect to the norm:

Cyclic gradients and Schwinger-Dyson

» Cyclic partial derivatives Z,: Y. = m o 0 0 Ocop
Pe(P) = 3 p—gu.opr BQ

Cyclic gradient: 2 : A — AE given by (29). = Z.(g) Note
that this is well defined!

v

v

v

Note: The Schwinger-Dyson equation is now

/*<P) = @(VM) with VM = %Zu(e)x:xe

v

A"t: Completion of A with respect to the norm:

E AyPy + § ael,...,enxq e men

veV €1:€n

R

= (sup |ay]) + Z (e, .., | R”
veV

€]1...€n

Perturbations

» We are interested in perturbations:

Perturbations

» We are interested in perturbations: A family (y.) and ¢

ccE"
a trace on AR satisfying:

Perturbations

» We are interested in perturbations: A family (y.) and ¢

ccE"
a trace on AR satisfying:

L ¢(py) = p(v)

Perturbations

» We are interested in perturbations: A family (y.) and ¢

ccE"
a trace on AR satisfying:

L ¢(py) = p(v)
2. Thereis a C > 0 where ¢(ye, Y,) < C™

Perturbations

» We are interested in perturbations: A family (y.) and ¢

ccE’
a trace on AR satisfying:

L ¢(pv) = p(v)

2. Thereis a C > 0 where ¢(ye, Y,) < C™

3. 27 (P) = 2,(Vu(y) + W(y)) for [W|r small.

Perturbations

» We are interested in perturbations: A family (y.)
a trace on AR satisfying:
L. ¢(py) = p(v)
2. Thereis a C > 0 where ¢(ye, -+ Ye,) < C™
3. Zy(P)=2,(Vuly) + W(y)) for [W]|r small.
» Such solutions ¢ are seen to be unique. The harder question
is existence!

and ¢

eEE‘"

Perturbations

» We are interested in perturbations: A family (y.) and ¢

ccE’
a trace on AR satisfying:
L ¢(pv) = p(v)
2. Thereis a C > 0 where ¢(ye, -+ Ye,) < C™
3. 27 (P) = 2,(Vu(y) + W(y)) for [W|r small.
» Such solutions ¢ are seen to be unique. The harder question
is existence!

» We examine the existence of (y.), .z in S(I', 1)

Perturbations

» We are interested in perturbations: A family (y.) and ¢

ccE"
a trace on AR satisfying:

L. ¢(py) = p(v)
2. Thereis a C > 0 where ¢(ye, Y,) < C™
3. 2, (P)=2y(Vu(y) + W(y)) for [[W] g small.

» Such solutions ¢ are seen to be unique. The harder question
is existence!

» We examine the existence of (y.), .z in S(I', 1)
> We write y = x + f.

Perturbations

» We are interested in perturbations: A family (y.) and ¢

ccE’
a trace on AR satisfying:
L ¢(pv) = p(v)
2. Thereis a C > 0 where ¢(ye, -+ Ye,) < C™
3. Zy(P)=2,(Vuly) + W(y)) for [W]|r small.
» Such solutions ¢ are seen to be unique. The harder question

is existence!

» We examine the existence of (y.), .z in S(I', 1)

» We write y = x + f. Assume || f||r is small enough for
P+ 7 f to be invertible in M(A%).

Perturbations

» We are interested in perturbations: A family (y.) and ¢

ccE"
a trace on AR satisfying:

L. ¢(py) = p(v)
2. Thereis a C > 0 where ¢(ye, Y,) < C™
3. 2, (P)=2y(Vu(y) + W(y)) for [[W] g small.

» Such solutions ¢ are seen to be unique. The harder question
is existence!

» We examine the existence of (y.), .z in S(I', 1)

» We write y = x + f. Assume || f||r is small enough for
P+ 7 f to be invertible in M(A%).

» Using a change of variables, we try to solve the following for f:

Perturbations

» We are interested in perturbations: A family (y.) and ¢

ccE"
a trace on AR satisfying:

L. ¢(py) = p(v)
2. Thereis a C > 0 where ¢(ye, Y,) < C™
3. 2, (P)=2y(Vu(y) + W(y)) for [[W] g small.

» Such solutions ¢ are seen to be unique. The harder question

is existence!

» We examine the existence of (y.), .z in S(I', 1)

» We write y = x + f. Assume || f||r is small enough for
P+ 7 f to be invertible in M(A%).

» Using a change of variables, we try to solve the following for f:

Ve <1+i¢f) — M#a+ (9W)(z + f)

We further assume f = 2g

Solving the equation
» Solving 7~ (H]iff) = M#x+ (2W)(x + f)

Solving the equation
» Solving 7~ (H]iff) = M#x+ (2W)(x + f)

» Via some (a lot) of work, this can be transformed to

Solving the equation
» Solving 7~ (1 +P/f) = M#x+ (2W)(x + f)

» Via some (a lot) of work, this can be transformed to

1
INuwg = 2[-W(x + Z9) - 599#]\/—[#@9

= (-1

(1@ tr+trel)oTr(7 29™)]

m=1

Solving the equation
» Solving 7~ (Hfjff) = M#x+ (2W)(x + f)

» Via some (a lot) of work, this can be transformed to
1
IN,.g = D|-W(z+ Zg) — 5@9#]\/[#@9
o~ (=D
m

m=1

(1® tr+tro1) o Tr(_F Z9™)]

» With sufficient “radius of convergence” and norm conditions
on W, one can solve this by contraction mapping by removing
the gradients.

Solving the equation
» Solving 7~ (Hfjff) = M#x+ (2W)(x + f)

» Via some (a lot) of work, this can be transformed to

1
INuwg = 2[-W(x + Z9) - 599#]\/—[#@9

oy (—7711)7”(1 ®@tr+tr®1) o Tr(7 2g™)]

m=1

» With sufficient “radius of convergence” and norm conditions
on W, one can solve this by contraction mapping by removing
the gradients.

1. Choose R so that Rmin u(e) > 4
eck

2. Choose S > R + %.
3. Assume W € A° with

1 .
> [Wlls < 5 min u(e)
2 eek

1 S
> [W]ls < 2e (R+ E) log <ﬂ>

Punchline

» This produces y = = + f with tr(ye, - Ye,,) = @ (Ye, - * Ye,,)

Punchline

» This produces y = = + f with tr(ye, - Ye,,) = @ (Ye, - * Ye,,)

» With even smaller norm conditions on T, one can express
each z. as a power series in the g4 via an inverse function
theorem.

Punchline

» This produces y = = + f with tr(ye, - Ye,,) = @ (Ye, - * Ye,,)

» With even smaller norm conditions on T, one can express
each z. as a power series in the g4 via an inverse function
theorem.

» This establishes the following theorem:

Punchline

» This produces y = = + f with tr(ye, - Ye,,) = @ (Ye, - * Ye,,)

» With even smaller norm conditions on T, one can express
each z. as a power series in the g4 via an inverse function
theorem.

> This establishes the following theorem: If W is of sufficiently
small analytic norm, then there exists a linear functional ¢ on
B = Alg((pv)vev, (Ye) . 3) satisfying Schwinger-Dyson with
potential V,, + W. Furthermore, C*(B, ¢) = S(I',) and
W*(B,6) = M(T,)

A remark

» Remark: S(T', 1) can also be constructed by the following:

A remark

» Remark: S(T', 1) can also be constructed by the following:
> Maps 1 : £°(V) = £°(V) given by:

p(w) TN
N, (p0) = {‘kev pw)Pu Ve w

e,/ Do if e is a loop

A remark

» Remark: S(T', 1) can also be constructed by the following:
> Maps 1 : £°(V) = £°(V) given by:

p(w) TN
N, (p0) = {‘kev pw)Pu Ve w

e,/ Do if e is a loop

> Induces completely positive map
N :4°(V) = Mpxp({>(V)).

A remark

v

Remark: S(T, 1) can also be constructed by the following:
Maps 1 ¢ : £2°(V) = £>°(V) given by:

p(w) TN
N, (p0) = {‘kev pw)Pu Ve w

e,/ Do if e is a loop

v

v

Induces completely positive map
N :4°(V) = Mpxp({>(V)).
(Shlyakhtenko 1999) Form S(T',) = ®(¢>(V),n)

v

A remark

» Remark: S(T', 1) can also be constructed by the following:
> Maps 1 : £°(V) = £°(V) given by:

p(w) TN
N, (p0) = {‘kev pw)Pu Ve w

e,/ Do if e is a loop

> Induces completely positive map
N :4°(V) = Mpxp({>(V)).

» (Shlyakhtenko 1999) Form S(T',) = ®(¢>(V),n)
:C*((pU)U€V7 (xe)eeE)'

A remark

» Remark: S(T', 1) can also be constructed by the following:
> Maps 1 : £°(V) = £°(V) given by:

p(w) TN
N, (p0) = {‘kev pw)Pu Ve w

e,/ Do if e is a loop

> Induces completely positive map
N :4°(V) = Mpxp({>(V)).
» (Shlyakhtenko 1999) Form S(T',) = ®(¢>(V),n)

=C*((pv)vev, (Te)eck). (Te)ecr are £2°(V') semicircular
elements.

