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Free group factors

» Voiculescu's construction:
» Real Hilbert space, Hg, with complexification ‘H
> Form the full Fock Space F(H) = CQ & @ H™"

n>1
» For £ € Hg, have the creation operator £(£):

L)) =Eand (&) (&, @ ®&,) =E@&, @ @&,

» Pick &1,&,... and o.n.b of Hg. Set X; = £(&;) + £(&;)*.
(Semicircular element)

» W*(Xy,Xs,--) = L(F,), n=dim(H).

» Trace vector: tr(z) = (QzQ), v € W* (X1, Xo,---).

» Key property:

tr(XilXig e X,Ln) = Z tI'(XiQ e Xik—l) tI'(Xik_H s Xz )

=11
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Interpolated free group factors

» Factors L(F;) t € (1, 00] discovered independently by Dykema
and Rddulescu.

» Properties

1.

2.
3.

Agree with the usual free group factors when
te{2,3,...} U{oo}

L(Fy) * L(Fy) = L(Fs1y)

PL(F)p = L(E(L + {=1) for p € P(L(F,))



Constructions

» R3duescu’s and Dykema's constructions:
» Ridulescu (1990s) Ingredients:



Constructions

» R3duescu’s and Dykema's constructions:
» Ridulescu (1990s) Ingredients:
> Free semicircular family (Xs)ses.



Constructions

» R3duescu’s and Dykema's constructions:
» Ridulescu (1990s) Ingredients:

> Free semicircular family (Xs)ses.
> 09,01 €8



Constructions

» R3duescu’s and Dykema's constructions:
» Ridulescu (1990s) Ingredients:

> Free semicircular family (Xs)ses.
> 090,01 € S
> Projections es, fs € (Xo,)” mutually orthogonal or equal.



Constructions

» R3duescu’s and Dykema's constructions:
» Ridulescu (1990s) Ingredients:

>

>
>
>

Free semicircular family (Xs)ses.

00,01 € S

Projections e, fs € (X,,)" mutually orthogonal or equal.
VN(Xoy, (s Xy fs)s'es\{o0,01}) depends only on

t=1+4) kotr(es)tr(fs)

with ks = 1 ifes = fs and ko =2 if es L fs.



Constructions

» R3duescu’s and Dykema's constructions:
» Ridulescu (1990s) Ingredients:

>

>
>
>

Free semicircular family (Xs)ses.

00,01 € S

Projections e, fs € (X,,)" mutually orthogonal or equal.
VN(Xoy, (s Xy fs)s'es\{o0,01}) depends only on

t=1+4) kotr(es)tr(fs)

with ks = 1 if es = fs and ka = 2 if es L fs. This is L(IFy).



Constructions

» R3duescu’s and Dykema's constructions:
» Ridulescu (1990s) Ingredients:
> Free semicircular family (Xs)ses.
00,01 € S
Projections e, fs € (X,,)" mutually orthogonal or equal.
VN(Xoy, (s Xy fs)s'es\{o0,01}) depends only on

t=1+4) kotr(es)tr(fs)

vvyy

with ks = 1 if es = fs and ka = 2 if es L fs. This is L(IFy).
» Dykema (1990s) Ingredients:



Constructions

» R3duescu’s and Dykema's constructions:
» Ridulescu (1990s) Ingredients:
> Free semicircular family (Xs)ses.
00,01 € S
Projections e, fs € (X,,)" mutually orthogonal or equal.
VN(Xoy, (s Xy fs)s'es\{o0,01}) depends only on

t=1+4) kotr(es)tr(fs)

vvyy

with ks = 1 if es = fs and ka = 2 if es L fs. This is L(IFy).
» Dykema (1990s) Ingredients:
> The hyperfinite Il; factor R



Constructions

» R3duescu’s and Dykema's constructions:
» Ridulescu (1990s) Ingredients:
> Free semicircular family (Xs)ses.
00,01 € S
Projections e, fs € (X,,)" mutually orthogonal or equal.
VN(Xoy, (s Xy fs)s'es\{o0,01}) depends only on

t=1+4) kotr(es)tr(fs)

vvyy

with ks = 1 if es = fs and ka = 2 if es L fs. This is L(IFy).
» Dykema (1990s) Ingredients:

> The hyperfinite Il; factor R
> Projections {ps}scs in R



Constructions

» R3duescu’s and Dykema's constructions:
» Ridulescu (1990s) Ingredients:
> Free semicircular family (Xs)ses.
00,01 € S
Projections e, fs € (X,,)" mutually orthogonal or equal.
VN(Xoy, (s Xy fs)s'es\{o0,01}) depends only on

t=1+4) kotr(es)tr(fs)

vvyy

with ks = 1 if es = fs and ka = 2 if es L fs. This is L(IFy).
» Dykema (1990s) Ingredients:
> The hyperfinite Il; factor R
> Projections {ps}scs in R
> A free semicircular family {X;}scs free from R.



Constructions

» R3duescu’s and Dykema's constructions:
» Ridulescu (1990s) Ingredients:
> Free semicircular family (Xs)ses.
00,01 € S
Projections e, fs € (X,,)" mutually orthogonal or equal.
VN(Xoy, (s Xy fs)s'es\{o0,01}) depends only on

t=1+4) kotr(es)tr(fs)

vvyy

with ks = 1 if es = fs and ka = 2 if es L fs. This is L(IFy).
» Dykema (1990s) Ingredients:
> The hyperfinite Il; factor R
> Projections {ps}scs in R
> A free semicircular family {X;}scs free from R.
> VN(R, psXsps) depends only on >~ tr(ps)2.



Constructions

» R3duescu’s and Dykema's constructions:
» Ridulescu (1990s) Ingredients:
> Free semicircular family (Xs)ses.
00,01 € S
Projections e, fs € (X,,)" mutually orthogonal or equal.
VN(Xoy, (s Xy fs)s'es\{o0,01}) depends only on

t=1+4) kotr(es)tr(fs)

vvyy

with ks = 1 if es = fs and ka = 2 if es L fs. This is L(IFy).
» Dykema (1990s) Ingredients:
> The hyperfinite Il; factor R
> Projections {ps}scs in R
> A free semicircular family {X;}scs free from R.
> VN(R, psX.ps) depends only on > _tr(ps)®. Get L(F;)
with t =1+ Eses tr(ps)2
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Weighted graphs, free graph algebra

» (I',V, E, i) a connected, finite, weighted graph. Require
> ey M) =1

v

v

v

v

Directed version (f, V, E, )

Undirected edges e. Directed versions ¢, P

¢°(V'): functions on V. p, indicator function at v € V.
Fock space representation of operators (py)vey and (7e)

Relations:

1.

o0

1= ngv Do

Te = Ps(e)LePt(e)

Leop = J?:

Zey T, = 0 unless €; - - - €, is a path.
tr(ze, - xe,) =

(e alt(en) Z (e, o ey ) (i o )

. If [V] =1, this gives Voiculescu's free semicircular system.
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> Set S(I', 1) =C*((pu)vev, (xe)eeﬁ)

» Set M(T, u) = (S(T, ), tr)”

» Theorem (H. '13): Let V5 be the set of vertices, 3 satisfying
w(B) > > s Napi(a). We have

M(T, ) = L(F) & P C
YEVS

where 7, < py and 7(ry) = pu(7) — X4y Napp(a). If
M(T, ) is a factor, then

E=1=) p@) 4+ p0) > npwi(w)

veV veV W~



Examples

L(F¢)

t=(n—4)a®+4a

L(Ft)

t =6(a — a?)




C*-algebras

» Theorem (H '16) Let V_ be the set of vertices /3 satisfying
w(B) = > ampNapi(a), and let Vo> = V5 UV, Let I be the
norm-closed ideal generated by generated by (z¢)ccp. Then:

» [ is minimal, simple, has unique trace, and has stable rank 1.
» [ is unital if and only if V= is empty. If V= is empty, then

STC,p)=I® @ 8

vEVS

with 7, < py and 7(ry) = u(y) = X0y Rapp(a). If Vois
not empty, then

where 7 is unital, and the strong operator closures of I and Z
coincide in L*(S(T, ), 7), and Z/T = @4, C.

» Ko(I) 2 Z{[pgl|B € V\V>} and K1(I) = {0} where the
first group is the free abelian group on the classes of
projections [pg]. Furthermore,

Ko(I)T = {z € Ko(I)|tr(z) > 0} U{0}.
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» Let A be the x-algebra generated by ¢*°(V') and (x¢)ecE-
> Free difference quotient: for € € E, define

Oc: A— A® AP by:
Oc(Ter) = deerDs(e) DDy Oc(po) =

and extend via derivation.

> Set p(e) = /AN HEE)
» Observation: pi(e) tr(zeor@) = (tr@tr)(0:(Q)) for P € A.

i.e. 07 (Ps(e) @ Py(e)) = ple)we

v
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> Set AP = {f : E = Alpyo f(prg = [(e))

> Inner product (f|h) = > tr(fXhe)

> Given f € AP, define ¢ f € My(A® A%) by
(et = s

> Define P € Mz(A® A%) by Py = 0c ¢Ds(c) @ Py(e)- Observe
Fx=P

> Set M(A) = PM (A ® AP)P. Note that ¢ f € M(A) for
feAE

» Fora®be A® A, and c € A, define (a ® b)#c = acb.

Extend to an action of M(A) acting on AF in obvious way.
This is well defined!

» The Schwinger-Dyson equation is now _#*(P) = M#x with
Mep = 6 p11(€)Ps(e) @ Pi(e)
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» Cyclic partial derivatives Z,: Y. = m o 0 0 Ocop
Pe(P) = 3 p—gu.opr BQ

Cyclic gradient: 2 : A — AE given by (29). = Z.(g) Note
that this is well defined!
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Note: The Schwinger-Dyson equation is now

/*<P) = @(VM) with VM = %Zu(e)x:xe

v

A"t: Completion of A with respect to the norm:

E AyPy + § ael,...,enxq e men

veV €1:€n

R

= (sup |ay]) + Z (e, .., | R”
veV

€]1...€n
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» Such solutions ¢ are seen to be unique. The harder question

is existence!

» We examine the existence of (y.), .z in S(I', 1)

» We write y = x + f. Assume || f||r is small enough for
P+ 7 f to be invertible in M(A%).

» Using a change of variables, we try to solve the following for f:

Ve <1+i¢f) — M#a+ (9W)(z + f)

We further assume f = 2g
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Solving the equation
» Solving 7~ (Hfjff) = M#x+ (2W)(x + f)

» Via some (a lot) of work, this can be transformed to

1
INuwg = 2[-W(x + Z9) - 599#]\/—[#@9

oy (—7711)7”(1 ®@tr+tr®1) o Tr( 7 2g™)]

m=1

» With sufficient “radius of convergence” and norm conditions
on W, one can solve this by contraction mapping by removing
the gradients.

1. Choose R so that Rmin u(e) > 4
eck

2. Choose S > R + %.
3. Assume W € A° with

1 .
> [Wlls < 5 min u(e)
2 eek

1 S
> [W]ls < 2e (R+ E) log <ﬂ>
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Punchline

» This produces y = = + f with tr(ye, - Ye,,) = @ (Ye, - * Ye,,)

» With even smaller norm conditions on T, one can express
each z. as a power series in the g4 via an inverse function
theorem.

> This establishes the following theorem: If W is of sufficiently
small analytic norm, then there exists a linear functional ¢ on
B = Alg((pv)vev, (Ye) . 3) satisfying Schwinger-Dyson with
potential V,, + W. Furthermore, C*(B, ¢) = S(I', ) and
W*(B,6) = M(T, )



A remark

» Remark: S(T', 1) can also be constructed by the following:



A remark

» Remark: S(T', 1) can also be constructed by the following:
> Maps 1 : £°(V) = £°(V) given by:

p(w) TN
N, (p0) = {‘kev pw)Pu Ve w

e,/ Do if e is a loop




A remark

» Remark: S(T', 1) can also be constructed by the following:
> Maps 1 : £°(V) = £°(V) given by:

p(w) TN
N, (p0) = {‘kev pw)Pu Ve w

e,/ Do if e is a loop

> Induces completely positive map
N :4°(V) = Mpxp({>(V)).



A remark

v

Remark: S(T, 1) can also be constructed by the following:
Maps 1 ¢ : £2°(V) = £>°(V) given by:

p(w) TN
N, (p0) = {‘kev pw)Pu Ve w

e,/ Do if e is a loop

v

v

Induces completely positive map
N :4°(V) = Mpxp({>(V)).
(Shlyakhtenko 1999) Form S(T', ) = ®(¢>(V),n)

v



A remark

» Remark: S(T', 1) can also be constructed by the following:
> Maps 1 : £°(V) = £°(V) given by:

p(w) TN
N, (p0) = {‘kev pw)Pu Ve w

e,/ Do if e is a loop

> Induces completely positive map
N :4°(V) = Mpxp({>(V)).

» (Shlyakhtenko 1999) Form S(T', ) = ®(¢>(V),n)
:C*((pU)U€V7 (xe)eeE)'



A remark

» Remark: S(T', 1) can also be constructed by the following:
> Maps 1 : £°(V) = £°(V) given by:

p(w) TN
N, (p0) = {‘kev pw)Pu Ve w

e,/ Do if e is a loop

> Induces completely positive map
N :4°(V) = Mpxp({>(V)).
» (Shlyakhtenko 1999) Form S(T', ) = ®(¢>(V),n)

=C*((pv)vev, (Te)eck). (Te)ecr are £2°(V') semicircular
elements.



