
EM+TV for Reconstruction of Cone-beam CT with
Curved Detectors using GPU

Jianwen Chen, Ming Yan, Luminita A. Vese,
John Villasenor, Alex Bui, and Jason Cong,Fellow, IEEE

Abstract—Computerized tomography (CT) plays a critical role
in the practice of modern medicine. However, the radiation
associated with CT is significant. Methods that can enable
CT imaging at reduced radiation exposure without sacrificing
image quality are therefore extremely important. This paper
introduces a novel method for enabling improved reconstruction
at lower radiation exposure levels. The method is based on the
combination of 1) expectation maximization (EM), an iterative
method used for CT image reconstruction that maximizes the
likelihood function under a Poisson noise assumption, and 2) total
variation (TV) regularization, which has been used to preserve
edges, given the assumption that most images are piecewise
constant. While both EM and TV are known, their combination,
as described here, is novel. We show that EM+TV can reconstruct
a better image using fewer views, thus reducing the overall
dose of radiation. Numerical results show the efficiency of the
EM+TV method in comparison to classic EM. In addition, the
EM+TV algorithm is implemented on the GPU platform; related
implementation methods are also discussed.

Index Terms—Expectation Maximization, Computerized To-
mography Reconstruction, Total Variation, GPU Implementation

I. I NTRODUCTION

As a group of methods for reconstructing two-dimensional
and three-dimensional images from the projections of an ob-
ject, iterative reconstruction has many applications, including
computerized tomography (CT), positron emission tomogra-
phy (PET), and magnetic resonance imaging (MRI). This
technique is quite different from the filtered back projection
(FBP) method [3], [11], which is the algorithm most common-
ly used by manufacturers of commercial imaging equipment.
The main advantages of the iterative reconstruction technique
over FBP are reduced sensitivity to noise and increased data
collection flexibility [8]. For example, the data can be collected
over any set of lines, the projections do not have to be
distributed uniformly in angle, and the projections can be even
incomplete.

There are many available algorithms for iterative reconstruc-
tion. Most of these algorithms are based on the system of
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linear equationsAx = b wherex = (x1, · · · , xN )T ∈ RN is
the original unknown image represented as a vector,b is the
given measurement withb = (b1, · · · , bM )T ∈ RM , and A
is a M × N matrix describing the direct transformation from
the original image to the measurements.A depends on the
imaging modality used; for example, in CT,A is the discrete
Radon transform, with each row describing an integral along
one straight line and all the elements ofA are nonnegative.

One example of the iterative reconstruction algorithm is
expectation maximization (EM) [4], [5]. This is based on the
assumption that the noise inb is Poisson noise. Ifx is given
andA is known, the conditional probability ofb is

P (b|Ax) =

M∏

i=1

e−(Ax)i((Ax)i)
bi

bi!
.

Therefore, givenb andA, the objective is to findx such that
the above probability is maximized. However, instead of max-
imizing the probability, we can minimize− log P (b|Ax) =∑

i(Ax)i −bi log((Ax)i)+C, with C being a constant. Com-
bined with the nonnegative constraint, the problem becomes

minimize
x

M∑

i=1

(Ax)i − bi log((Ax)i)

subject tox ≥ 0. (1)

To derive the EM iterative algorithm, we consider the first
order optimality condition of the constrained optimization
problem (1). Solving the problem is equivalent to solving the
Karush-Kuhn-Tucker (KKT) condition [1], [2]:

M∑

i=1

(
aij(1 − bi

(Ax)i
)

)
− yj = 0, j = 1, · · · , N, (2)

yj ≥ 0, xj ≥ 0, j = 1, · · · , N,

yT x = 0.

Here, yj is the Lagrange multiplier corresponding to the
constraintxj ≥ 0. Multiplying (2) by xj to eliminateyj , the
EM iteration is as follows:

xn+1
j =

M∑
i=1

(aij(
bi

(Axn)i
))

M∑
i=1

aij

xn
j . (3)

The total-variation regularization method was originally
proposed by Rudin, Osher and Fatemi [7] to remove noise
in an image while preserving edges. This technique is widely
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used in image processing [10], [13] and can be expressed in
terms of minimizing an energy functional of the form

min
x

∫

Ω

|∇x| + α

∫

Ω

F (Ax, b),

wherex is viewed as a two- or three-dimensional image with
spatial domainΩ, A is usually a blurring operator,b is the
given noisy-blurry image, andF (Ax, b) is a data-fidelity term.
For example, for Gaussian noise,F (Ax, b) = ‖Ax − b‖2

2.
In this paper we combine the EM algorithm with the total

variation (TV) regularization. While each of these method-
s has been described individually in the literature, to our
knowledge they have never been combined in the context of
CT reconstruction. The assumption is that the reconstructed
image cannot have a total-variation that is too large (thus
noise and reconstruction artifacts are removed). For related
relevant work, we refer to the Compressive Sensing Resources
[15]. Additionally, as an extension of preliminary work [14],
the proposed EM+TV algorithm has been implemented on
a GPU platform. The related implementation considerations
and methodologies are also described. The 10X times speedup
indicates that the proposed algorithm has the potential to be
used in practical medical CT systems.

II. M ETHOD (EM+TV)

In the classic EM algorithm, noa priori information about
the solution is provided. However, if we are givena priori
knowledge that the solution has homogeneous regions and
sharp edges, the objective is to apply this information in order
to reconstruct an image with both minimal total-variation and
maximal probability. Thus, we can consider finding a Pareto
optimal point by solving a scalarization of these two objective
functions and the problem becomes





minimize
x

∫
Ω |∇x| + α

M∑
i=1

((Ax)i − bi log(Ax)i) ,

subject to xj ≥ 0, j = 1, · · · , N,

whereα > 0 is a parameter for balancing the TV regulariza-
tion and the fidelity term derived from EM. This is a convex
constraint problem and we can find the optimal solution by
solving the Karush-Kuhn-Tucker (KKT) conditions [1], [2]:

−div
( ∇x

|∇x|
)

j
+ α

M∑

i=1

(
aij(1 − bi

(Ax)i
)

)
− yj = 0,

j = 1, · · · , N,

yj ≥ 0, xj ≥ 0, j = 1, · · · , N,

yT x = 0.

By positivity of {xj}, {yj} and the complementary slackness
conditionyT x = 0, we havexjyj = 0 for everyj = 1, · · · , N .
Thus after multiplyingxj , we obtain

− xj

M∑
i=1

aij

div
( ∇x

|∇x|
)

j
+ αxj − α

M∑
i=1

(
aij(

bi

(Ax)i
)
)

M∑
i=1

aij

xj = 0,

j = 1, · · · , N.

The last term is an EM step (3), which can be replaced as
xEM

j , and we finally obtain:

− xj

M∑
i=1

aij

div
( ∇x

|∇x|
)

j
+ αxj − αxEM

j = 0, (4)

j = 1, · · · , N,

which is the optimality for the following TV minimization
problem

minimize
x

∫

Ω

|∇x| + α

N∑

j=1

M∑

i=1

aij

(
(x)j − xEM

j log xj

)
.

To solve the above TV minimization problem, we can use
semi-implicit iteration for several steps. In order to solve the
TV minimization problem, we only have to solve the KKT
condition (4). Here we change the notation fromxj to xi,j for
one pixel in a two dimensional image. The three dimensional
case can be easily derived from the two dimensional one. The
semi-implicit iteration is as follows:

−
xn

i,j

Vi,j

xn
i+1,j − xn+1

i,j√
ǫ + (xn

i+1,j − xn
i,j)

2 + (xn
i,j+1 − xn

i,j)
2

+
xn

i,j

Vi,j

xn+1
i,j − xn

i−1,j√
ǫ + (xn

i,j − xn
i−1,j)

2 + (xn
i−1,j+1 − xn

i−1,j)
2

−
xn

i,j

Vi,j

xn
i,j+1 − xn+1

i,j√
ǫ + (xn

i+1,j − xn
i,j)

2 + (xn
i,j+1 − xn

i,j)
2

+
xn

i,j

Vi,j

xn+1
i,j − xn

i,j−1√
ǫ + (xn

i+1,j−1 − xn
i,j−1)

2 + (xn
i,j − xn

i,j−1)
2

+ αxn+1
i,j − αxEM

i,j = 0,

whereǫ is very small. For fixedi j, there is only one unknown
variablexn+1

i,j that can be easily obtained from the linearized
equation. Each iteration is called a TV step. Thus the algorithm
is as follows [14]:

Input : x0 = 1;
for Out=1:1:IterMax do

x0,0 = xOut−1;
for k = 1:1:K do

xk,0 = EM(xk−1,0);
end
for l = 1:1:L do

xK,l = TV (xK,l−1);
end
xOut = xK,L;

end
Algorithm 1: Proposed EM+TV algorithm.

K is the number of EM iterations andL is the number of
TV iterations.K is chosen to be 1 to 3, andL is chosen to
be 5 to 10 for the numerical implementation.

Actually, the EM+TV algorithm can also be derived from
the general EM algorithm witha priori information and
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alternating minimization. The convergence analysis of this
EM+TV algorithm can be easily obtained and it behaves very
well in practice.

III. GPU IMPLEMENTATION

In this section, we consider a fast graphics processing
unit (GPU)-based implementation of the most computationally
challenging aspects of the EMTV algorithm: forward projec-
tion and backward projection. While GPUs were originally
developed to accelerate graphics computations, they have been
applied to a broad variety of more general computational tasks.
While traditional central processing unit (CPU) architectures
are designed to support a very broad set of tasks and are well
suited to handle branching, GPUs are specifically designed
for highly parallel mathematical computations. One of the
challenges in highly parallel computation lies in the program-
ming model, and in particular, how “traditional” sequential
programming languages can be modified to target the specific
architectural features of a class of GPUs. To address this,
the company NVIDIA has developed the concept of Com-
pute Unified Device Architecture (CUDA), which provides a
unified hardware and software solution for parallel computing
on CUDA-enabled NVIDIA GPUs. Since the target GPU for
the EM+TV algorithm is an NVIDIA GPU, we use the CUDA
framework for optimization.

On a GPU platform, the CUDA-based applications are
implemented as kernels for different data portions. The CPU
acts as the host and can initiate one kernel at one time. In
each kernel, there are three different units, which are called
thread, block and grid, respectively. The threads are grouped
into blocks, and the blocks are logically aggregated into one
grid. In the current version of the hardware, only one grid
is supported for one GPU card. On a GPU platform, the
threads are scheduled in groups of warps. A warp executes
one instruction at one time, so the highest efficiency can be
achieved when all the threads within a warp share the same
instruction path. If the threads in one warp diverge via a
conditional branch, the warp will serially execute each branch
path; thus the advantages of parallelization are reduced. The
communication between the host and the devices occurs by
copying data from/to the CPU’s memory to/from the GPU
global memory. Threads on the GPU devices will work on the
global memory by default. For the kernel codes, to achieve the
highest performance, the access of global memory should be
minimized. When global memory access cannot be avoided, it
is important that all the threads in one warp access consecutive
address data.

The following steps were followed in the GPU implemen-
tation and optimization [9] [12].

Step 1. Analysis of the degree and granularity of parallelism.
Step 2. Workload profiling and tuning. This involves identi-

fying operations that can be performed using single precision
and then measuring the complexity of each module of the
overall operation.

Step 3. Optimization of memory accesses
Step 4. Optimization of the instruction flow. This involves

identifying and implementing optimizations that would notbe
performed automatically by the compiler.

Fig. 1. Forward projection flow chart

Fig. 2. Forward projection implementation on a GPU

Step 5. Resource balancing. A GPU provides a large amount
of shared memory and registers. However, for applications
with hundreds of threads, the resources for each thread need
to be well-balanced in order to obtain the best overall perfor-
mance.

Step 6. Optimization of communications between the GPU
and host CPU.

The forward projection flow chart is illustrated in Fig. 1.
In forward projection, for each pair, it is only necessary to
calculate the approximate line integral, without updatingthe
pixels. However, for backward projection, if ray tracing is
used, there will be conflict when it is parallelized. Different
threads may update the same pixel at the same time, because
for a given source-detector pair, all the pixels intersecting with
the ray will have to be updated.

The forward projection can be parallelized on a GPU
platform as illustrated in Fig. 2. A large number of threads will
operate on the forward ray tracer simultaneously for different
source and detector pairs. For backward projection, since there
are dependencies and conflicts when two threads access one
pixel, parallelization is possible, but more challenging.CUDA
provides atomic functions to guarantee the mutual exclusion
for one same address in memory, and can be used to address
potential data conflicts. For backward projection, we use a
method similar to the forward projection, the only difference
being that all the memory updating operations in a backward
projection are atomic operations. The EM+TV algorithm has
been implemented on a GPU platform as illustrated in Fig. 3.
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Fig. 3. EM+TV GPU implementation diagram

original EMTV (3.775) EM (31.902)

Fig. 4. The middle slices of original image, reconstructed images from
EMTV and EM. RMSEs for these two results are provided.

IV. EXPERIMENTAL RESULTS

The EMTV algorithm was tested on a three-dimensional
128x128x128 Shepp-Logan phantom. First, we obtained the
projections using Siddon’s algorithm [6]. Only 36 views were
taken (every 10 degrees), and for each view there were
301x255 measurements. The code is implemented on the GPU
platform (Tesla C1060) with single-precision floating point
data type. The inner loop of EMupdate has three iterations,
and the EMupdate and TVupdate will repeat for 100 itera-
tions. For forward projection and backward projection, 512x64
blocks were used, and for each block there were 288 threads.
Compared with the single-thread implementation on a CPU
platform (Intel i7-920, 2.66G), implementation on the GPU
provides more than 26x speed up for forward projection. For
backward projection, because of atomic operations, only 4x
speedup can be achieved. And the overall reconstruction time
is about 870 seconds, which is about 12x speedup when
compared with the CPU implementation. The reconstructed
image of the EMTV algorithm on a GPU platform is provided
in Fig. 4. For this numerical example, 100 iterations are used
for EM+TV, compared with 1000 iterations for EM with-
out regularization. According to the root-mean-square-error
(RMSE) between the original and reconstructed images, scaled
between 0 and 255, we can see that the result of EM+TV with
only 36 views delivers very good quality compared to the EM
method without TV regularization.

V. CONCLUSION

In this paper, we propose a method that use convergence
analysis to combine EM and TV; for CT image reconstruc-
tion. This method can provide very good results using fewer
views. It requires fewer measurements to obtain a comparable
image, which results in a decrease of radiation. The method
is extended to three dimensions and can be used for real
data. One of the challenges in EM+TV is computation time.
We have demonstrated that by implementing this method on
a GPU platform, execution time can be reduced by well
over an order of magnitude. In addition, we believe there
are opportunities for further optimizations in areas such as
memory access, instruction flow, and parallelization of the
backward algorithm that can further improve execution time.
In summary, we believe that the combination of algorithms
and optimized implementation on appropriate platforms as
demonstrated has the potential to enable high-quality image
reconstruction with reduced radiation exposure, while also
enabling relatively fast image reconstruction times. Future
work will focus on an alternative easily parallelized backward
projection algorithm and the high performance implementation
on an FPGA hardware platform.
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