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Abstract—Computerized tomography (CT) plays a critical role  linear equationsdz = b wherez = (zy,--- ,zx)7 € RN is

in the practice of modern medicine. However, the radiation the original unknown image represented as a veétds, the
associated with CT is significant. Methods that can enable given measurement with = (by, - - - 7bM)T e RM, and 4

CT imaging at reduced radiation exposure without sacrifici h . - . .

image c?ua?ity are therefore extremeFI)y important. This paprg is aM_ X N r_natnx describing the direct transformation from
introduces a novel method for enabling improved reconstruton ~ the original image to the measurements.depends on the

at lower radiation exposure levels. The method is based on ¢h imaging modality used; for example, in CA, is the discrete
combination of 1) expectation maximization (EM), an iterafve Radon transform, with each row describing an integral along

method used for CT image reconstruction that maximizes the ong strajght line and all the elements.fare nonnegative.
likelihood function under a Poisson noise assumption, and)2otal

variation (TV) regularization, which has been used to preseve One example of the iterative reconstruction algorithm is
edges, given the assumption that most images are piecewiseexpectation maximization (EM) [4], [5]. This is based on the
Constant: While bOth EM and TV are knOWn, their Combination, assumpt|on that the noise tnis Poisson noise. It is glven

as descrlped here, is novel. We ;how that EM+TV_can reconstat and A is known, the conditional probability df is

a better image using fewer views, thus reducing the overall
dose of radiation. Numerical results show the efficiency ofhe M e—(A””>i((Aa:)-)”z
EM+TV method in comparison to classic EM. In addition, the P(b|Ax) = H ¢
EM+TV algorithm is implemented on the GPU platform; related i—1 b;!
implementation methods are also discussed. ) L )
Therefore, giverb and A, the objective is to find: such that
the above probability is maximized. However, instead of max
imizing the probability, we can minimize-log P(b|Az) =

> (Az); —b;log((Az);) +C, with C being a constant. Com-

Index Terms—Expectation Maximization, Computerized To-
mography Reconstruction, Total Variation, GPU Implementaion

|. INTRODUCTION bined with the nonnegative constraint, the problem becomes
As a group of methods for reconstructing two-dimensional o M
and three-dimensional images from the projections of an ob- mm}jmzez(Ax)i — bilog((Az):)
ject, iterative reconstruction has many applicationsluidieg . =1
computerized tomography (CT), positron emission tomogra- subject tox > 0. (€]

phy (PET), and magnetic resonance imaging (MRI). Thif, gerive the EM iterative algorithm, we consider the first
technique is quite different from the filtered back projenti orger optimality condition of the constrained optimizatio
(FBP) method [3], [11], which is the algorithm most commongoplem (1). Solving the problem is equivalent to solving th

ly used by manufacturers of commercial imaging equipmendgarysh-Kuhn-Tucker (KKT) condition [1], [2]:
The main advantages of the iterative reconstruction tegkni

over FBP are reduced sensitivity to noise and increased dataijj (1 - b ) _
collection flexibility [8]. For example, the data can be eclied £ i (Az); Yi
over any set of lines, the projections do not have to be =t .
distributed uniformly in angle, and the projections can bene yp =0, ;20 =1, N,
incomplete. y'z=0.

There are many available algorithms for iterative recartstr H
tion. Most of these algorithms are based on the system

jzlv"'va (2)

re, y; is the Lagrange multiplier corresponding to the
nstraintz; > 0. Multiplying (2) by z; to eliminatey;, the
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used in image processing [10], [13] and can be expressedTine last term is an EM step (3), which can be replaced as

terms of minimizing an energy functional of the form xPM, and we finally obtain:
. z; . (Vx

H}Lm/g |Vz| + a/QF(AI,b)? - J dlv(m)j +az; — axJEM =0, 4)
wherez is viewed as a two- or three-dimensional image with = i
spatial domain?, A is usually a blurring operatod, is the j=1,---,N,
given noisy-blurry image, anfl(Az, b) is a data-fidelity term. o . o
For example, for Gaussian noisé( Az, b) = || Az — b|2. which is the optimality for the following TV minimization

In this paper we combine the EM algorithm with the totaproblem

variation (TV) regularization. While each of these method- N M
s has been described individually in the literature, to our minimize/ Val+a) > ai ((2); — 2 M loga;) .
knowledge they have never been combined in the context of Q j=1i=1

CT reconstruction. The assumption is that the reconstiucte, soive the above TV minimization problem, we can use

image cannot have a total-variation that is t00 large (thWgm implicit iteration for several steps. In order to sobne
noise and reconstruction artifacts are removed). Fore@latry, minimization problem, we only have to solve the KKT

relevant work, we refer to the Compressive Sensing Ressuregjition (4). Here we change the notation fragnto ; ; for
[15]. Additionally, as an extension of preliminary work [14 4ne pixel in'a two dimensional image. The three dimensional

the proposed EM+TV algorithm has been implemented QAise can be easily derived from the two dimensional one. The
a GPU platform. The related implementation Cons'derat'ogémi-implicit iteration is as follows:

and methodologies are also described. The 10X times speedup o
indicates that the proposed algorithm has the potentiakto b iy Tl — T

used in practical medical CT systems. Vij \/6 2y — 2P )2+ (2] — 2p)?
Il. METHOD (EM+TV) Y, eyt —a
In the classic EM algorithm, na priori information about Vi \/e +@p; —ap oy )2+ (@ — T )?
the solution is provided. However, if we are givenpriori . T e mn
knowledge that the solution has homogeneous regions and _ %isj Tig+1 — Tig
sharp edges, the (_)bjectlve_ls to appl)_/ t_hls |nf0rmat|(_)n_nheor Vi \/E 4 (x?+1,j — I?,j)Q + (@l — I?,j)Q
to reconstruct an image with both minimal total-variatiorda N gl N
maximal probability. Thus, we can consider finding a Pareto i Tij —Tij-1
optimal point by solving a scalarization of these two ohiject Vij Je+ (xm, . —at )2+ (2, —al )2
. i+1,j ¥ ] 7
functions and the problem becomes
+a$n+1 _ Oé.’L‘EM _ 07

M ¥ ¥
minimize JoVz] + 1; ((Az); — b;log(Ax);), wheree is very small. For fixed j, there is only one unknown
subjectto z; >0, j=1,---,N, variableaz:;'jl that can be easily obtained from the linearized

. . ___equation. Each iteration is called a TV step. Thus the aligori
wherea > 0 is a parameter for balancing the TV regularlzafS as follows [14]:
X

tion and the fidelity term derived from EM. This is a conve
constraint problem and we can find the optimal solution f
solving the Karush-Kuhn-Tucker (KKT) conditions [1], [2]:

y Input: 20 = 1;
for Out=1:1:IterMax do

M 0,0 _ ,.Out—1.
.V b; ron = '
_d'V<W>j+aZ<aij(1—m)) -y =0, for k= 1:1:K do
=1 ) | l,k,O — E]\/[(l,kfl.,O);
]:15“'7N’ end
y; >0, z; >0, j=1,--- N, for I = 1:1:L do
yTaZ —0. | Z’K’l — Tv(l,K,lfl);
end
By positivity of {z;}, {y;} and the complementary slackness 20ut — g KL

conditiony”z = 0, we haver;y; = 0foreveryj =1,--- ,N. | end
Thus after multiplyingz;, we obtain

Algorithm 1: Proposed EM+TV algorithm.

M
z; . Va 1;1 <a7"7((A-’E)i)> K is the number of EM iterations anfl is the number of
7 d'V<—|v$|)j tax; —a————%; =0, TV jterations. K is chosen to be 1 to 3, anH is chosen to
> aij > aij be 5 to 10 for the numerical implementation.
i=1 i=1

Actually, the EM+TV algorithm can also be derived from
the general EM algorithm witha priori information and
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Forward Projection

alternating minimization. The convergence analysis 0§ thi
EM+TV algorithm can be easily obtained and it behaves very
well in practice.

-
1. GPU IMPLEMENTATION detector

Forward Ray Tracer

In this section, we consider a fast graphics processing
unit (GPU)-based implementation of the most computatignal
challenging aspects of the EMTV algorithm: forward projec- s
tion and backward projection. While GPUs were originally I S

developed to accelerate graphics computations, they heee b sinogram
applied to a broad variety of more general computationéiktas
While traditional central processing unit (CPU) architees Fig- 1. Forward projection flow chart
are designed to support a very broad set of tasks and are well

suited to handle branching, GPUs are specifically designed

for highly parallel mathematical computations. One of the F
challenges in highly parallel computation lies in the peogr I I

ming model, and in particular, how “traditional” sequehtia

programming languages can be modified to target the specific 2 i | il
architectural features of a class of GPUs. To address this, W T Ty
the company NVIDIA has developed the concept of Com-

pute Unified Device Architecture (CUDA), which provides a

unified hardware and software solution for parallel compumti

on CUDA-enabled NVIDIA GPUs. Since the target GPU for
the EM+TV algorithm is an NVIDIA GPU, we use the CUDA sinegram
framework for optimization.

On a GPU platform, the CUDA-based applications angg. 2. Forward projection implementation on a GPU
implemented as kernels for different data portions. The CPU
acts as the host and can initiate one kernel at one time. In
each kernel, there are three different units, which aresdall
thread, block and grid, respectively. The threads are grdup Step 5. Resource balancing. A GPU provides a large amount
into blocks, and the blocks are logically aggregated inte o®f shared memory and registers. However, for applications
grid. In the current version of the hardware, only one grigith hundreds of threads, the resources for each thread need
is supported for one GPU card. On a GPU platform, tHe be well-balanced in order to obtain the best overall perfo
threads are scheduled in groups of warps. A warp execuf@gnce.
one instruction at one time, so the highest efficiency can beStep 6. Optimization of communications between the GPU
achieved when all the threads within a warp share the sagwy host CPU.
instruction path. If the threads in one warp diverge via a
conditional branch, the warp will serially execute eacmbta
path; thus the advantages of parallelization are reduchkd.

The forward projection flow chart is illustrated in Fig. 1.
.[ln forward projection, for each pair, it is only necessary to

communication between the host and the devices occurs culate the approximate line integral, without updating

copying data from/to the CPU's memory to/from the cpl® els. However, for backward projection, if ray tracing is
global memory. Threads on the GPU devices will work on th sed, there will be conflict when it is parallelized. Diffate
' éreads may update the same pixel at the same time, because

global memory by default. For the kernel codes, to achiege t . detect i all the pixels int with
highest performance, the access of global memory should g a given source-detector pair, all th€ pixels interseLw
t g ray will have to be updated.

minimized. When global memory access cannot be avoided,
is important that all the threads in one warp access congecut The forward projection can be parallelized on a GPU

address data. platform as illustrated in Fig. 2. A large number of threadl w
The following steps were followed in the GPU implemeneperate on the forward ray tracer simultaneously for déffier
tation and optimization [9] [12]. source and detector pairs. For backward projection, simeet

Step 1. Analysis of the degree and granularity of paratielis are dependencies and conflicts when two threads access one
Step 2. Workload profiling and tuning. This involves identipixel, parallelization is possible, but more challengi@§IDA
fying operations that can be performed using single pregisiprovides atomic functions to guarantee the mutual exatusio
and then measuring the complexity of each module of tlier one same address in memory, and can be used to address
overall operation. potential data conflicts. For backward projection, we use a
Step 3. Optimization of memory accesses method similar to the forward projection, the only diffecen
Step 4. Optimization of the instruction flow. This involveseing that all the memory updating operations in a backward
identifying and implementing optimizations that would m@& projection are atomic operations. The EM+TV algorithm has
performed automatically by the compiler. been implemented on a GPU platform as illustrated in Fig. 3.



366 11th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine

N_FBlter =3
N_EMTViter = 100
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Fig. 3. EM+TV GPU implementation diagram
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EMTV and EM. RMSEs for these two results are provided.

IV. EXPERIMENTAL RESULTS

V. CONCLUSION

In this paper, we propose a method that use convergence
analysis to combine EM and TV; for CT image reconstruc-
tion. This method can provide very good results using fewer
views. It requires fewer measurements to obtain a comparabl
image, which results in a decrease of radiation. The method
is extended to three dimensions and can be used for real
data. One of the challenges in EM+TV is computation time.
We have demonstrated that by implementing this method on
a GPU platform, execution time can be reduced by well
over an order of magnitude. In addition, we believe there
are opportunities for further optimizations in areas sush a
memory access, instruction flow, and parallelization of the
backward algorithm that can further improve execution time
In summary, we believe that the combination of algorithms
and optimized implementation on appropriate platforms as
demonstrated has the potential to enable high-quality émag
reconstruction with reduced radiation exposure, whileo als
enabling relatively fast image reconstruction times. Feitu
work will focus on an alternative easily parallelized baeka/
projection algorithm and the high performance impleméaiat
on an FPGA hardware platform.
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