> Math $21 \mathrm{C}-2$
> Practice Midterm

Name: \qquad

Signature: \qquad

Student ID: \qquad

- There are ten (plus cover and bonus) pages to the exam.
- The exam totals 100 points, plus 10 bonus points.
- You will have 90 minutes to complete the exam.
- No calculators, notes, or books allowed.
- Good luck!

Problem	Points	Your Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
Bonus	10	
Total	100	

1. (10 points) Definitions and Examples:
a. (2 points) Write the definition for a sequence to be bounded above. (An example is not sufficient for full credit.)
b. (2 points) Write the definition of an alternating series. (An example is not sufficient for full credit.)
c. (2 points) Write the definition for a sequence to diverge to infinity. (An example is not sufficient for full credit.)
d. (2 points) Write the definition of the cross product of two vectors. (An example is not sufficient for full credit.)
e. (2 points) Let $f=f(x)$. Write the definition of the Maclaurin series for f. (An example is not sufficient for full credit.)
2. (10 points) Short Answers
a. (5 points) State the Integral Test for infinite series.
b. (5 points) State the nth-Term test for infinite series.
3. (10 points) Determine whether the following sequences converge or diverge. If a sequence converges, find its limit.
a. (3 points) $\quad a_{n}=\ln (n+1)-\ln (n)$.
b. (3 points) $\quad b_{n}=n 2^{-\ln (n)}$.
c. (4 points) $\quad a_{n}=\frac{n!}{(-3)^{n}}$.
4. (10 points) Determine whether the following series converge conditionally, converge absolutely, or diverge.
a. (5 points) $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{(\ln n)^{n}}$.
b. (5 points) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{0.999999}}$.
5. (10 points) Determine the values of x for which the following series converges conditionally, converges absolutely, or diverges. What are the center, radius, and interval of convergence?

$$
\sum_{n=2}^{\infty} n^{n} x^{n}
$$

6. (10 points) Compute (no shortcuts!!) the Taylor series centered at 1 for the function

$$
f(x)=\sqrt{x}
$$

7. (10 points) Using what you know about familiar Taylor series, write a power series for $f(x)=e^{-x^{2}}$. Use the first 3 non-zero terms to estimate $\int_{0}^{1} e^{-x^{2}} d x$.
(Hint: you should be familiar with the series for e^{x}.)
8. (10 points) Let P be the point $\left(\frac{\sqrt{2}}{4}, \frac{\sqrt{2}}{4},-1\right)$, and Q be the point $\left(-\frac{\sqrt{2}}{4},-\frac{\sqrt{2}}{4},-1\right)$.
a. (3 points) Find the component form for $\overrightarrow{P Q}$.
b. (3 points) Find the magnitude $|\overrightarrow{P Q}|$.
c. (4 points) Find the unit vector in the direction of $\overrightarrow{P Q}$.
9. (10 points) Let $\vec{\imath}=2 \vec{\imath}+3 \vec{\jmath}-\vec{k}$, and $\vec{v}=3 \vec{\imath}-2 \vec{\jmath}+20 \vec{k}$.
a. (3 points) Find $\vec{u} \cdot \vec{v}$.
b. (3 points) Find $\vec{u} \times \vec{v}$.
c. (4 points) Find $\vec{u} \cdot(\vec{u} \times \vec{v})$.
10. (10 points) Find parametric equations for the line which passes through $(2,4,5)$ and is perpendicular to the plane $3 x+7 y-5 z=21$.

Bonus. (10 points) Let p_{n} denote the nth prime: $p_{1}=2, p_{2}=3$, $p_{3}=5, p_{4}=7, p_{5}=11$, etc. Determine whether the following series converges or diverges:

$$
\sum_{n=1}^{\infty} \frac{1}{p_{n}^{2}}
$$

