Homework 4

Exercises 3.4

3

(a) $\{(a, a), (c, c)\}$

- (b) $\{(a, a), (b, b), (b, c), (c, c), (a, c)\}$
- $({\bf c}) \ \left\{ (a,b), (a,c), (c,c) \right\}$
- (d) $\{(a,b), (b,a), (b,b)\}$
- (e) $\{(a, b), (b, a), (a, c), (c, c)\}$

8

- (i) For each $(x, y) \in \mathbb{R} \times \mathbb{R}$, $x \leq x$ and $y \leq y$, so (x, y)R(x, y).
- (ii) Suppose (a, b)R(x, y) and (x, y)R(a, b). Then $a \le x$ and $x \le a$, so x = a. Similarly, y = b. Therefore, (a, b) = (x, y).
- (iii) Suppose (a, b)R(x, y) and (x, y)R(c, d). Then $a \le x \le c$, so $a \le c$ and $b \le y \le d$, so $b \le d$. Therefore (a, b)R(c, d).

 $\mathbf{22}$

Claim 1. Every subset of a well-ordered set is well ordered.

Proof. Let A be any well-ordered set under the relation R. Let B be any subset of A. We first show that B is a linearly ordered set (under $R|_B$). For all $x \in B$, $x \in A$ as well. So xRx, which shows that the relation is reflexive on B. For any x, y, and z in B with xRy and yRz, again we note that x, y, and z are in A, which is linearly ordered, so xRz. Verifying that the relation is antisymmetric on B and that any two elements are comparable are similar to the above. So B is linearly ordered. It only remains to show that every nonempty subset of B has a least element. Suppose $C \subseteq B$ and $C \neq \emptyset$. Since $C \subseteq B \subseteq A$ we have $C \subseteq A$. But A is well-ordered, so every nonempty subset has a least element. Thus, C has a least element. Therefore B is well-ordered.

Exercises 4.1

3

- (a) $D = \mathbb{R} \setminus \{-1\}, R = \mathbb{R} \setminus \{0\}.$
- (h) $D = \mathbb{R}, R = [1, \infty).$
- (i) $D = \mathbb{R} \setminus \{2\}, \mathbb{R} = \mathbb{R} \setminus \{4\}.$

 $\mathbf{5}$

(e)
$$D = [3, 5], R = [\sqrt{2}, 2].$$

8

- (b) Function.
- (d) Not a function. $\overline{0} = \overline{4}$ in \mathbb{Z}_4 , but $f(\overline{0}) = [2 \cdot 0 + 1] = [1] \neq [3] = [9] = [2 \cdot 4 + 1] = f(\overline{4})$ in \mathbb{Z}_6 .

11

f and g are not equal as sets, because $(-3, 6) \in g$, but $(-3, 6) \notin f$. In particular, f and g have different domains.

$\mathbf{18}$

(b) A.

(c) A.

Exercises 4.2

1

(b) $(f \circ g)(x) = 4x^2 + 8x + 3; (g \circ f)(x) = 2x^2 + 4x + 1.$

9

Suppose h and g are functions such that Dom(f) = A, Dom(g) = B, and $A \cap B = \emptyset$. Then h and g are relations, so $h \cup g$ is a relation. If $x \in Dom(h \cup g)$, then there is a y such that $(x, y) \in h$ or $(x, y) \in g$, so $x \in A$ or $x \in B$. On the other hand, if $x \in A \cup B$, then there is a y such that $(x, y) \in h$ or $(x, y) \in g$, so $(x, y) \in h \cup g$, and so $x \in Dom(h \cup g)$. Thus, $Dom(h \cup g) = A \cup B$). Now, suppose (x, y) and (x, z) are in $h \cup g$. By the preceding argument, $x \in A \cup B$, and since $A \cap B = \emptyset$, x cannot be in both A and B. If $x \in A$, then y = h(x) = z, since h is a function. If $x \in B$, then y = g(x) = z, since g is a function. Either way, y = z, and so $h \cup g$ is a function.

13

(a) We first show that $f_1 + f_2$ is a function with domain \mathbb{R} . First, $f_1 + f_2$ is by definition a relation. For all $x \in \mathbb{R}$ there is some $u \in \mathbb{R}$ such that $(x, u) \in f_1$ because $f_1 : \mathbb{R} \to \mathbb{R}$ and there is some $v \in \mathbb{R}$ such that $(x, v) \in f_2$ because $f_2 : \mathbb{R} \to \mathbb{R}$. Then $(x, u + v) \in f_1 + f_2$, so $x \in \text{Dom}(f_1 + f_2) = \mathbb{R}$. It is clear from the definition of $f_1 + f_2$ that $x \in \text{Dom}(f_1 + f_2)$ implies $x \in \mathbb{R}$, so $\text{Dom}(f_1 + f_2) = \mathbb{R}$. Now let $x \in \mathbb{R}$. Suppose (x, c) and (x, d) are in $f_1 + f_2$. Then $c = f_1(x) + f_2(x) = d$. Therefore $f_1 + f_2$ is a function. Now we show that $f_1 \cdot f_2$ is a function with domain \mathbb{R} . First, $f_1 \cdot f_2$ is a relation by definition. Now let

 $x \in \mathbb{R}$. Then there exist u and v in \mathbb{R} such that $(x, u) \in f_1$ and $(x, v) \in f_2$, so $(x, uv) \in f_1 \cdot f_2$; thus, $x \in \text{Dom}(f_1 \cdot f_2)$. It is clear from the definition of $f_1 \cdot f_2$ that $\text{Dom}(f_1 \cdot f_2) \subseteq \mathbb{R}$; hence $\text{Dom}(f_1 \cdot f_2) = \mathbb{R}$. Now suppose (x, c) and (x, d) are both in $f_1 \cdot f_2$. Then $c = f_1(x) \cdot f_2(x) = d$, so $f_1 \cdot f_2$ is a function.

(b)

$$\begin{array}{ll} (f+g)(x) = 11 - 5x & (f \cdot g)(x) = -14x^2 - 23x + 30 \\ (f+h)(x) = 3x^2 - 5x + 7 & (g \cdot h)(x) = -21x^3 + 67x^2 - 56x + 12 \end{array}$$

Exercises 4.3

1

- (b) Onto. Let $n \in \mathbb{Z}$. Then $1000 n \in \mathbb{Z}$ and f(1000 n) = -(1000 n) + 1000 = n.
- (h) Onto. Let $x \in \mathbb{R}$. Then $(x, 0) \in \mathbb{R} \times \mathbb{R}$ and f(x, 0) = x 0 = x.

$\mathbf{2}$

- (b) One-to-one. Suppose f(x) = f(y). Then -x + 1000 = -y + 1000, so x = y.
- (h) Not one-to-one. Note that f(1,0) = f(2,1).

4

Suppose $f : \xrightarrow{\text{onto}} B$ and $g : B \xrightarrow{\text{onto}} C$. Let $c \in C$. Then there is $b \in B$ such that g(b) = c since g is onto B. Also, there is an $a \in A$ such that f(a) = b since f is onto A. Thus $(g \circ f)(a) = g(f(a)) = g(b) = c$, which proves that $g \circ f$ is onto.

6

Claim 2. If $f: A \to B$, $g: B \to C$, and $g \circ f: A \xrightarrow{1-1} C$, then $f: A \xrightarrow{1-1} B$.

Proof. Suppose $f: A \to B$, $g: B \to C$, and $g \circ f: A \xrightarrow{1-1} C$. Suppose also that $x, y \in A$ and f(x) = f(y). Since g is a function, $(g \circ f)(x) = g(f(x)) = g(f(y)) = (g \circ f)(y)$. Since $g \circ f$ is one-to-one, x = y. \Box

8

(b) Let $A = \{1\}, B = \{1, 2\} = C, f = \{(1, 1)\}$ and $g = \{(1, 2), (2, 1)\}.$

- (c) Let $A = \{1\}, B = \{1, 2\}, C = \{1\}, f = \{(1, 1)\}$ and $g = \{(1, 1), (2, 1)\}.$
- (d) Let $A = \{1, 2\} = B, C = \{1\}, f = \{(1, 2), (2, 1)\}$ and $g = \{(1, 1), (2, 1)\}.$
- (f) Let $A = \{1, 2\}, B = \{a, b, c\}, C = \{5, 6\}, f = \{(1, a), (2, b)\}$ and $g = \{(a, 5), (b, 6), (c, 6)\}.$