Homework 4

Exercises 3.1

 $\mathbf{2}$

Claim 1. For nonempty sets A and B, one has the identity $A \times B = B \times A$ if and only if A = B.

- *Proof.* (\Rightarrow) Suppose $A \times B = B \times A$. Let $b \in B$ and $a \in A$. Then $(a, b) \in A \times B = B \times A$; thus, $a \in B$ and $b \in A$. This shows $A \subseteq B$ and $B \subseteq A$; hence A = B.
- (\Leftarrow) If A = B, then by substitution, $A \times B = B \times A$.

The claim does not hold if A is empty and B is nonempty. In this case, $A \neq B$, even though $A \times B = \emptyset = B \times A$.

$\mathbf{4}$

(a) Let $A = \{1\}$, $B = C = \{3\}$, and $D = \{2\}$. Then

 $(A \times B) \cup (C \times D)$ is the two-element set $\{(1,3), (3,2)\}$, while $(A \cup C) \times (B \cup D)$ is the four-element set $\{(1,2), (1,3), (3,2), (3,3)\}$,

so $(A \times B) \cup (C \times D) \neq (A \cup C) \times (B \cup D)$. (c) Let $A = B = C = \{1\}$. Then

$$A \times (B \times C) = \{(1, (1, 1))\} \neq \{((1, 1), 1)\} = (A \times B) \times C.$$

$\mathbf{5}$

Let T be the relation $\{(3,1), (2,3), (3,5), (2,2), (1,6), (2,6), (1,2)\}$.

- (a) $\text{Dom}(T) = \{1, 2, 3\}.$
- (b) $\operatorname{Rng}(T) = \{1, 2, 3, 5, 6\}.$
- (c) $T^{-1} = \{(1,3), (3,2), (5,3), (2,2), (6,1), (6,2), (2,1)\}$. Note: Although the ordering within each pair is crucial, the order in which we list the collection of ordered pairs in T^{-1} does not matter. So we also have, for example

 $T^{-1} = \{(2,1), (6,2), (6,1), (2,2), (5,3), (3,2), (1,3)\},\$

since this is the same set as the one named above.

(d) By Theorem 3.3(a),
$$(T^{-1})^{-1} = T = \{(3,1), (2,3), (3,5), (2,2), (1,6), (2,6), (1,2)\}$$
.

13

Let R be a relation from A to B and let S be a relation from B to C.

- (a) **Claim:** Dom $(S \circ R) \subseteq$ Dom (R). **Proof:** Suppose $x \in$ Dom $(S \circ R)$. Then for some $z, (x, z) \in S \circ R$. Then for some $y, (x, y) \in R$ and $(y, z) \in S$. Since $(x, y) \in R$, we have $x \in$ Dom (R).
- (c) The statement $\operatorname{Rng}(S \circ R) \subseteq \operatorname{Rng}(S)$ is always true. This may be proved as follows. Suppose $z \in \operatorname{Rng}(S \circ R)$. Then for some $x, (x, z) \in S \circ R$. Then for some $y, (x, y) \in R$ and $(y, z) \in S$. Since $(y, z) \in S$, we have $z \in \operatorname{Rng}(S)$. On the other hand, if $R = \{(a, c)\}$ and $S = \{(b, d)\}$, then $\operatorname{Rng}(S) = \{d\} \not\subseteq \emptyset = \operatorname{Rng}(S \circ R)$.

 $\mathbf{20}$

- (b) Grade: C. This "proof" could be corrected by observing that $(a, c) \notin B \times D$ implies $a \notin B$ or $c \notin D$, which implies $a \notin A$ or $c \notin C$. This contradicts the fact that $a \in A$ and $c \in C$. A direct proof would be easier.
- (c) Grade: F. The symbols

$$\frac{A \times B}{A}$$
 and $\frac{A \times C}{A}$

seem to suggest "division" by the set A, but this operation is not defined.

(d) Grade: A.

Exercises 3.2

1

- (b) reflexive, transitive
- (f) symmetric
- (i) symmetric
- (j) symmetric
- (l) reflexive, transitive
- $\mathbf{4}$

(a)

Claim 2. The relation R on Z given by x R y iff $x^2 = y^2$ is an equivalence relation.

Proof. The relation R satisfies the properties of an equivalence relation, as follows.

- 1. Reflexive: Let $x \in \mathbb{Z}$. Then $x^2 = x^2$, so x R x.
- 2. Symmetric: Suppose x R y for some $x, y \in \mathbb{Z}$. Then $x^2 = y^2$, so $y^2 = x^2$. Thus, y R x.
- 3. Transitive: Suppose x R y and y R z for some $x, y, z \in \mathbb{Z}$. Then $x^2 = y^2$ and $y^2 = z^2$, so $x^2 = z^2$.

Thus, R is an equivalence relation on \mathbb{Z} .

The equivalence class of 0 determined by R (denoted 0/R) is $\{0\}$, while $4/R = \{\pm 4\}$, and $-72/R = \{\pm 72\}$.

(c)

Claim 3. The relation V on \mathbb{R} given by x V y iff x = y or xy = 1 is an equivalence relation.

Proof. The relation V satisfies the properties of an equivalence relation, as follows.

- 1. Reflexive: Let $x \in \mathbb{R}$. Then x = x, so x V x.
- 2. Symmetric: Suppose x R y for some $x, y \in \mathbb{Z}$. Then one of the following is true: x = y, so y = x, or xy = 1, in which case yx = 1. Thus, y V x.

3. Transitive: Suppose x R y and y R z for some $x, y, z \in \mathbb{Z}$. Then x = y or xy = 1, and y = z or yz = 1. If y = z then x = z or xz = 1. If yz = 1, then xz = 1 (in the case x = y) or x = z (when xy = 1, by cancellation in xy = yz = 1). In any case x = z or xz = 1, so x V z.

Thus, R is an equivalence relation on \mathbb{Z} .

We have
$$3/V = \left\{\frac{1}{3}, 3\right\}, \left(-\frac{2}{3}\right)/V = \left\{-\frac{2}{3}, -\frac{3}{2}\right\}, \text{ and } 0/V = \{0\}$$

6

(b) There are eight equivalence classes for the relation of congruence modulo 8. They are the following.

$$\begin{array}{ll} 0/\equiv_8=\{\ldots,-16,-8,0,8,\ldots\} & 4/\equiv_8=\{\ldots,-12,-4,4,12,\ldots\} \\ 1/\equiv_8=\{\ldots,-15,-7,1,9,\ldots\} & 5/\equiv_8=\{\ldots,-11,-3,5,13,\ldots\} \\ 2/\equiv_8=\{\ldots,-14,-6,2,10,\ldots\} & 6/\equiv_8=\{\ldots,-10,-2,6,14,\ldots\} \\ 3/\equiv_8=\{\ldots,-13,-5,3,11,\ldots\} & 7/\equiv_8=\{\ldots,-9,-1,7,15,\ldots\} \end{array}$$

(c) There is one equivalence class for the relation of congruence modulo 1, namely, $0/\equiv_1=\mathbb{Z}$.

Exercises 3.3

$\mathbf{2}$

- (a) The collection \mathcal{A} is not a partition of A, since \mathcal{A} is not pairwise disjoint. That is, it fails criterion (ii) of the definition on p. 154 of the text.
- (b) The collection \mathcal{A} is not a partition of A, since \mathcal{A} does not cover A, i.e., it fails criterion (iii) of the definition, since

$$\bigcup_{X \in \mathcal{A}} X = \{1, 2, 3, 4, 5\} \neq \{1, 2, 3, 4, 5, 6, 7\} = A$$

(c) The collection \mathcal{A} is a partition of A.

6(a)

The equivalence relation on \mathbb{N} with the given partition is

$$x R y$$
 iff $2^n \leq x, y < 2^{n+1}$ for some $n \in \mathbb{N}$.

10

(Completing the proof of Theorem 3.6) If \mathcal{B} is a partition of A, and Q is a relation such that x Q y iff there exists $C \in \mathcal{B}$ such that $x \in C$ and $y \in C$, then

(a) Q is symmetric.

Proof: Suppose x Q y. By definition of Q, there is $C \in \mathcal{B}$ such that $x \in C$ and $y \in C$. Since both y and x belong to C, y Q x. Therefore, Q is symmetric.

(b) Q is reflexive on A.

Proof: Let $t \in A$. Since \mathcal{B} is a partition of A, we have $A = \bigcup_{X \in \mathcal{B}} X$. Consequently, there is some $C \in \mathcal{B}$ so that $t \in C$. Thus t Q t. Therefore, Q is reflexive on A.

г	-	٦	
L			