Homework 4

Exercises 3.1

2

Claim 1. For nonempty sets A and B, one has the identity $A \times B=B \times A$ if and only if $A=B$.
Proof. (\Rightarrow) Suppose $A \times B=B \times A$. Let $b \in B$ and $a \in A$. Then $(a, b) \in A \times B=B \times A$; thus, $a \in B$ and $b \in A$. This shows $A \subseteq B$ and $B \subseteq A$; hence $A=B$.
(\Leftarrow) If $A=B$, then by substitution, $A \times B=B \times A$.

The claim does not hold if A is empty and B is nonempty. In this case, $A \neq B$, even though $A \times B=$ $\emptyset=B \times A$.

4
(a) Let $A=\{1\}, B=C=\{3\}$, and $D=\{2\}$. Then
$(A \times B) \cup(C \times D)$ is the two-element set $\{(1,3),(3,2)\}$, while
$(A \cup C) \times(B \cup D)$ is the four-element set $\{(1,2),(1,3),(3,2),(3,3)\}$
so $(A \times B) \cup(C \times D) \neq(A \cup C) \times(B \cup D)$.
(c) Let $A=B=C=\{1\}$. Then

$$
A \times(B \times C)=\{(1,(1,1))\} \neq\{((1,1), 1)\}=(A \times B) \times C
$$

5
Let T be the relation $\{(3,1),(2,3),(3,5),(2,2),(1,6),(2,6),(1,2)\}$.
(a) $\operatorname{Dom}(T)=\{1,2,3\}$.
(b) $\operatorname{Rng}(T)=\{1,2,3,5,6\}$.
(c) $T^{-1}=\{(1,3),(3,2),(5,3),(2,2),(6,1),(6,2),(2,1)\}$.

Note: Although the ordering within each pair is crucial, the order in which we list the collection of ordered pairs in T^{-1} does not matter. So we also have, for example

$$
T^{-1}=\{(2,1),(6,2),(6,1),(2,2),(5,3),(3,2),(1,3)\}
$$

since this is the same set as the one named above.
(d) By Theorem 3.3(a), $\left(T^{-1}\right)^{-1}=T=\{(3,1),(2,3),(3,5),(2,2),(1,6),(2,6),(1,2)\}$.

13

Let R be a relation from A to B and let S be a relation from B to C.
(a) Claim: $\operatorname{Dom}(S \circ R) \subseteq \operatorname{Dom}(R)$. Proof: Suppose $x \in \operatorname{Dom}(S \circ R)$. Then for some $z,(x, z) \in S \circ R$. Then for some $y,(x, y) \in R$ and $(y, z) \in S$. Since $(x, y) \in R$, we have $x \in \operatorname{Dom}(R)$.
(c) The statement Rng $(S \circ R) \subseteq \operatorname{Rng}(S)$ is always true. This may be proved as follows. Suppose $z \in$ $\operatorname{Rng}(S \circ R)$. Then for some $x,(x, z) \in S \circ R$. Then for some $y,(x, y) \in R$ and $(y, z) \in S$. Since $(y, z) \in S$, we have $z \in \operatorname{Rng}(S)$.
On the other hand, if $R=\{(a, c)\}$ and $S=\{(b, d)\}$, then $\operatorname{Rng}(S)=\{d\} \nsubseteq \emptyset=\operatorname{Rng}(S \circ R)$.
(b) Grade: C. This "proof" could be corrected by observing that $(a, c) \notin B \times D$ implies $a \notin B$ or $c \notin D$, which implies $a \notin A$ or $c \notin C$. This contradicts the fact that $a \in A$ and $c \in C$. A direct proof would be easier.
(c) Grade: F. The symbols

$$
\frac{A \times B}{A} \text { and } \frac{A \times C}{A}
$$

seem to suggest "division" by the set A, but this operation is not defined.
(d) Grade: A.

Exercises 3.2

1
(b) reflexive, transitive
(f) symmetric
(i) symmetric
(j) symmetric
(l) reflexive, transitive

4
(a)

Claim 2. The relation R on \mathbb{Z} given by $x R y$ iff $x^{2}=y^{2}$ is an equivalence relation.
Proof. The relation R satisfies the properties of an equivalence relation, as follows.

1. Reflexive: Let $x \in \mathbb{Z}$. Then $x^{2}=x^{2}$, so $x R x$.
2. Symmetric: Suppose $x R y$ for some $x, y \in \mathbb{Z}$. Then $x^{2}=y^{2}$, so $y^{2}=x^{2}$. Thus, $y R x$.
3. Transitive: Suppose $x R y$ and $y R z$ for some $x, y, z \in \mathbb{Z}$. Then $x^{2}=y^{2}$ and $y^{2}=z^{2}$, so $x^{2}=z^{2}$.

Thus, R is an equivalence relation on \mathbb{Z}.
The equivalence class of 0 determined by $R($ denoted $0 / R)$ is $\{0\}$, while $4 / R=\{ \pm 4\}$, and $-72 / R=$ $\{ \pm 72\}$.
(c)

Claim 3. The relation V on \mathbb{R} given by $x V y$ iff $x=y$ or $x y=1$ is an equivalence relation.
Proof. The relation V satisfies the properties of an equivalence relation, as follows.

1. Reflexive: Let $x \in \mathbb{R}$. Then $x=x$, so $x V x$.
2. Symmetric: Suppose $x R y$ for some $x, y \in \mathbb{Z}$. Then one of the following is true: $x=y$, so $y=x$, or $x y=1$, in which case $y x=1$. Thus, $y V x$.
3. Transitive: Suppose $x R y$ and $y R z$ for some $x, y, z \in \mathbb{Z}$. Then $x=y$ or $x y=1$, and $y=z$ or $y z=1$. If $y=z$ then $x=z$ or $x z=1$. If $y z=1$, then $x z=1$ (in the case $x=y$) or $x=z$ (when $x y=1$, by cancellation in $x y=y z=1$). In any case $x=z$ or $x z=1$, so $x V z$.

Thus, R is an equivalence relation on \mathbb{Z}.
We have $3 / V=\left\{\frac{1}{3}, 3\right\},\left(-\frac{2}{3}\right) / V=\left\{-\frac{2}{3},-\frac{3}{2}\right\}$, and $0 / V=\{0\}$.
6
(b) There are eight equivalence classes for the relation of congruence modulo 8. They are the following.

$$
\begin{array}{lll}
0 / \equiv_{8}=\{\ldots,-16,-8,0,8, \ldots\} & 4 / \equiv_{8}=\{\ldots,-12,-4,4,12, \ldots\} \\
1 / \equiv_{8}=\{\ldots,-15,-7,1,9, \ldots\} & 5 / \equiv_{8}=\{\ldots,-11,-3,5,13, \ldots\} \\
2 / \equiv_{8}=\{\ldots,-14,-6,2,10, \ldots\} & 6 / \equiv_{8}=\{\ldots,-10,-2,6,14, \ldots\} \\
3 / \equiv_{8}=\{\ldots,-13,-5,3,11, \ldots\} & 7 / \equiv_{8}=\{\ldots,-9,-1,7,15, \ldots\}
\end{array}
$$

(c) There is one equivalence class for the relation of congruence modulo 1 , namely, $0 / \equiv_{1}=\mathbb{Z}$.

Exercises 3.3

2
(a) The collection \mathcal{A} is not a partition of A, since \mathcal{A} is not pairwise disjoint. That is, it fails criterion (ii) of the definition on p .154 of the text.
(b) The collection \mathcal{A} is not a partition of A, since \mathcal{A} does not cover A, i.e., it fails criterion (iii) of the definition, since

$$
\bigcup_{X \in \mathcal{A}} X=\{1,2,3,4,5\} \neq\{1,2,3,4,5,6,7\}=A
$$

(c) The collection \mathcal{A} is a partition of A.

6(a)

The equivalence relation on \mathbb{N} with the given partition is

$$
x R y \text { iff } 2^{n} \leq x, y<2^{n+1} \text { for some } n \in \mathbb{N} .
$$

10

(Completing the proof of Theorem 3.6) If \mathcal{B} is a partition of A, and Q is a relation such that $x Q$ iff there exists $C \in \mathcal{B}$ such that $x \in C$ and $y \in C$, then
(a) Q is symmetric.

Proof: Suppose $x Q y$. By definition of Q, there is $C \in \mathcal{B}$ such that $x \in C$ and $y \in C$. Since both y and x belong to $C, y Q x$. Therefore, Q is symmetric.
(b) Q is reflexive on A.

Proof: Let $t \in A$. Since \mathcal{B} is a partition of A, we have $A=\cup_{X \in \mathcal{B}} X$. Consequently, there is some $C \in \mathcal{B}$ so that $t \in C$. Thus $t Q t$. Therefore, Q is reflexive on A.

