Homework 3

Exercises 2.5

3(a)

Claim 1. If a > 0, then for every natural number $n, a^n > 0$.

Proof. Let a > 0 and $T = \{n \in \mathbb{N} : a^n \le 0\}$. Suppose $T \ne \emptyset$. Then by the WOP, T has a smallest element, n. Thus, $n - 1 \notin T$, so $a^{n-1} > 0$. Therefore, because the product of two positive integers is positive, $a^n = a \cdot a^{n-1} > 0$. This contradicts the fact that $n \in T$. We conclude that T is empty, so $a^n > 0$ for all $n \in \mathbb{N}$.

3(b)

Claim 2. For all positive integers a and b, $b \neq a + b$.

Proof. Suppose there were natural numbers a, b such that b = a + b. Then by the WOP, the set $T = \{n \in \mathbb{N} : n = a + n\}$ has a least element, b_0 . And $b_0 \neq 1$ because 1 is not the successor of any natural number. Now, $b_0 = a + b_0$ implies $(b_0 - 1) = a + (b_0 - 1)$, which implies $b_0 - 1 \in T$. This contradicts the minimality of b_0 . Therefore, T is empty. Since a is arbitrary, we conclude that for $a, b \in \mathbb{N}, b \neq a + b$. \Box

$\mathbf{10}$

Theorem (Archimedean Principle). For all natural numbers a and b, there exists a natural number s such that a < sb.

Proof. We use induction on a.

(i) If a = 1, choose s = 2. Then

$$a = 1 < b < b + b = 2b = s \cdot b$$

(ii) Suppose the statement is true when a = n for every natural number b, and let $b \in \mathbb{N}$. Then there is an $s \in \mathbb{N}$ such that $n < s \cdot b$, so $s + 1 \in \mathbb{N}$ and

n

$$\begin{array}{rcl} +1 & < & s \cdot b + 1 \\ & \leq & s \cdot b + b \\ & = & (s+1) \, b. \end{array}$$

Thus, the statement is true for a = n + 1.

(iii) By the PMI, the statement is true for all natural numbers a and b.

15

(a) Grade: A.

- (b) Grade: F. The "proof" fails to consider that a special argument is needed for the case m = 1. In this case, m 1 is not a natural number. The claim is false.
- (c) Grade: F. One cannot know that $\{1, 2, ..., x 1\} \subseteq \mathbb{N} T$ unless one knows (or assumes) that x is the smallest element of T.
- (d) Grade: F. The characterization of S does not match the assumption made in the PCI.