Homework 3

Exercises 2.5

3(a)

Claim 1. If $a>0$, then for every natural number $n, a^{n}>0$.
Proof. Let $a>0$ and $T=\left\{n \in \mathbb{N}: a^{n} \leq 0\right\}$. Suppose $T \neq \emptyset$. Then by the WOP, T has a smallest element, n. Thus, $n-1 \notin T$, so $a^{n-1}>0$. Therefore, because the product of two positive integers is positive, $a^{n}=a \cdot a^{n-1}>0$. This contradicts the fact that $n \in T$. We conclude that T is empty, so $a^{n}>0$ for all $n \in \mathbb{N}$.

3(b)

Claim 2. For all positive integers a and $b, b \neq a+b$.
Proof. Suppose there were natural numbers a, b such that $b=a+b$. Then by the WOP, the set $T=$ $\{n \in \mathbb{N}: n=a+n\}$ has a least element, b_{0}. And $b_{0} \neq 1$ because 1 is not the successor of any natural number. Now, $b_{0}=a+b_{0}$ implies $\left(b_{0}-1\right)=a+\left(b_{0}-1\right)$, which implies $b_{0}-1 \in T$. This contradicts the minimality of b_{0}. Therefore, T is empty. Since a is arbitrary, we conclude that for $a, b \in \mathbb{N}, b \neq a+b$.

10

Theorem (Archimedean Principle). For all natural numbers a and b, there exists a natural number such that $a<s b$.

Proof. We use induction on a.
(i) If $a=1$, choose $s=2$. Then

$$
a=1 \leq b<b+b=2 b=s \cdot b
$$

(ii) Suppose the statement is true when $a=n$ for every natural number b, and let $b \in \mathbb{N}$. Then there is an $s \in \mathbb{N}$ such that $n<s \cdot b$, so $s+1 \in \mathbb{N}$ and

$$
\begin{aligned}
n+1 & <s \cdot b+1 \\
& \leq s \cdot b+b \\
& =(s+1) b
\end{aligned}
$$

Thus, the statement is true for $a=n+1$.
(iii) By the PMI, the statement is true for all natural numbers a and b.

15

(a) Grade: A.
(b) Grade: F. The "proof" fails to consider that a special argument is needed for the case $m=1$. In this case, $m-1$ is not a natural number. The claim is false.
(c) Grade: F. One cannot know that $\{1,2, \ldots, x-1\} \subseteq \mathbb{N}-T$ unless one knows (or assumes) that x is the smallest element of T.
(d) Grade: F. The characterization of S does not match the assumption made in the PCI.

