Homework 2

Exercises 1.6

5(a)

A counterexample to the statement "For all positive integers x, $x^2 + x + 41$ is a prime" is provided by x = 41, since

$$41^2 + 41 + 41 = 41(41 + 1 + 1) = 41 \cdot 43$$

a composite integer.

5(b)

Claim 1 For every real number x, there exists a real number y such that x + y = 0.

Proof. Let $x \in \mathbb{R}$. Then y = -x satisfies

$$x + y = x + (-x)$$
$$= x - x$$
$$= 0.$$

Therefore, for every $x \in \mathbb{R}$, there exists $y \in \mathbb{R}$ such that x + y = 0.

5(d)

Since 12 divides $24 = 6 \cdot 4$, but 12 divides neither 6 nor 4, the statement "For integers a, b, c, if a divides bc, then either a divides b or a divides c" is false. (Let a = 12, b = 6, and c = 4.)

8(c)

Grade: C.

The "proof" misstates the definition of *divides* twice ("assume a divides b. Then a = kb for some integer k," etc.). This could be corrected by interchanging a and b in the two equations.

8(e)

Grade: F.

The claim "Every real function is continuous at x = 0" is clearly false since, for example, the greatest integer function $f(x) = \lfloor x \rfloor$ (sometimes denoted [[x]]) is discontinuous at x = 0, since $\lim_{x\to 0} f(x)$ does not exist. The proof's error is to deduce from the true statement "every real function either is continuous at x = 0 or is not continuous at x = 0" the false statement "every real function is continuous at x = 0" or every real function is not continuous at x = 0." The correct disjunction is "every real function is continuous at x = 0 or there exists a real function which is not continuous at x = 0."

Exercises 1.7

1(c)

Claim 2 The sum of five consecutive integers is always divisible by 5.

Proof. Let n be the least of the five consecutive integers. Then the sum is

$$n + (n + 1) + (n + 2) + (n + 3) + (n + 4) = 5n + (1 + 4) + (2 + 3)$$

= $5n + 10$
= $5(n + 2)$.

Since n+2 is an integer, the left-hand side is divisible by 5. Therefore, the sum of five consecutive integers is always divisible by 5. \blacksquare

12(d)

Grade: F.

The "proof" is given only for one real number $(x = \pi)$. Therefore, it does not prove the claim for all real numbers.

12(e)

Grade: A.

Exercises 2.2

1(b)

The set of integers whose square is less than 17 is denoted $\{x \mid x \in \mathbb{Z} \text{ and } x^2 < 17\}$.

4(b)

True. By Theorem 2.1, for any set A, we have $\emptyset \subseteq A$.

5(b)

An example of set A, B, and C satisfying $A \subseteq B$, $B \subseteq C$, and $C \subseteq A$ is given by $A = B = C = \{1\}$.

11

Claim 3 If $x \notin B$ and $A \subseteq B$, then $x \notin A$.

Proof. Assume $x \notin B$ and $A \subseteq B$. Suppose $x \in A$. Then, since $A \subseteq B$, from the definition of a subset, we deduce $x \in B$, contradicting our assumption. Thus, $x \notin A$. We conclude that if $x \notin B$ and $A \subseteq B$, then $x \notin A$.

Exercises 2.2

10(b)

Claim 4 If $A \subseteq B \cup C$ and $A \cap B = \emptyset$, then $A \subseteq C$.

Proof. Assume $A \subseteq B \cup C$ and $A \cap B = \emptyset$, and suppose $x \in A$. Then $x \in B$ or $x \in C$, but x can't be in B since $A \cap B = \emptyset$. Thus, $x \in C$, from which we conclude $A \subseteq C$. Therefore, if $A \subseteq B \cup C$ and $A \cap B = \emptyset$, then $A \subseteq C$.

12(d)

An example of nonempty sets A, B, and C such that $A \nsubseteq B \cup C$, $B \nsubseteq A \cup C$, and $C \subseteq A \cup B$ is given by $A = \{x, z\}$, $B = \{y, z\}$, and $C = \{z\}$.

14(b)

A counterexample to the claim "If $A \cap C \subseteq B \cap C$, then $A \subseteq B$ " is provided by $A = \{1\}$ and $B = \{2\} = C$. Then $A \cap C = \emptyset \subseteq B \cap C$, but $A \nsubseteq B$.

Exercises 2.3

1(h)

$$\bigcup_{r\in\mathbb{R}}A_r=[-\pi,\infty);\;\bigcup_{r\in\mathbb{R}}A_r=[-\pi,0]$$

9

Claim 5 Let \mathcal{A} be a family of sets, and suppose $\emptyset \in \mathcal{A}$. Then $\bigcap_{A \in \mathcal{A}} A = \emptyset$.

Proof. Since $\emptyset \in \mathcal{A}$, $\bigcap_{A \in \mathcal{A}} A \subseteq \emptyset$, by Theorem 2.9(a). Therefore, $\bigcap_{A \in \mathcal{A}} A = \emptyset$. Thus, if the empty set is a member of a family of sets \mathcal{A} , then $\bigcap_{A \in \mathcal{A}} A = \emptyset$.

Exercises 2.4

8(e)

Claim 6 For all natural numbers n, we have the identity

$$1^{3} + 2^{3} + \dots + n^{3} = \left[\frac{n(n+1)}{2}\right]^{2}$$
.

Proof. Let $S = \left\{ n \in \mathbb{N} : 1^3 + 2^3 + \dots + n^3 = \left[\frac{n(n+1)}{2} \right]^2 \right\}$.

- (i) Observe that $1^3=1=\left[\frac{1(1+1)}{2}\right]^2$, so $1\in S.$
- (ii) Assume $n \in S$, for some natural number n. Then

$$1^{3} + 2^{3} + \dots + n^{3} + (n+1)^{3} = \left[1^{3} + 2^{3} + \dots + n^{3}\right] + (n+1)^{3}$$

$$= \left[\frac{n(n+1)}{2}\right]^{2} + (n+1)^{3}$$

$$= (n+1)^{2} \left[\frac{n^{2}}{4} + n + 1\right]$$

$$= (n+1)^{2} \left[\frac{n^{2} + 4n + 4}{4}\right]$$

$$= \left[\frac{(n+1)(n+2)}{2}\right]^{2}.$$

Thus, $n+1 \in S$.

(iii) By the PMI, $S = \mathbb{N}$.

Therefore, for all $n \in \mathbb{N}$, $1^3 + 2^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2$.