Homework 2

Exercises 1.6

5(a)
A counterexample to the statement "For all positive integers $x, x^{2}+x+41$ is a prime" is provided by $x=41$, since

$$
41^{2}+41+41=41(41+1+1)=41 \cdot 43
$$

a composite integer.

5(b)

Claim 1 For every real number x, there exists a real number y such that $x+y=0$.
Proof. Let $x \in \mathbb{R}$. Then $y=-x$ satisfies

$$
\begin{aligned}
x+y & =x+(-x) \\
& =x-x \\
& =0
\end{aligned}
$$

Therefore, for every $x \in \mathbb{R}$, there exists $y \in \mathbb{R}$ such that $x+y=0$.
5(d)
Since 12 divides $24=6 \cdot 4$, but 12 divides neither 6 nor 4 , the statement "For integers a, b, c, if a divides $b c$, then either a divides b or a divides c " is false. (Let $a=12, b=6$, and $c=4$.)

8(c)

Grade: C.
The "proof" misstates the definition of divides twice ("assume a divides b. Then $a=k b$ for some integer $k, "$ etc.). This could be corrected by interchanging a and b in the two equations.

8(e)

Grade: F.
The claim "Every real function is continuous at $x=0$ " is clearly false since, for example, the greatest integer function $f(x)=\lfloor x\rfloor$ (sometimes denoted [[x]]) is discontinuous at $x=0$, since $\lim _{x \rightarrow 0} f(x)$ does not exist. The proof's error is to deduce from the true statement "every real function either is continuous at $x=0$ or is not continuous at $x=0$ " the false statement "every real function is continuous at $x=0$ or every real function is not continuous at $x=0$." The correct disjunction is "every real function is continuous at $x=0$ or there exists a real function which is not continuous at $x=0$."

Exercises 1.7

1(c)
Claim 2 The sum of five consecutive integers is always divisible by 5.
Proof. Let n be the least of the five consecutive integers. Then the sum is

$$
\begin{aligned}
n+(n+1)+(n+2)+(n+3)+(n+4) & =5 n+(1+4)+(2+3) \\
& =5 n+10 \\
& =5(n+2)
\end{aligned}
$$

Since $n+2$ is an integer, the left-hand side is divisible by 5 . Therefore, the sum of five consecutive integers is always divisible by 5 .

12(d)

Grade: F.
The "proof" is given only for one real number $(x=\pi)$. Therefore, it does not prove the claim for all real numbers.

12(e)
Grade: A.

Exercises 2.2

1(b)

The set of integers whose square is less than 17 is denoted $\left\{x \mid x \in \mathbb{Z}\right.$ and $\left.x^{2}<17\right\}$.

4(b)
True. By Theorem 2.1, for any set A, we have $\emptyset \subseteq A$.

5(b)
An example of set A, B, and C satsifying $A \subseteq B, B \subseteq C$, and $C \subseteq A$ is given by $A=B=C=\{1\}$.

11

Claim 3 If $x \notin B$ and $A \subseteq B$, then $x \notin A$.
Proof. Assume $x \notin B$ and $A \subseteq B$. Suppose $x \in A$. Then, since $A \subseteq B$, from the definition of a subset, we deduce $x \in B$, contradicting our assumption. Thus, $x \notin A$. We conclude that if $x \notin B$ and $A \subseteq B$, then $x \notin A$.

Exercises 2.2

10(b)
Claim 4 If $A \subseteq B \cup C$ and $A \cap B=\emptyset$, then $A \subseteq C$.
Proof. Assume $A \subseteq B \cup C$ and $A \cap B=\emptyset$, and suppose $x \in A$. Then $x \in B$ or $x \in C$, but x can't be in B since $A \cap B=\emptyset$. Thus, $x \in C$, from which we conclude $A \subseteq C$. Therefore, if $A \subseteq B \cup C$ and $A \cap B=\emptyset$, then $A \subseteq C$.

12(d)

An example of nonempty sets A, B, and C such that $A \nsubseteq B \cup C, B \nsubseteq A \cup C$, and $C \subseteq A \cup B$ is given by $A=\{x, z\}, B=\{y, z\}$, and $c=\{z\}$.

14(b)

A counterexample to the claim "If $A \cap C \subseteq B \cap C$, then $A \subseteq B$ " is provided by $A=\{1\}$ and $B=\{2\}=C$. Then $A \cap C=\emptyset \subseteq B \cap C$, but $A \nsubseteq B$.

Exercises 2.3

1(h)
$\bigcup_{r \in \mathbb{R}} A_{r}=[-\pi, \infty) ; \bigcup_{r \in \mathbb{R}} A_{r}=[-\pi, 0]$
9
Claim 5 Let \mathcal{A} be a family of sets, and suppose $\emptyset \in \mathcal{A}$. Then $\bigcap_{A \in \mathcal{A}} A=\emptyset$.
Proof. Since $\emptyset \in \mathcal{A}, \bigcap_{A \in \mathcal{A}} A \subseteq \emptyset$, by Theorem 2.9(a). Therefore, $\bigcap_{A \in \mathcal{A}} A=\emptyset$. Thus, if the empty set is a member of a family of sets \mathcal{A}, then $\bigcap_{A \in \mathcal{A}} A=\emptyset$.

Exercises 2.4

8(e)
Claim 6 For all natural numbers n, we have the identity

$$
1^{3}+2^{3}+\cdots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}
$$

Proof. Let $S=\left\{n \in \mathbb{N}: 1^{3}+2^{3}+\cdots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}\right\}$.
(i) Observe that $1^{3}=1=\left[\frac{1(1+1)}{2}\right]^{2}$, so $1 \in S$.
(ii) Assume $n \in S$, for some natural number n. Then

$$
\begin{aligned}
1^{3}+2^{3}+\cdots+n^{3}+(n+1)^{3} & =\left[1^{3}+2^{3}+\cdots+n^{3}\right]+(n+1)^{3} \\
& =\left[\frac{n(n+1)}{2}\right]^{2}+(n+1)^{3} \\
& =(n+1)^{2}\left[\frac{n^{2}}{4}+n+1\right] \\
& =(n+1)^{2}\left[\frac{n^{2}+4 n+4}{4}\right] \\
& =\left[\frac{(n+1)(n+2)}{2}\right]^{2}
\end{aligned}
$$

Thus, $n+1 \in S$.
(iii) By the PMI, $S=\mathbb{N}$.

Therefore, for all $n \in \mathbb{N}, 1^{3}+2^{3}+\cdots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$.

