
Homework 2

Exercises 1.6

5(a)

A counterexample to the statement “For all positive integers x, x2+x+41 is a prime”is provided by x = 41,
since

412 + 41 + 41 = 41 (41 + 1 + 1) = 41 · 43,
a composite integer.

5(b)

Claim 1 For every real number x, there exists a real number y such that x+ y = 0.

Proof. Let x ∈ R. Then y = −x satisfies

x+ y = x+ (−x)
= x− x
= 0.

Therefore, for every x ∈ R, there exists y ∈ R such that x+ y = 0.

5(d)

Since 12 divides 24 = 6 · 4, but 12 divides neither 6 nor 4, the statement “For integers a, b, c, if a divides bc,
then either a divides b or a divides c”is false. (Let a = 12, b = 6, and c = 4.)

8(c)

Grade: C.
The “proof”misstates the definition of divides twice (“assume a divides b. Then a = kb for some integer

k,”etc.). This could be corrected by interchanging a and b in the two equations.

8(e)

Grade: F.
The claim “Every real function is continuous at x = 0” is clearly false since, for example, the greatest

integer function f (x) = bxc (sometimes denoted [[x]]) is discontinuous at x = 0, since limx→0 f (x) does not
exist. The proof’s error is to deduce from the true statement “every real function either is continuous at
x = 0 or is not continuous at x = 0”the false statement “every real function is continuous at x = 0 or every
real function is not continuous at x = 0.”The correct disjunction is “every real function is continuous at
x = 0 or there exists a real function which is not continuous at x = 0.”

Exercises 1.7

1(c)

Claim 2 The sum of five consecutive integers is always divisible by 5.

Proof. Let n be the least of the five consecutive integers. Then the sum is

n+ (n+ 1) + (n+ 2) + (n+ 3) + (n+ 4) = 5n+ (1 + 4) + (2 + 3)

= 5n+ 10

= 5 (n+ 2) .
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Since n+ 2 is an integer, the left-hand side is divisible by 5. Therefore, the sum of five consecutive integers
is always divisible by 5.

12(d)

Grade: F.
The “proof”is given only for one real number (x = π). Therefore, it does not prove the claim for all real

numbers.

12(e)

Grade: A.

Exercises 2.2

1(b)

The set of integers whose square is less than 17 is denoted
{
x | x ∈ Z and x2 < 17

}
.

4(b)

True. By Theorem 2.1, for any set A, we have ∅ ⊆ A.

5(b)

An example of set A, B, and C satsifying A ⊆ B, B ⊆ C, and C ⊆ A is given by A = B = C = {1} .

11

Claim 3 If x /∈ B and A ⊆ B, then x /∈ A.

Proof. Assume x /∈ B and A ⊆ B. Suppose x ∈ A. Then, since A ⊆ B, from the definition of a subset, we
deduce x ∈ B, contradicting our assumption. Thus, x /∈ A. We conclude that if x /∈ B and A ⊆ B, then
x /∈ A.

Exercises 2.2

10(b)

Claim 4 If A ⊆ B ∪ C and A ∩B = ∅, then A ⊆ C.

Proof. Assume A ⊆ B ∪ C and A ∩B = ∅, and suppose x ∈ A. Then x ∈ B or x ∈ C, but x can’t be in B
since A∩B = ∅. Thus, x ∈ C, from which we conclude A ⊆ C. Therefore, if A ⊆ B ∪C and A∩B = ∅, then
A ⊆ C.

12(d)

An example of nonempty sets A, B, and C such that A * B ∪ C, B * A ∪ C, and C ⊆ A ∪ B is given by
A = {x, z} , B = {y, z} , and c = {z} .

14(b)

A counterexample to the claim “If A ∩ C ⊆ B ∩ C, then A ⊆ B”is provided by A = {1} and B = {2} = C.
Then A ∩ C = ∅ ⊆ B ∩ C, but A * B.
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Exercises 2.3

1(h)⋃
r∈R

Ar = [−π,∞);
⋃
r∈R

Ar = [−π, 0]

9

Claim 5 Let A be a family of sets, and suppose ∅ ∈ A. Then
⋂
A∈A

A = ∅.

Proof. Since ∅ ∈ A,
⋂
A∈A

A ⊆ ∅, by Theorem 2.9(a). Therefore,
⋂
A∈A

A = ∅. Thus, if the empty set is a

member of a family of sets A, then
⋂
A∈A

A = ∅.

Exercises 2.4

8(e)

Claim 6 For all natural numbers n, we have the identity

13 + 23 + · · ·+ n3 =
[
n (n+ 1)

2

]2
.

Proof. Let S =
{
n ∈ N : 13 + 23 + · · ·+ n3 =

[
n(n+1)

2

]2}
.

(i) Observe that 13 = 1 =
[
1(1+1)
2

]2
, so 1 ∈ S.

(ii) Assume n ∈ S, for some natural number n. Then

13 + 23 + · · ·+ n3 + (n+ 1)3 =
[
13 + 23 + · · ·+ n3

]
+ (n+ 1)

3

=

[
n (n+ 1)

2

]2
+ (n+ 1)

3

= (n+ 1)
2

[
n2

4
+ n+ 1

]
= (n+ 1)

2

[
n2 + 4n+ 4

4

]
=

[
(n+ 1) (n+ 2)

2

]2
.

Thus, n+ 1 ∈ S.

(iii) By the PMI, S = N.

Therefore, for all n ∈ N, 13 + 23 + · · ·+ n3 =
[
n(n+1)

2

]2
.
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