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a b s t r a c t

A numerical method that gives accurate solutions of moving boundary problems that
model diffusion of oxygen in a medium which consumes the oxygen is presented. The
method is applied to the classic problem with a sealed surface as well as to problems
with a permeable surface. Several new analytic solutions of moving boundary problems
and of one-phase Stefan free boundary problems are presented and are used to study
approximation errors of the numerical method.
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1. Introduction

The problem of finding the region 0 < x < s(t) where the concentration c(x, t) satisfies

∂c
∂t

=
∂2c
∂x2

− 1, for 0 ≤ x ≤ s(t), 0 ≤ t ≤ T (1)

c(s(t), t) = 0,
∂c
∂x

(s(t), t) = 0, for 0 ≤ t ≤ T (2)

∂c
∂x

(0, t) = 0, for 0 ≤ t ≤ T (3)

c(x, 0) =
1
2
(1 − x)2, for 0 ≤ x ≤ 1, s(0) = 1 (4)

was introduced by Crank and Gupta [1] to model diffusion of oxygen in a medium which simultaneously consumes the
oxygen. This is a classical moving boundary problem [2]. Its importance in the theory of free and moving boundary
problems has been discussed by Ockendon in [3]. However, a great deal of uncertainty remained about accuracy of
solutions. To illustrate the problem, consider the values, at an often quoted time t = 0.16, in Table 1.

The numerical method presented here is based on the fixed step, finite difference method. The essence of the method
s in placement of the free boundary in the grid without destroying the structure of errors of the finite difference method.
he main advantage of this method is highly predictable error, which can hence be mostly eliminated by Richardson
xtrapolation. Richardson extrapolation was actually used two times on this problem to match 21 significant digits of
omputed s(t) with known asymptotic values at a small t .
Unlike the Fourier cosine series method used by Dahmardah and Mayers [10] or the integral method of Hansen and

ougaard [9], the numerical method presented here is not tied to (3), (4). Eq. (3) is indicating that the oxygen consuming
egion has a sealed surface at x = 0 and hence the region has to shrink. Replacing the sealed interface condition (3) with
prescribed concentration or a prescribed flux is, together with Eqs. (1), (2), a model of an oxygen consuming region with
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Table 1
Some published approximations of s(0.16).
s(0.16) Authors

0.6710 Gupta and Banik [4], 1989
0.6784 Ahmed [5], 2006
0.6809 Gülkaç [6], 2009
0.68128 Crank and Gupta [1], 1972
0.68247 Gupta and Kumar [7], 1981
0.68317 Miller, Morton, Baines [8], 1978
0.68337 Hansen and Hougaard [9], 1974
0.683449 Dahmardah and Mayers [10], 1983

a permeable surface. In this case the region can expand or contract, depending on what is prescribed at x = 0, and thus
he applicability of the model is greatly increased. In particular, it is shown here that the numerical method provides an
ccurate solution also when the supply of the oxygen at x = 0 is periodic.
Ignoring (3), (4), one can choose any smooth s(t) and try to find c(x, t) satisfying Eqs. (1), (2). This enabled us to find

many analytic solutions of moving boundary problems and we used some of them to study approximation errors produced
by our method. The detailed studies are included for the following selections of s(t):

1: s(t) = 2− cos(t) is used to test the numerical method’s performance over long time when the region is contracting
and expanding.

2: s(t) =
√
1 − 5t is fairly similar to the solution of the original problem (1)–(4) and the analytic solution of Eqs.

(1), (2) can be easily computed for this s(t).
3: s(t) =

√
1 − 130t3 is to the naked eye indistinguishable from the solution of (1)–(4), however, evaluation of the

corresponding analytic solution is a bit more complex.

Availability of the analytic solutions was essential in choosing an appropriate formula for the location of the free
boundary in the grid. Several candidates for the location were eliminated after producing large errors. Among them was
the Crank and Gupta [1] choice.

The analytic solutions of the moving boundary problems appear to be new. The moving boundary problems are
closely tied to the ancient Stefan free boundary problems which have very few known analytic solutions [11]. To see
the connection, note that if c is a smooth solution of the moving boundary problem (1), (2) and if u = ct then obviously

∂u
∂t

=
∂2u
∂x2

, for 0 ≤ x ≤ s(t), 0 ≤ t ≤ T . (5)

Differentiation of c(s(t), t) = 0 implies u = 0 and cxx = 1 at x = s(t). This and differentiation of cx(s(t), t) = 0 imply

u(s(t), t) = 0,
∂u
∂x

(s(t), t) = −s′(t), for 0 ≤ t ≤ T . (6)

(5), (6) is the standard part of one-phase Stefan free boundary problems. This connection between the problems was
discussed by Ockendon in [3] and was observed earlier by Schatz [12]. Therefore, all analytic solutions presented in the
next section are also analytic solutions of the Stefan free boundary problems after differentiation with respect to t . In
particular, example 1 provides a simple periodic analytic solution of a one-phase Stefan free boundary problem.

2. Analytic solutions

As observed in [1], using Eqs. (1), (2) gives

c = 0,
∂c
∂x

= 0,
∂2c
∂x2

= 1,
∂3c
∂x3

= −s′,
∂4c
∂x4

= (s′)2... at x = s(t) (7)

hich implies that if c has 5 continuous derivatives in x we have to have

c(x, t) =
(x − s(t))2

2
−

(x − s(t))3

3!
s′(t) +

(x − s(t))4

4!
s′(t)2 +

∫ x

s(t)

(x − y)4

4!
∂5c
∂x5

(y, t) dy. (8)

his will be used for our placement of the interface and it also suggests that for given arbitrary smooth s(t) we look for
he concentration c(x, t) in the form

c(x, t) =

∞∑
n=2

(x − s(t))n

n!
Fn(t). (9)

Eqs. (1), (2) imply that Fn have to satisfy

F2 = 1, F3 = −s′ (10)

F = −s′F + F ′ , for n ≥ 4. (11)
n n−1 n−2

2
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In terms of these Fn, one can express solutions of the Stefan free boundary problem (5), (6) as

u(x, t) =

∞∑
n=1

(x − s(t))n

n!
Fn+2(t). (12)

For each s(t) considered, we were able to reformulate (11) so that recursive integer computations quickly produced Fn
for values of n far bigger than needed to achieve convergence in (9) or (12). Some examples are presented below.

In a special case when, for some constant α,

s′′ = α(s′)3 (13)

q. (11) implies that

Fn = an(s′)n−2 (14)

here

a2 = 1, a3 = −1, an = −an−1 + α(n − 4)an−2 for n ≥ 4. (15)

sing (14) in (9) enables us to rewrite c(x, t) as

c(x, t) =
1

s′(t)2
W ( (x − s(t))s′(t) ), where W (z) =

∞∑
n=2

anzn

n!
. (16)

q. (15) implies that the power series for W has infinite radius of convergence. It is easy to see that W can also be obtained
as the solution of

W ′′(z) + (1 − αz)W ′(z) + 2αW (z) = 1, W (0) = W ′(0) = 0. (17)

Using g(z) = 1 − α − 2αz + α2z2 one can express W also as

W (z) =

∫ z

0

∫ u

0

g(z)g(t)
g(u)2

e(u−t)((u+t)α/2−1) dt du.

If one chooses

s(t) = 1 − t/τ with some τ ̸= 0 (18)

then (13) holds with α = 0 and (16) can be rewritten as

c(x, t) = τ 2W (z) where z = (1 − x − t/τ )/τ , W (z) = e−z
− 1 + z (19)

giving us an elementary analytic solution of (1), (2). This solution, for the corresponding Stefan problem, was found by
Goodman [13].

If one chooses

s(t) =

√
1 − t/τ with some τ ̸= 0 (20)

hen (13) holds with α = 2τ . In this case (16) can be rewritten as

c(x, t) = α2 s(t)2 W (z), z = (1/α) ( 1 − x/s(t) ) (21)

nd is a solution of (1), (2). Note that flux at x = 0 is equal to
∂c
∂x

(0, t) = c1
√

τ − t, where c1 = −2
√

τW ′(1/α), (22)

nd the initial value is

c(x, 0) = α2W ((1 − x)/α). (23)

If one chooses

s(t) =

√
1 − 130t3 (24)

hen (13) does not hold, however, the graph of (24) is to the naked eye indistinguishable from the graph of s(t) determined
y the original problem (1)–(4). Eq. (11) suggests that we define

Pn(t) = Fn(t) s(t)n−2. (25)

n is a polynomial of degree 2(n − 2) given by

P = 1, P = 195t2, P = 195t2P + (1 − 130t3)P ′
+ 195(n − 4)t2P for n ≥ 4. (26)
2 3 n n−1 n−2 n−2

3
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In this case (9) can be rewritten as

c(x, t) = s(t)2
∞∑
n=2

(
x

s(t)
− 1

)n Pn(t)
n!

. (27)

t is a straightforward exercise to obtain the recursion relation for the integer coefficients of Pn which makes it possible
o compute Pn fast and exactly.

To prove that (27) converges for every x when 0 < t < 130−1/3 define

Q2 = P2, Q3 = P3, Qn = 195t2Qn−1 + (1 + 130t3)Q ′

n−2 + 195(n − 4)t2Qn−2 for n ≥ 4. (28)

bserve that, for each n ≥ 2, Qn is a polynomial of degree 2(n − 2) with nonnegative coefficients. This implies that
′

n−2 ≤ 2(n − 4)Qn−2/t for t > 0, n ≥ 4. Hence

Qn ≤ (2/t)(Qn−1 + 3(n − 4)Qn−2) for n ≥ 4, 0 < t < 130−1/3. (29)

y induction, the coefficients of Qn are bigger or equal to the absolute values of the corresponding coefficients of Pn for
≥ 2 and therefore

|Pn(t)| ≤ Qn(t) ≤ (2/t)n
√
n! for n ≥ 4, 0 < t < 130−1/3 (30)

which proves that (27) defines an entire function of x for each 0 < t < 130−1/3.
Fig. 1 shows that the concentration c determined by (27) is fairly close to the concentration determined by the original

problem (1)–(4).

Fig. 1. Concentrations presented by the upper, dashed, curves satisfy (1)–(4). The lower curves are obtained from (27).

A good way to start studying the effect of a prescribed periodic concentration on a permeable surface is to study

s(t) = 2 − cos(t). (31)

q. (11) suggests that we write

Fn(t) = An(sin(t)) + cos(t)Bn(sin(t)) (32)

here An(z) is a polynomial of degree n− 2 in z and Bn(z) is a polynomial of degree n− 5. Set Bn = 0 for n < 5 and note
hat

A2 = 1, A3 = −z, An = −zAn−1 − zBn−2 + (1 − z2)B′

n−2 for n ≥ 4 (33)

B5 = −1, Bn = −zBn−1 + A′

n−2 for n ≥ 6. (34)

For example,

A9 = −z7 + 25z3 − 15z, B9 = −15z4 + 1. (35)

Again, it is a straightforward exercise to obtain the recursion relation for the integer coefficients of An and Bn which makes
it possible to compute Fn fast and exactly.

The surface concentration c(0, t) is graphed on Fig. 2 and it shows expected lag between when the maximum area is
oxygenated and when the maximum concentration at the surface occurs. The derivative ct = u could also represent the
temperature in water for 0 < x < s(t) bordering ice for x > s(t) at the temperature 0. Note that the temperature at x = 0
turns negative at about t = 2, but the ice keeps melting a bit longer because of the presence of an insulating layer of
water.
4
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Fig. 2. Solid curve gives concentration c(0, t) when s(t) = 2 − cos(t).

3. The numerical method

Let

xi = (i − 1)h, tn = n∆t i = 1, 2, . . . , r, r + 1, n ≥ 0 (36)

cni ≈ c(xi, tn), sn ≈ s(tn), s′n ≈ s′(tn) (37)

where h is a fixed space step size. The time step size ∆t is chosen so that ∆t/h2
≈ 0.4 and that we finish at exactly the

prescribed time.
We assume that initial values c0i are given for 1 ≤ i ≤ r + 1. The last grid point xr+1 should be always close to sn, r

may change with n. Initially the boundary is assumed to be at xr+1, hence s0 = xr+1 and c0r+1 = 0.
We use the usual discretization of (1) to obtain concentrations at the next time level

cn+1
i − cni

∆t
=

cni−1 + cni+1 − 2cni
h2 − 1 for i = 2, . . . , r. (38)

he condition on c at x = 0 determines cn+1
1 . See the note (a) below.

See the note (b) below for a derivation of

s′n+1 =
y1 − sn + xr
∆t + y21/6

where y1 =

√
2cn+1

r (39)

hich we use to approximate the location of the free boundary at the next time level

sn+1 = sn + s′n+1 ∆t and let y = sn+1 − xr . (40)

If 0.3h ≤ y ≤ 1.31h we do not change r and to complete the update we calculate

cn+1
r+1 =

(y − h)2

2
+

(y − h)3

6
s′n+1 +

(y − h)4

24
(s′n+1)

2. (41)

If y < 0.3h we decrease r by 1 and for cn+1
r+1 we use the value already calculated.

If y > 1.31h we first calculate cn+1
r+1 as in (41). Increase r by 1, decrease y by h and use (41) again.

This completes the update and gives all the details of our numerical method.
Here are some notes.

(a) cn+1
1 is prescribed by the analytic solution in Examples 1 and 3. When the flux is prescribed at x = 0, one usually
obtains cn+1

1 from (38) with r = 1 by defining

cn0 = cn2 − 2h
∂c
∂x

(0, tn).

The flux is prescribed by the analytic solution in Example 2. Setting the flux to be 0, i.e. (3) is used, for the classical
oxygen diffusion problem.
5
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(b) Here is a derivation of (39). Note that (8) implies

y21
2

= cn+1
r ≈ c(xr , tn+1) =

y2

2
+

y3

6
s′(tn+1) +

y4

24
(s′(tn+1))2 + · · · (42)

where y = s(tn+1) − xr . Hence

y21
y2

≈ 1 +
y s′(tn+1)

3
+

(y s′(tn+1))2

12
. (43)

Assuming that ys′ is small gives

y
y1

≈ 1 −
y s′n+1

6
, (44)

y ≈ y1 −
y21 s

′

n+1

6
. (45)

Using backward Euler approximation

y ≈ sn + s′n+1 ∆t − xr (46)

with (45) gives s′n+1 in (39).
(c) Dropping y21/6 in the denominator in (39) would change (40) to

sn+1 = y1 + xr . (47)

This is the approximation of the position of the boundary that Crank and Gupta used (see (4.9) in [1]). Using the
analytic solution in Example 2 below we show that this modification (47) drastically changes the approximation
error.

(d) As expected, use of implicit trapezoidal method in place of backward Euler method in (46) does not change results.
The same is true if (ys′)2 terms are kept in (44). This shows that the placement errors are small compared to the
finite difference errors. The assumption that ys′ is small implies the step size restriction

h|s′| ≪ 1 i.e.
|s′|∆t

h
≪

∆t
h2 (48)

This also explains why smaller step sizes are needed in Examples 2 and 3 than in Example 1 to achieve comparable
accuracy.

(e) No grid point is added or removed when sn+1 − xr is in the interval [0.3, 1.31]h. We call that interval no r change
window. The selections of ∆t/h2

≈ 0.4 and of the no r change window are rather arbitrary. Each example was
recalculated at least 9 times with ∆t/h2

≈ 0.4, 0.2, 0.45 and windows [0.3, 1.31]h, [0.5, 1.5]h, [0.6, 1.4]h. Note
that the third window is causing r to alternate, yet the final results do not change significantly.
More specifically, in Example 2, with h = 1/320, ∆t/h2

= 0.4 and window [0.3, 1.31]h, r was reduced 177 times
to reach t = 0.16, r was unchanged 40783 times and it never increased. When the window changed to [0.6, 1.4]h,
r was reduced 4232 times, r was unchanged 32673 times and r increased 4055 times, however, the values of
c(0.2, 0.16) and s(0.16) remained unchanged (up to the displayed accuracy). Using the window [0, 1]h is not a good
idea because (39) would require calculations of

√
2cn+1

r as cn+1
r → 0 and those values may become negative due

to numerical errors. Change of ∆t/h2 changes the approximation error and a specific example is given in Table 7.
(f) At fixed (x, t) and fixed ∆t/h2, the approximation errors of both c(x, t) and s(t) are roughly proportional to h2.

Richardson extrapolation (eliminating h2 error terms) is shown to work very well in all cases. The second Richardson
extrapolation (eliminating h4 error terms) is shown to work well when solving the original problem using extended
precision.

3.1. Example 1

We prescribe

s(t) = 2 − cos(t), 0 ≤ t ≤ 7

and evaluate analytic c(x, t) that satisfies Eqs. (1), (2) as described at the end of Section 2. Let us call this analytic solution
Ac(x, t). Then we use our numerical method to solve (1), (2), with boundary condition (3) replaced by c(0, t) = Ac(0, t)
and with initial condition (4) replaced by c(x, 0) = Ac(x, 0). The numerical method gives us the approximate c(x, t) and
the approximate s(t).

Fig. 3 shows that s obtained by the numerical method traces the free boundary through expansion, contraction and
new expansion. The concentration c obtained by the numerical method is even closer to the exact values as Fig. 4 shows.

Table 2 focuses on convergence at one point x = 0.5, t = 7. The error, the difference between the analytic solution and
approximation, is denoted by ER. Note that the errors are (almost) proportional to h2 and hence can be (almost) eliminated
6
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Fig. 3. s(t) = 2 − cos(t) on the left and on the right errors of numerical approximations of s(t) when h = 1/160.

Fig. 4. Concentration c(x, 7) on the left and on the right errors of numerical approximations of c(x, 7) when h = 1/160.

he usual way (Richardson extrapolation). Note that approximate c is accurate to 5 digits in Table 2, but Richardson
xtrapolation gives 9 correct digits. Errors of s are a bit less predictable, and using Richardson extrapolation gives only
hree more correct digits.

Table 2
Approximations of c(0.5, 7) and s(7) depending on h when s(t) = 2− cos(t). At h = 0 exact values are given. Rc is the Richardson extrapolation for
c , ERc is the error of c , similarly for Rs, ERs.
h c(0.5, 7) Rc ERc/h2 s(7) Rs ERs/h2

1/40 0.3318063127 0.3318226732 0.026176 1.246066234 1.246097418 0.0504
1/80 0.3318185826 0.3318226726 0.026176 1.246089837 1.246097704 0.0506
1/160 0.3318216501 0.3318226725 0.026177 1.246095763 1.246097739 0.0507
0 0.3318226726 1.246097746

3.2. Example 2

We prescribe

s(t) =
√
1 − 5t, 0 ≤ t ≤ 0.2

like in (20) with τ = 0.2. We find W determined by the ODE (17) with α = 0.4 (and in (22) c1 = −0.64...) and then
we use our numerical method to approximate c(x, t) and s(t) that are determined by the moving boundary problem
(1), (2), (22), (23).

This example is much closer to the original problem (1)–(4) and has a simple analytic solution (21). Fig. 5 show how
well the numerical method recovers s(t). Concentrations are approximated even better as Fig. 6 shows.
7
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Fig. 5. s(t) =
√
1 − 5t on the left and on the right errors of numerical approximations of s(t) when h = 1/320.

Fig. 6. Concentration at t = 0.16 on the left, s(t) =
√
1 − 5t . Approximation errors on the right when h = 1/320.

The essential part of our numerical method is the placement of the interface in the grid (39), (40). To see what happens
ith the approximation errors when our placement is replaced with (47), which was used by Crank and Gupta [1], consider
ig. 7 and compare it to Fig. 5.

Fig. 7. Errors of numerical approximations of s(t), h = 1/320, when a Crank and Gupta [1] position placement (47) is used.

Table 3 focuses on errors at the point x = 0.2, t = 0.16. As expected, Richardson extrapolation significantly improves
ccuracy.

Table 3
Approximations of c(0.2, 0.16) and s(0.16) depending on h when s(t) =

√
1 − 5t . At h = 0 exact values are given. Rc is the Richardson extrapolation

for c , ERc is the error of c , similarly for Rs, ERs.
h c(0.2, 0.16) Rc ERc/h2 s(0.16) Rs ERs/h2

1/80 0.0199679650 0.0199655739 −0.015342 0.44717888 0.44721131 0.2222
1/160 0.0199661674 0.0199655682 −0.015349 0.44720459 0.44721316 0.2304
1/320 0.0199657177 0.0199655678 −0.015351 0.44721136 0.44721361 0.2290
0 0.0199655678 0.44721360
8
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3.3. Example 3

We prescribe

s(t) =

√
1 − 130t3

nd use (27) to evaluate analytic c(x, t) that satisfies Eqs. (1), (2). Let us call this analytic solution Ac(x, t). Then we use our
umerical method to solve (1), (2), with boundary condition (3) replaced by c(0, t) = Ac(0, t) and with initial condition (4)

replaced by c(x, 0) = Ac(x, 0). The numerical method gives us the approximate c(x, t) and the approximate s(t).
Fig. 8 shows how the approximate s(t) obtained by the numerical method compares to the exact solution. Concentra-

tions are approximated even better as Fig. 9 shows.

Fig. 8. s(t) =
√
1 − 130t3 on the left and on the right errors of numerical approximations of s(t) when h = 1/640.

Fig. 9. Approximation errors of c(x, 0.16) when s(t) =
√
1 − 130t3 and h = 1/640. See Fig. 1 for c(x, 0.16).

Table 4 focuses on errors at the point x = 0.2, t = 0.16. As expected, Richardson extrapolation improves accuracy.
To estimate the size of the approximation error of s(0.16), without knowing the exact value, consider the variation of
ERs/h2

≈ 0.0033. This suggests uncertainty of the approximation s(0.16) to be 0.0033h2
≈ 0.8 × 10−8, which is exactly

orrect as a comparison to the exact solution shows. One can use Richardson extrapolation, in place of the exact solution,
o estimate ERs and if this is done with data in the Table 4 the uncertainty would be estimated to be 2 × 10−8.

Table 4
Approximations of c(0.2, 0.16) and s(0.16) depending on h when s(t) =

√
1 − 130t3 . At h = 0 exact values are given. Rc is the Richardson

extrapolation for c , ERc is the error of c , similarly for Rs, ERs.
h c(0.2, 0.16) Rc ERc/h2 s(0.16) Rs ERs/h2

1/80 0.03958315767 0.03958437764 0.007838 0.68370193 0.68375790 0.3355
1/160 0.03958407593 0.03958438202 0.007843 0.68374065 0.68375355 0.3506
1/320 0.03958430571 0.03958438230 0.007845 0.68375098 0.68375442 0.3445
1/640 0.03958436316 0.03958438231 0.007845 0.68375349 0.68375433 0.3478
0 0.03958438232 0.68375434
9
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4. The classical problem

When applying the numerical method to the classical problem (1)–(4) the errors behave the same way as in previous
xamples. To illustrate this at one point consider Table 5 and note similarity to Tables 2, 3, 4 where the analytic solution
s known. Note also how close the values of s(0.16) in Table 4 are to those in Table 5.

Table 5
Approximations of c(0, 0.16) and s(0.16) depending on h for the classical problem. Rc is the Richardson extrapolation for c , ERc is the error estimate
f c and similarly for Rs and ERs. ∆t/h2

= 0.4, no r change window [0.3, 1.31]h as in Tables 2, 3, 4.
h c(0, 0.16) Rc ERc/h2 s(0.16) Rs ERs/h2

1/80 0.04882717112 0.04882274000 −0.028359 0.68343510 0.68345694 0.1398
1/160 0.04882384648 0.04882273826 −0.028370 0.68344540 0.68344883 0.0879
1/320 0.04882301524 0.04882273815 −0.028373 0.68344869 0.68344979 0.1124
1/640 0.04882280742 0.04882273815 −0.028374 0.68344943 0.68344967 0.1003

For the error estimate we use the difference between the Richardson extrapolation and the approximate value, which
is the same as 1/3 of the difference between successive approximations. Just like in the previous examples, the error
estimates are almost proportional to h2 which supports the use of the Richardson extrapolation.

Observe that the variations of ERs/h2 in Table 5 suggests uncertainty 0.01h2
≈ 2 × 10−8 of Rs, the Richardson

extrapolation for s(0.16), i.e. the last two digits of the correct s(0.16) should be between 65 and 69. To get good results
near the extinction time we needed to decrease step size because of (48) and those calculations made it clear that the
last two digits should be 68.3, i.e. s(0.16) = 0.683449683. Richardson extrapolations of c(0, 0.16) in Table 5 converged,
so we assume they converged to the correct c(0, 0.16) as they did in Tables 2, 3, 4. Looking at the effect of variations
ERc/h2 confirms this as do calculations with smaller step sizes.

Each reference value in Table 6 is a product of an analysis like above. At small times and small step sizes second
Richardson extrapolation was used and is described in the next section. To get higher accuracy one simply needs to
decrease the step size (and perhaps increase calculation precision).

The values of s(t), 0 ≤ t ≤ 0.1974, are plotted in Fig. 10 along with the values of c(x, 0.1974). The graph of c(x, 0.16)
is given in Fig. 1.

Fig. 10. s(t) for 0 ≤ t ≤ 0.1974 on the left. On the right c(x, 0.1974) using h = 0.0005.

Note that in Table 1 the estimate by Dahmardah and Mayers [10] stands out. Accuracy in subsequent publications is
ignificantly lower and in some more recent ones, like [5,6,14,15], there is not even a mention of [10].
Looking closer at other values obtained by Dahmardah and Mayers we see that they all agree with values given in

able 6 except for s(t) at the following times. At t = 0.1, 0.16, 0.18, 0.19 the last digit of s(t) in [10] is incorrect and at
t = 0.1974 the last two digits are not correct. They [10] do mention that they change their method for t > 0.19. Table 6
gives roughly three times as many correct significant digits for c(0, t) as [10].

The agreement between Dahmardah and Mayers [10] values and our values strongly validates both methods since the
methods are totally different. Here are some advantages of our method:

• The boundary condition (3) is essential for Dahmardah and Mayers [10]. It is shown that our method produces
accurate results also when c(0, t) or cx(0, t) is prescribed.

• Our method is far simpler, it uses the standard finite difference method with a good formula for placement of the
interface.

The extinction time appears to be 0.19743499. This is based on the behavior of c(x, t) and s(t) as shown in Figs. 11, 12
hat were obtained by using our numerical method with h = 1/8000 and 30 digits precision. Using the four times larger
tep-size increases the estimate only by 1 × 10−8.
10
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Table 6
Solution of (1)–(4).
t c(0, t) s(t)

0.01 0.38716208329044874 0.999999999996925080411
0.02 0.34042308783942693 0.99999885336981993
0.03 0.304558995238832050 0.99991078825844
0.04 0.274324166581016006 0.999179863682
0.05 0.2476867478222685186 0.996792863038
0.06 0.2236046813091930066 0.99180215099
0.07 0.2014589459431846656 0.98353874647
0.08 0.1808462632897706421 0.97155001835
0.09 0.1614866723976611653 0.9554876666
0.10 0.14317670355494983665 0.9350171608
0.11 0.1257634448253636480 0.9097481959
0.12 0.1091292263919269625 0.8791705433
0.13 0.093182165146348042 0.8425765432
0.14 0.077850211527254121 0.7989438994
0.15 0.063077525494294867 0.746728768
0.16 0.048822738147725998 0.683449683
0.17 0.035059423244806462 0.604712309
0.18 0.02178093410019438 0.501330379
0.19 0.0090208775991420 0.346001505
0.1974 0.0000397192000 0.027829

Fig. 11. The line on the left is fitted to the last 10 points of c(0, t) that we calculated. The graph on the right shows the same line with the last
500 points.

Fig. 12. The line on the left is fitted to the last 10 points of s(t) that we calculated. The graph on the right shows the same line with the last 500
oints.

. Small time solution for the classical problem

A concern was expressed [1] that numerical methods based on finite difference methods are liable to give inaccurate
olutions in the neighborhood of the surface for short times due to discontinuity of the gradient of the imposed initial
oncentration. The following comparison of our results to asymptotic behavior of the solution for short times shows
hat this concern is not justified. Furthermore, the 21 digit agreement with known asymptotic values provides another
onfirmation of the numerical method presented here.
11
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Crank and Gupta [1] provide approximation

c(0, t) ≈
1
2

− 2

√
t
π

for small t. (49)

hey also observed that integration of (1) implies

s(t) = −

∫ s(t)

0

∂c
∂t

(x, t) dx

which, together with their Laplace approximation of c(x, t) (all n = 0 terms), implies

s(t) ≈
1

√
π t

∫ s(t)

0

(
e−

x2
4t − e−

(2−x)2
4t

)
dx for small t

nd this simplifies [9] to

s(t) ≈ 2 erf
(

1
√
4t

)
− 1 for small t. (50)

Since s(0.01) is very close to 1 we did calculations with 25 (and more) digits of precision instead of the usual 16
igits. Table 7 presents the same kind of a portrait of convergence at a particular point as do the above Tables 2, 3, 4, 5.
owever, due to extended precision calculations we can extract more info from Table 7 by using the second Richardson
xtrapolation to eliminate h4 terms in the error as follows

ER2h =
Rh − R2h

15
, R2h = Rh + ER2h.

This is done for c and for s in Table 8.

Table 7
a stands for 0.387162 and b stands for 0.99999999999692. Same labels as in Table 5. In the last row, c(0, 0.01) is calculated by (49) and s(0.01) is
btained from (50). The last two rows were used to obtain ER values in the last row. Calculations were done with Mathematica $MinPrecision =

5, ∆t/h2
= 0.2. ERc is 3 times smaller and ERs is about 6 times larger when ∆t/h2

= 0.4.
h c(0, 0.01) Rc ERc/h2 s(0.01) Rs ERs/h2

0.001 a50643360612 a08328656958 −0.4231470 b8800269 b5088289 −3.712 × 10−9

0.0005 a18907605626 a08329020631 −0.4231434 b6010745 b5080904 −3.719 × 10−9

0.00025 a10973683926 a08329043359 −0.4231425 b5313018 b5080442 −3.721 × 10−9

a08329044874 −0.4231422 b5080411 −3.722 × 10−9

Table 8
The second Richardson extrapolation (R2) applied to Rc and Rs values in Table 7.
h Rc R2c ER2c/h4 Rs R2s ER2s/h4

0.001 a08328656958 b5088289
0.0005 a08329020631 a08329044876 3.8792 b5080904 b5080412 −7.88 × 10−6

0.00025 a08329043359 a08329044874 3.8789 b5080442 b5080411 −7.89 × 10−6

The values at t = 0.01 in Table 6 are obtained from Table 8. Note that variation of ER2s/h4 suggests uncertainty of
2s to be 10−8h4

≈ 4 × 10−23, so, the last displayed digit of s(0.01) should be correct. Same for c(0, 0.01). Note that all
21 digits for s(0.01) and all 17 digits for c(0, 0.01) are equal to asymptotic values given by (49), (50). This shows that our
method works very well also for short times when solving the classical oxygen diffusion problem in an absorbing media
with a sealed interface.

At t = 0.02 our value of the concentration still agrees with (49) but our 11th digit of s differs from the asymptotic
value given by (50). At t = 0.03 the 17th digit of our value of the concentration differs from (49) and our 9th digit of s
iffers from the asymptotic value given by (50).

. Conclusions

For many smooth s(t) we obtained analytic solutions of the moving boundary problem (1), (2) and some examples are
resented in Section 2. These solutions are also solutions of the Stefan problem (5), (6) after differentiation with respect
o t .

These solutions can be used to test numerical methods developed for moving boundary problems and Stefan problems.
y applying the numerical method presented here for solving moving boundary problems to problems with known
nalytic solutions we demonstrated that our numerical method provides accurate solutions with very predictable
pproximation error.
By applying the numerical method to the classical oxygen diffusion problem in an absorbing media with a sealed

nterface we obtained a solution that is significantly more accurate than other published solutions.
12
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The numerical method can be easily applied also when the interface is not sealed at x = 0. In particular, it was shown
that it provides an accurate solution also when the interface is permeable and the supply of oxygen is periodic.

Data availability

Data will be made available on request.
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