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A Fourier-series Solution of the Crank-Gupta Equation
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The Crank-Gupta equation is one of the simplest examples of a moving boundary
problem in a partial differential equation; it has been used as a test problem by a
number of different authors. We show how an accurate solution may be obtained by
expansion in a Fourier series.

1. Introduction

THE PROBLEM of oxygen diffusion in one dimension is one of the simplest examples of
a parabolic equation involving a moving boundary; it has been used as a test case in
the development of several new methods for such problems. A recent summary of
methods and results is given by Furzeland (1977); the original problem was
introduced by Crank & Gupta (1972). In this paper we show how accurate results
may be obtained by expanding the solution in a Fourier series.

We wish to determine C(x, t), the solution of

dC _ d2C
i nO^x^s ( t ) , t5*0, (1)

with the initial conditions

C(x,0) = i ( l - x ) 2 , 0 < x < l , (2)

s(0) = 1 (3)

and the boundary conditions

^ = 0 onx = 0, (4)
ox

C = 0 and j - = 0 on JC = s(t). (5)

2. Solution in Series

If the moving boundary conditions were replaced by a fixed boundary at x = 1,
with the simple condition dC/dx = 0 on x = 1, we could immediately write the
classical solution of the problem as the Fourier series in the x variable:

C(x,t) = -t+iA0+ f. Akcosknxe-k2'2' (6)
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where the coefficients Ak are the Fourier coefficients of the initial value C(x, 0):

C{x, 0) = i{l-x)2 = lA0 + f , A k cos knx, 0 < x < l . (7)
I

A simple calculation shows that

4k=TTT ^ ^ > 0 , (8)
k n

This form of the solution suggests that we represent the solution of the Crank-
Gupta problem in the form

m knx
C(x,t)=-r+i»o(0 + I «>*(«) cos— (9)

where s(t) is the position of the moving boundary at time t, and the functions vk(t)
are to be determined. This function clearly satisfies the boundary condition
dC/dx = 0 on x = 0 and x = s{t). It will also satisfy the initial condition on t = 0
provided that

vk{0) = A k , (10)

and it will satisfy the second condition on the moving boundary, C(t, s[t)) = 0,
provided that

i^ + E(-l)\=( forallr>0. (11)
i

Finally we must also require that C(x, t) satisfies the differential equation. By direct
substitution we find that this requires

" knx " knx . knx " k2n2 knx
- l + i i / 0 + Z«4cos + ldvk—j-s'sin = -2,o t—j-cos 1 (12)

1 S i S S 1 ^ ^

where i/k and s' denote derivatives with respect to t.
In this equation we may multiply by cos (rnx/s) and integrate over x, from 0 to s.

Using the simple orthogonal properties of the functions sin x and cos x, we easily
obtain the system of ordinary differential equations

^ > . « - , 03,

»o= I (-1)*—K"

By differentiating Equation (11), which was obtained from the second condition on
the moving boundary, we obtain

which together with (14) gives an equation for s*.
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SOLUTION OF THE CRANK-GUPTA EQUATION 83

Using the notation

Ik1

r ™ I
r+k

we thus obtain a system of differential equations:

J = Ps,

</0 = 2 P X ( - l ) V (17)

k - l

which are to be solved with the initial conditions

MO) = i
vk(0) = 2/k2n2, fc>0, (18)

s(0)=L

This constitutes an infinite system of equations, but if the Fourier series converges
rapidly we can solve a finite segment of the equations, by assuming that vk is
negligible for k> N. We have obtained useful accuracy with N about 20. Notice
that for values of r of this size the coefficient of vr in the equation for i/r is negative
and fairly large. For example, when s = 1, we find that Dl0 is about —1000;
moreover the value of s decreases to zero, and so each of the coefficients D, remains
negative and increases in magnitude. The equations are therefore stiff; we have used
a readily available version of Gear's algorithm which has given an accurate solution
without difficulty, and it appears that the equations are not so stiff as to cause any
serious problem.

For small values of t the series converges rather slowly, as can be seen from the
values of the coefficients when t = 0, given in (18). We therefore begin the numerical
integration from a positive t0, using as a starting condition the approximation given
by Crank & Gupta (1972)

sito) = 1, vo(to) = | , vr(t0) = vJit0) e-'^'o.

This gives very good accuracy for t0 about 0-01, where the Fourier series now
converges rapidly.

3. Critical Value of t

As t increases, the boundary moves to the left, so that s decreases. The boundary
reaches s = 0 at a time t* shortly before t = 0-2, and at this point the differential
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equations become singular. As there is some interest in investigating the behaviour
of the solution near this point, we must make a change of variables. We first write

= -logs (19)

so that as we approach the singular point, y tends to infinity. It is then convenient
to rewrite the equations in terms of y as independent variable; at the same time we
write

wr = vjs1,

and obtain the new system of equations

(20)

dy

dwr

(21)

We can then continue the use of Gear's algorithm to solve the original Equations
(17) up to a time about t = 0-19. We then compute the values of y and w, at this
point, and use them as starting condition for the solution of the transformed system
(21), again by Gear's algorithm. As y increases we find that <j> and wr tend quite
rapidly to constant limits, and t tends to the critical value t* at which the solution
becomes singular.

TABLE 1

t

001
002
003
004
005
O10
0.12
014
016
018
019
0195
O196
O197
O1972
01974
019743
0197434

C(0,1)

0387162
0340423
0304559
0274324
0247687
0143177
0109129
0077850
0048823
0021781
0009021
0002883
0001685
0000491
0000274
0000040
0000005
OOOOOOl

This work

1O00000
O999999
0999911
0999180
O996793
0935018
0879171
0798944
O683449
0501329
0346000
0208453
0163125
0093054
0069437
0027818
0010789
0004838

s(t)

Hansen &
Hougaard (1974)

lOOOOO
lOOOOO

099918
099679
093501
087916
079891
O68337
050109
034537
020652
016266
009175
006708
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4. Numerical Results

We have performed a number of calculations, varying the parameters involved in the
numerical algorithm, and the number of terms, N, in the Fourier series. The results
show very good consistency, and the values given in the table are believed to be
correct to the number of figures quoted.

The table gives the values of C at x = 0, and the position, s, of the moving
boundary, for various values of t. Our results are in generally good agreement with
those of Hansen & Hougaard (1974). The values of C(0, t) agree up to t = 0195,
which is as far as the latter tabulation extends. As shown in the table, there is a
small discrepancy in the position of the boundary, which increases as the critical
point is reached. Our calculations give the critical value as t* — 0197434.

5. Conclusion

The method of expanding in Fourier series has given very accurate results in this
particular problem. This is a rather favourable case, owing to the simple conditions
specified on the moving boundary. It is not yet clear how satisfactory the technique
may be when applied to more general moving-boundary problems.
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