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A Moving Boundary Problem Arising from the Diffusion of Oxygen
in Absorbing Tissue
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Approximate analytical and numerical solutions of a partial differential equation are
obtained which describe the diffusion of oxygen in an absorbing medium. Essential
mathematical difficulties are associated with the presence of a moving boundary which
marks the furthest penetration of oxygen into the medium and also with the need to
allow for an initial distribution of oxygen through the medium.

1. Introduction

THE CLASSICAL moving-boundary problem in heat flow which has been most thoroughly
studied is one in which a change of state occurs on the moving interface. The velocity
of the boundary is determined by the physical requirement that the latent heat re-
quired for the change of phase must be supplied or removed by conduction. Such
problems are often referred to as “Stefan problems™ after J. Stefan who published a
paper on the subject towards the end of the nineteenth century. There is an extensive
literature dating from that time. An excellent survey is given by Muehlbauer &
Sunderland (1965).

The present paper concerns a problem arising from the diffusion of oxygen in a
medium which simultaneously consumes the oxygen. A moving boundary is an essen-
tial feature of this problem also, but the conditions which determine its movement are
different. Not only is the concentration of oxygen always zero at the boundary but, in
addition, no oxygen diffuses across the boundary at any time. There is thus no
relationship which contains the velocity of the moving boundary explicitly. A combina-
tion of analytical and numerical methods are applied to this problem and the results
are finally expressed in the form of an approximate polynomial expression.

The work is of immediate interest in medical research concerning the uptake of
oxygen by tissue and the problem was suggested to us by Dr N. T. S. Evans at the
Medical Research Council’s Experimental Radiopathology Unit, Hammersmith
Hospital.

2. Statement of the Problem

First, oxygen is allowed to diffuse into a medium, and some of the oxygen is
absorbed by the medium, thereby being removed from the diffusion process. The
concentration of oxygen at the surface of the medium is maintained constant. This
first phase of the problem continues until a steady-state is reached in which the oxygen
does not penetrate any further into the medium. The supply of oxygen is then cut off
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and the surface is sealed so that no further oxygen passes in or out. The medium
continues to absorb the available oxygen already in it and as a consequence the
boundary marking the furthest depth of penetration in the steady-state, recedes
towards the sealed surface. The major problem is that of tracing the movement of the
boundary during this phase and of determining the distribution of oxygen through the
medium as a function of time. A secondary problem in the application of numerical
techniques is associated with the discontinuity in the derivative boundary condition
which results from the abrupt sealing of the surface.
The diffusion-with-absorption process is represented by the partial differential
equation
2
oc_ poc
oT ox?
where C(X, T) denotes the concentration of the oxygen free to diffuse at a distance X
from the outer surface of the medium at time 7, D is a constant diffusion coefficient
and m, the rate of consumption of oxygen per unit volume of the medium, is also
assumed constant.
The problem has two parts:—

-m, 2.1

(a) Steady-state solution

During the initial phase, when the oxygen is entering through the surface, the
following boundary condition is satisfied,

C=C, X=0 T=0, 2.2)
where C, is a constant,

A steady-state is achieved in which the concentration at every point in the medium
becomes independent of time, i.e. dC/0T = O everywhere, when the gradient of con-
centration becomes zero at the point, X, in the medium where the concentration
itself is zero. No oxygen can then diffuse beyond this point and we have the conditions,

C=0, X=X, (2.3)

ac
— =0, X=X, 2.4
= =0 X>X @4)

for T = 0.
The steady-state is defined by a solution of
0°C

Daz—m =0 2.5)

which satisfies the boundary conditions (2.2), (2.3) and (2.4). This solution is readily
seen to be

C= %(x—xo)z, (2.6)

X, = \/(2’; C°) . Q.7

where
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(b) Moving Boundary Problem

After the surface X = 0 has been sealed, oxygen which is already in the medium,
in the range 0 < X < X,, continues to be consumed. Consequently, the point of zero-
concentration which was initially given by (2.7) recedes towards X = 0. Let the
position of this point at any time, 7, be represented by X(7’). The second phase of the
problem can be expressed by the equation,

ac 62
== XS ) .
5T =D_— Xz ™ 0 X < Xo(T) 2.8)
with the following conditions,
o _ X=0 T=20 29
aX - b - ’ = ’ ( . )
C—aC—O X = XT) T=0 2.10
=20 X=X(D, T30 (2.10)
c=%@-nﬁ 0<X<X, T=0, (2.11)

where T = 0 is the moment when the surface is sealed. Making the changes of var-
iables,
X D D C
= — t = —2-T, c = 3 =
Xo X5 mX; 2C,
and denoting by x4(t) the value of x corresponding to Xy(T'), the above system is
reduced to the following non-dimensional form,

dc  d*c
— = < x < x0(1), 2.
at axz 19 0 x xO() ( 12)
with the corresponding boundary conditions,
i)
-0, x=0 =0 (2.13)
ox
dc
c=—=0, x = xo(t), t=0, (2.19)
dx
c=31-x? 0<x<1l, =0, (2.15)

where x4(0) = 1. The subscript ¢ in x,(t) is dropped in the following discussions.

3. Short-time Solution

The condition (2.15) shows that in the steady-state a negative unit gradient of con-
centration exists at the surface. When the surface is sealed a zero surface gradient is
instantaneously imposed in accordance with (2.13). Because of this discontinuity in
the surface-gradient numerical methods based on finite differences are liable to give
inaccurate solutions in the neighbourhood of the surface for shorttimes. There will
be an interval of time, however, before the disturbance at the surface has an effect on
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the solution in the neighbourhood of x = 1 to any specified degree of accuracy. Thus
an analytical solution can be obtained which will provide a suitable approximation
for small times, by assuming that the boundary, x, = 1, does not move initially.
The solution of (2.12) subject to the initial condition (2.15) and the boundary
conditions (2.13) and
c=0, x=1, 120 a3.n
is found by using Laplace Transforms to be

) t\ 2 . 2n+2-x\?
e(x, 1) = 3(1-x) +2\/(7—T) ngo(_l) l:exp{—<_2\/_t_) }_
2 -2 -—
exp{—(zzn—:;:c) }]- T (-1ri@n+2-x) erfc(zn;_jt ")—
(2Zn+x) erfc( 2\/ )} 0<x<1}, t=0. 3.2)

Values of ¢(x, ¢) have been computed for x = 0 (0-05) 1.0. The typical curves of Fig. 1
demonstrate the general shape and confirm that the concentration has not changed
within the accuracy of plotting near the boundary at x = 1.

05
=0

t=003
03 N\
t=0-05
_\\\
02

ol

Concentration ¢

S
~ |

0 02 04 06 08 10
Distance x

FiG. 1. Concentration distributions for ¢ < 0-05 before the boundary moves within the accuracy of
plotting.

In computing c(x, t) from (3.2), it is seen that the convergence of the infinite series
is very rapid, so that the terms corresponding ton = 0 are sufficient over an appreciable
interval of time, when the terms less than 10~ are neglected. Furthermore, for0 < r <
0-020, the second and the third series can be ignored to obtain an accuracy nowhere
worse than 10~%. The concentration for 0 < 7 < 0-020 can therefore be represented
fairly accurately by the approximate expression,

o(x, 1) = 3(1— x)2—2\/(n) CXP{ (23/:)2} o e'f°(2\/t>

O0<x< 1. 3.3)
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4. Numerical Method

Once the boundary has started to move we resort to numerical methods of solution.
Several methods have been proposed. Douglas & Gallie (1955) introduced a method
of variable time step, keeping the size of the space mesh fixed. Murray & Landis (1959)
used a variable space mesh and kept the time step fixed. Ehlrich (1958) employed
implicit formula at the intermediate points and Taylor’s expansions near the moving
boundary in both time and space directions. Lotkin (1960) made use of subdivided
differences while Crank (1957) suggested a three-point Lagrange interpolation
formula near the moving boundary.

In the present analysis, the concentrations at the intermediate points between the
two boundaries have been calculated by using simple explicit finite-difference for-
mulae. Near the moving boundary a Lagrange-type formula has been used, as suggested
by Crank (1957) because of convenience in calculation. The location of the moving
point itself is determined by a Taylor’s series. The method is described below in detail.

The whole region, 0 < x < 1, is subdivided into M intervals each of width éx and
we take x, = réx where 0 < r < M(Mdx = 1).

4.1. Concentrations at the Intermediate Points

We assume that the concentrations at each of the grid points, at the jth time level
are known and the position of the moving boundary at that time is somewhere in the
rth interval between x,_, and x,, given by x, = (r— 1)éx+ p’dx where p’ is positive and
usually less than one, and is also known (Fig. 2). Then the concentrations at the

8x pléx
H
H
] )
)
[}
[
:a
:
it —
éx p'*ox E
x=0 r=2 r—1 r x=1
FiG. 2.

(j+ 1)th time level, up to and including the mesh point r—2 can be calculated using
the well known explicit formulae,

c{;‘“—d, . .

5 ol b “D
citl__ef 1 X 3 .
ka =(5_x).i(c,1‘_1—2ci+ci+l)—l, 4.2)

for k = 1,2, ..., (r—2), where 8¢ is the size of the time-step and ¢/ denotes the con-
centration at point kéx at time jir.
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4.2. Concentration in the Neighbourhood of the Moving Boundary

Let f(a,), f(a,) and f(a,) be any function values corresponding to the arguments
ay, a; and a,. A three-point Lagrangian interpolation formula can be written as

(x—a,)(x—ay) (x—ao)(x—a,) (x—ag)(x—a,)

79" Gaao=ay’ O = aa—a) @ magm=ay
Differentiating the above twice with respect to x, we get
PI___ @) 2@ 2f (@) @3

ax® (ao—aXao—az) (a,—ao)a,—a;) (a;—apla,—a,)’
Application of (4.3) at the points (r—2)dx, (r—1)6x and the moving point, and
remembering the boundary condition (2.14), gives,

a_zc 2 (c,_2 c,_l) )
ax2 (x)\1+p p )
and the appropriate finite-difference replacement at the point (r— 1)dx leads to
ity 2 2( cz'z.—i'.—l)—l, (4.4)
ot é)\1+p p
an explicit expression for ¢j*}.

4.3. Position of the Moving Boundary

In order to determine the location of the moving boundary, x,(r), we first derive
some extra conditions there. Differentiation of (2.14) with respect to ¢, gives

dc dc dx, oc
Fri (a),‘:xo(ﬁ) + (a—t'>x e = 0. 4.5)

By using (2.12) and (2.14) in (4.5) we obtain

d%c
a—x-z =1, X = Xg. (46)
Differentiating (2.12) with respect to x, we get
¢ 9%
ge _9¢. 4.7
oxot  ox® “47)

Again, we have from (2.14)

4066\ dxy (3%)
di\ox)\ox? )., dt "\odx)._.,

and hence using (4.6) and (4.7) in the above and assuming that order of differentiation
by x and ¢ can be interchanged we obtain
e dxg

ax®  dt’

dc _ (dxo\* d°c  d’x, (dx,\} .
ax* \ar) &~ Ta \a) ¢

X =xO,

Similarly
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Now, the Taylor’s series for ¢,_, obtained by expanding about the moving point can
be written as
a 9% 33
C(xo)—péx(—c ) H(prSX)z(—g) —3(pbx) s+ ...
ax X =X0 x ax

i

c
-1
r ax%) .

= X0

I

1(pbx)? + X(pdx)* % + ... (4.8)

Provided the boundary is not moving too quickly the first term of the series provides a
reasonable approximation and gives
2c,
p= \/_—(;' ), (4.9)
X

We shall see later that the boundary moves faster towards the end of the process and
we then replace the finite-difference solution by an analytical expression.

When c/*! has been calculated from (4.4), the relation (4.9) gives the position of
the moving point at the (j+ 1)th time level.

4.4. Moving Boundary Crossing a Mesh Line

As c,_, goes on decreasing we look for either of the two possibilities (i) ci*! < Oor
(ii) ¢j*! > ¢J_,. With regard to the first condition it is physically impossible for ¢,_,
to go negative. When the second condition is detected, it shows that the numerical
process has become unstable. A stability analysis is presented in the appendix to this
paper. When either of the two conditions arises, the (r— 1)th mesh point is given up
at the (j— )th time level and onwards. The Lagrange formula is then applied to

TABLE 4.2

Comparison between analytical and numerical (8x = 0-05) solutions for small times. For each time the
upper entry corresponds to the analytical solution and the lower entry to numerical solutions. Tabulated
values are 10%¢c

X 00 o1 02 03 04 05 06 07 08 09

464318 404606 320000 245000 180000 125000 80000 45000 20000 5000

0-001 460000 405000 320000 245000 180000 125000 80000 45000 20000 5000
0-002 449538 401927 319973 245000 180000 125000 80000 45000 20000 5000
452000 405000 320000 245000 180000 125000 80000 45000 20000 5000
0003 438197 397811 319760 244998 180000 125000 80000 45000 20000 5000
437600 398000 320000 245000 180000 125000 80000 45000 20000 5000
0-004 428636 393157 319212 244981 180000 125000 80000 45000 20000 5000
429600 394760 320000 245000 180000 125000 80000 45000 20000 5000
0-005 420213 388238 318302 244924 179999 125000 80000 45000 20000 5000
420320 389128 318976 245000 180000 125000 80000 45000 20000 5000
0-010 387164 365073 309950 243276 179804 124986 79999 45000 20000 5000
387497 365668 310719 243726 179927 125000 80000 45000 20000 5000
0-050 247691 240179 218845 186955 148992 109636 72962 42030 18856 4628

247841 240358 219089 187264 149327 109945 73208 42199 18955 4673
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recalculate ¢/_, using a new value of p at the (j— 1)th time which is taken to be the old
value of p/~! plus one. This process is continued until there are at least two mesh
points including the sealed surface. At the end, however, an approximate solution may
be useful which is discussed in the next section.

Concentrations have been computed for dx = 0-10, 0-05 and 6¢ = 0-001. A com-
parison is given in Table 4.1 to indicate the order of accuracy of the results. Table 4.2
shows that the values obtained by using éx = 0-05, are in a very good agreement with
those calculated from the Laplace solution, for small times. It should be noted that the
numerical solutions involve large errors in the beginning at the surface due to dis-
continuity in the gradient there at zero time, but they very soon become consistent
with the Laplace solutions. At ¢t = 0-050, the difference between.the numerical and
the Laplace solutions is not more than 0-0003 anywhere when the boundary x, has
moved a distance of 0-003 from its original position x, = 1.

5. Integral Method

In this section we look for simple analytical expressions for the concentration-
distribution as well as for the location of the moving boundary at any given time. We
shall make use of an approximate method that was introduced by Goodman (1958)
and is usually referred to as the “Integral Method”. A review of integral methods and
their applications to a variety of transient-heat-transfer problems is to be found in
Irvine & Hartnett (1964).

5.1. Description of Integral Method

In applying the Integral Method to the present problem we choose a profile which
satisfies all the known conditions. This profile involves the position of the moving
point as a parameter to be determined. In order to find a moving point versus time
relationship we integrate both sides of the differential equation (2.12) with respect to x
over the range for which it is valid, i.e. 0 < x < x,. This means that the differential
equation is to be satisfied on average only and not at each point. Thus we obtain

X0 ac X0 azc X0
—dx=| —dx— : :
fo 5 4 Jo pw dx Jo dx 5.1)

Substituting the concentration profile in (5.1) and after a certain amount of manipula-
tion we get an ordinary differential equation for the position of the moving boundary,
X0, With ¢ as the independent variable. Once the position of the moving point, x,, is
determined at any time, substitution of this value for the parameter x, in the profile
gives the concentration distribution at that time.

5.2. Determination of Surface Concentration

Integral methods are not very amenable in cases of non-uniform initial distributions.
In the present problem the discontinuity in the surface gradient is an additional
difficulty. In order to apply an integral method we first get an expression for the sur-~
face concentration and use it as an additional condition to obtain the profile. We
refer to the analytical solution (3.2) which has been obtained assuming the boundary,
Xo, fixed at x = 1. As described in Section 3, this solution is true everywhere for
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small times i.e. until the boundary has not moved within the range of working accur-
acy. However, it is observed that the concentrations near the sealed surface have a
close agreement with those obtained from the numerical solutions for éx = 0-05 for
all times. Therefore, an expression for surface concentration can be obtained by put-
ting x = 0 in (3.2). A closer examination of that expression reveals that the concen-
tration varies linearly with the square-root of the time to an accuracy of 5x 10—4, as
compared with the numerical solutions, and is given by

o0, 1) = 3—2 \/Tir . (5.2)

Comparative figures are given in the following table for (i) analytical solution (3.2);
(ii) numerical solution for dx = 0-05 and (iii) approximate solution given by (5.2).

TABLE 5.1
Comparisons of 10%¢ at the sealed surface

sw 0-04 0-08 012 016 018 019

olutions
Analytical 274328 180852 109134 48771 21546 8546
Numerical 274496 180969 109228 48893 21834 9039

Approximate 274324 180846 109118 48648 21269 8151

It may be mentioned here that the total time, ¢,, for the concentration everywhere to
become zero is given by ¢(0, ¢,) = 0 and is equal to n/16 from (5.2).

5.3. Choosing a Polynomial Profile
A polynomial profile of fourth degree is now chosen containing five unknown
parameters which might be functions of time and which are determined using (2.13),
(2.14), (4.6) and (5.2). On writing ¢, for ¢(0, t) the equation for the polynomial be-
comes
c(x, xo) = (1—x/x0)*{3x* +4co(1 — x/x0) — 3co(l — x/x0)?}. (5.3)
This contains the position of the moving point, x,, which still has to be determined.

5.4. Determination of the Moving Boundary
To obtain x, as a function of time we refer back to the equation (5.1) which gives

*o de a [*
Io a—tdx = . cdx = —Xxy, (5.4)

since dc/ox = 0 at x = 0, x,.
Writing ¢(x, x,) from (5.3) in (5.4) and using (5.2) we get, after some manipulation

dxo _ {20-8/\/(nt)}x,

= -y, 5.5
dt xZ+4-16/(t/r) ¢
We know that dx,/dt < 0. This condition will not be true until
8
20—-—— =20, (5.6)
J@t)
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since the term in the denominator of (5.5) is positive for 0 < x, < l and ¢ < ¢,, where
t, is obtained from (5.2).

The inequality (5.6) gives the minimum time ¢, for the condition dx,/dt < 0to hold
as 4/25xn. It should be noted that as the moving point x, approaches the sealed surface,
its speed dx,/dt tends to infinity as ¢ tends to ¢,.

We have found that the numerical solution of (5.5) obtained by using a Runge-Kutta
algorithm can be approximated by the expression,

— £\t
xo = 1— exp {—2(:%;:) } (.7)

Table 5.2 below provides a comparison for the position of the moving boundary as
obtained from (i) numerical evaluation of (5.5) using Runge-Kutta method (ii)
approximation (5.7) and (iii) numerical method of Section 4.

TABLE 5.2

Comparison for 10*x, at different times

Time 0051 0060 0-080 0-100 0-120 0-140 0-160 0-180 0-190 0-195
Numerical 10000 9974 9750 9321 8686 7817 6634 4892 3505 2331
Solution
of (5°5)

Approximate 10000 9996 9817 9393 8779 7962 6848 5092 3478 1760
solution (5-7)

Numerical 9967 9922 9719 9352 8788 7975 6812 4959 3381 1618
Method of
section 4.

It is seen from the above table that the numerical solution of (5.5) agrees with the
exponential profile for the moving boundary (5.7) very well except for very large
times. But the profile (5.7) has a very good agreement with the values obtained from
the numerical method for all times. Therefore, (5.2) and (5.3) together with (5.7)
constitute an approximate solution. It should be noted that this solution is applicable
for the time interval 4/25n < ¢ < =/16 only. For ¢ < 4/25r, Laplace solutions (3.2)
and (3.3) give analytical solutions when it has been assumed that the boundary has
not moved from its original position x, = 1. Thus we have got now an analytical
solution of the problem for all times.

6. Results and Discussion

The concentrations in the medium at various times together with the position of the
moving boundary have been compared in Table 6.1 for numerical and the approximate
solutions. A very close agreement is seen between the two solutions. The approximate
method would specially be useful (a) to calculate the concentration and the position
of the moving boundary at an arbitrary time and (b) at the end when the numerical
method would not work because too few mesh points remain. Graphs have been drawn
to show the concentration-distributions at various times (Fig. 3) and the progress of
the moving boundary with respect to time (Fig. 4).
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A MOVING BOUNDARY PROBLEM
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F1G. 3. Concentration distributions for the steady-state (¢ = 0) and for ¢ > 0-05.
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Appendix. Stability Analysis

The set of difference equations connecting values of ¢ at two consecutive time levels
can be written in the following matrix form (r = §t/(6x)?),

[cf**] . [t—2r 2r 17 ed ]
citt r 1-2r r O i

= ' . = (1)
cithl 0 r 1=2r r ch_, 1
ity | 2r : —-2—': chy 1
N 1+p it ] L

or
¢/t = A/ -Udt )

where A; is a square matrix of order N which varies with N and U is a column vector
each element of which is unity. We see that elements in the last row of A ; are depend -
ent on j and therefore in order to make analysis possible we first replace p/ by a con-
stant value p. Later on conditions are imposed on p in order to make the scheme
stable. Equation (2) is then written as

¢/t = Ac/—Uét. 3)
We denote the computed values by { so that we have actually solved the equations
Yitl = AP/ ~Ust. “)

The computational error is then given by subtracting (4) from (3). If the error intro-
duced at the kth step is denoted by the vector e, then

il _itl = A(cj—i[lj),
1.e.
e/t = Ael. &)
The recurrence relation (5) gives
i+l = (A)+ 1g0, ©)
where €° is an error vector for the starting values.
Let us express e® as the linear combination of the eigenvectors of A, such that

N

0 _

e = Z asvs,
s=1

where v,is an eigenvector of A corresponding to the eigenvalue A, and a’s are constants.
It is easy to show that

N
e’ = SZI a v,

For e” to tend to zero, as n increases, it follows that the largest of [4,], |4, ..., [Ax]
must be less than unity. If O, is the sum of the moduli of the terms along the sth row
excluding the diagonal term a,, in matrix A then by Brauer’s theorem every eigenvalue
of A lies inside or on the boundary of at least one of the circles [1—a | = Q,.
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As we are interested in the bounds of p, applying Brauer’s theorem to the last row
of A that contains p, we have

=TT ss=1_—’
2 1+p a
so that
'a-(1—2—’> <
p 1+p

The bounds for 1 are given by
2r 2r(1+2p)
h=le———  Jy =Py
p(1+p) p(1+p)
For stability we require |4,] < 1, |[42] < 1, and hence

11 2r <1 giving r
S0 op+p) (1+p)
and
2r(1+2p) .. r(1+2p)
€ ——— <1 givin <L
p(1+p) & P+p)

Since p is always positive, the condition for stability is given by the second inequality
because the first one is then satisfied automatically. Therefore, for overall stability

' pr+(1=2r)p—r = 0.
Since r < 4 for the stability of the simple explicit scheme used at the intermediate
points, it can be shown that

p=r—3+JG+r). (N
For x = 0-1, 6t = 0-001 we get the stability condition p > 0-11 and for é6x = 0-05,
ot = 0-001 we have p = 0-54. This suggests that an instability may arise when the
moving point is nearer than 0-011 to the neighbouring mesh point in the first case and
0-027 in the second case (0x = 0-05). This confirms the need for the stability check
described in Section 4.4.
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