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A very brief review is given of the striking way in which the Crank-Gupta model has 
enhanced our understanding of the well-posedness of free and moving boundary problems. 

1. I n t r o d u c t i o n  

In [4, 5], Crank and Gupta introduced what is now known as the Crank-Gupta, or 
oxygen-consumption problem for the concentration c of oxygen in a tissue in which it 
is absorbed volumetrically at a prescribed constant rate. In one dimension, c satisfies 
the dimensionless equation 

Oc 02c 
- 1 ( 1 )  

Ot Ox 2 

in those parts of the tissue where oxygen is present (c > 0), together with suitable 
initial and boundary conditions. This represents a mass balance for the oxygen but, 
crucially, in the medical context that motivated [4], c falls to zero in some parts of 
the tissue that are to be determined as part of the problem. It is the condition at the 
free boundary between regions where c > 0 and c = 0 that lies at the heart of  the 
Crank-Gupta model and a careful mass balance shows that if x = s(t) is such a free 

boundary, 
Oc 

c = - - = 0  a t x = s ( t ) .  (2) 
Oz 

We will not describe any mathematical details of the particular Crank-Gupta 
problem as posed in 1972 here, except to say that, as explained in [7] and to be 
discussed shortly, it has a perfectly well-behaved solution for which analytical bounds 
can be obtained and for which accurate numerical algorithms are available. Rather 
than going into such technical details, this review will concentrate on the implications 
of the combination of the field equation (1) and the free boundary condition (2) for 
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the whole subject of free and moving boundary problems, which has burgeoned over 
the past three decades. 

When (1)-(2) are being solved without any specification of the sign of c, we 
will say we are solving a (CG) problem. However, in order to obtain a physically 
acceptable solution to a (CG) problem, we need to exclude regions where c < 0 and 
we cannot over-emphasise that such physically acceptable solutions cannot be obtained 
by chopping off, or "truncating" those regions where c < 0. Such truncations were 
used in the early days of mathematical biology but they can only be justified when 
they are carefully incorporated into certain numerical schemes; we will return to this 
point in the conclusion. 

Since the positivity or otherwise of the solutions of (CG) is so crucial to the 
theme of this article, we will henceforth make a clear distinction between situations 
where 

(i) c ~> 0, the constrained (CG) problem (CCG), which can be shown to be equivalent 
to solving 

Oc 02c 
O---t = Ox 2 - H(c) ,  (3) 

where H is the Heaviside function; 

(ii) c can have either sign, the unconstrained (CG) problem (UCG). 1 Clearly (CCG) 
is likely to have more components in its free boundary than (UCG). 

The motivation for the all-important distinction between (CCG) and (UCG) lies 
in the relationship between (CG) and the grandfather of all free boundary problems, 
the Stefan problem 2 for the temperature u in a stationary heat-conducting medium, 
which satisfies the field equation 

Ou 02u 

Ot -- Ox 2 ; (4) 

if there is a change of phase say from solid to liquid at zero temperature at x = s(t) ,  
and this phase change is associated with a unit latent heat, then 

io ] = = - k  a t z = s ( t ) ,  (5) 
solid 

where [.] denotes the jump across the phase boundary and we denote (4)-(5) by (S). 
If there is no superheating or supercooling, so that u > 0 in the liquid and u < 0 in 
the solid, then this jump is 

( l i m -  lim'] ( ~ ) .  
u$O utO ] 

1 This terminology was introduced in [8]. 
2 A version of the (CG) problem is also the fundamental model for the Black-Scholes theory of American 

option pricing, and its relationship to the Stefan problem is mentioned in [27]. 
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At one level there seems to be a trivial relationship between (CG) and (S). As noticed 
by Schatz [24], 3 if we formally write 

OqC 
u = - -  (6) 

Ot 

and differentiate (1)-(2) we get (4) and 

Ou 02c 
u = O, Ox OxOt - ~  at x s(t) (7) 

respectively, since 

0%. 0% 02c 
c9-~ s + c g x O t - O  and ~ x  2 -=I  a t x = s ( t ) .  

Hence u can be identified as the temperature in a one-phase Stefan problem (1PS) in 
which Usolid = 0. However,  we note that whenever Oc/Ot is negative in (CG), as is 
the case in [4], this identification implies that the liquid is supercooled. 

Schatz' motivation for relating (1)-(2) to (4)-(5) was entirely mathematical. 
Because the free boundary velocity appears explicitly in (S), it is much easier to prove 
results about the classical solution than it is for (CG) where s only appears implicitly. 
Indeed, the whole existence and uniqueness theory for (S) given in [21] depends on 
this fact. However,  there is an irony here because, as we shall see, (CG) is really 
much nicer than (S) from many mathematical points of view. 

Although the transformation (6) looks innocuous enough, care needs to be ex- 
ercised in many situations, for example concerning invertibility when h is not of  one 
sign. Also consider, for example, the initial/boundary value problem of [4], namely 
(1)-(2) in 0 < x < s(t) with 

1 l - x )  2, 0 < x <  1. (8) oc  (o, t) = o, c(x,  o) = co(x) = 
Ox 

If we formally write (6), we obtain (4)-(5) with 

d2co 
_~x(o,Ou t) . . . .  0, u(x,O) ~ 1 0 for 0 < x < 1, (9) 

for which u -- 0 would be the obvious solution were it not for an impulsive thermal 
source at x = t = 0. Other interesting possibilities arise when co in (8) is such that 

d 2  1 = 0 .  
dx z=l 

3 In fact the (CG) problem might well be called the Schatz problem if it not were not for the idiosyncratic 
spelling of Stefan in [24]. Schatz' work was much more in the context of optimal stopping problems 
than in physical applied mathematics. 
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However, these pitfalls are minor compared to those that are encountered when well- 
posedness questions are studied, and we now devote some paragraphs to this aspect. 

Concerning (CCG), numerical and analytical evidence points to the fact that the 
solution usually exists, and is unique and well-behaved for all time, with c vanishing 
everywhere for all sufficiently large time. This is a manifestation of the fact that (3) 
can be written as a parabolic variational inequality [7], from which many mathematical 
properties can be inferred and discretisations suggested. It is not in the spirit of this 
review to go into technicalities here (see [8] for details and examples of exceptional 
behaviour) but the above remark applies to general (CCG) problems in which the unit 
absorption is replaced by an arbitrary smooth function of x and t, positive or negative. 

In complete contrast, the global behaviour of solutions of (UCG) and (S) is 
a very delicate matter. Whereas the methods of [21] can be used to demonstrate 
the well-posedness of a large class of Stefan problems when neither superheating nor 
supercooling occurs, in all other cases it is common to find "blow-up" in which 
tends to infinity in finite time. In particular, this always happens for the data 

as long as 

OU(O,t )=O,  u(x,O)=uo(x) ,  O < x <  1 (lOa) 
Ox 

/01 (1 +,0(x)) < 0, (10b) dx 

but this is a sufficient, not a necessary condition for blow-up. By integrating the Stefan 
problem with respect to x, this inequality can be seen to have a simple physical 
interpretation as saying that the initial thermal energy in the material is too large 
and negative to be absorbed by the total latent heat that is available. The blow-up 
phenomenon was first pointed out in [25] and has since been intensively investigated 
[9, 10]; it appears paradoxical because the solution of (CCG) exists for all t > 0, 
whether or not (10b) holds, i.e., whether or not 

fo d2co h--~x2 dx < 0. 

We will retum to this in section 2. 
There is one other intriguing connection between (CG) and (S) and this concerns 

the infamous "mushy region". As pointed out in [1], the "volumetrically heated" two 
phase Stefan problem in which (4) is replaced by 

Ou 02u 
Ot - Ox 2 + 1 (11) 

with (5) and, say, 

~(o,OU t )=O,  u = u 0 ( x )  < 0  a t t - - 0  (12) 
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can lead to the existence of a region of superheated solid when we try to solve a 
"classical problem" in which (11) holds on either side of a free boundary where (5) 
holds. However, if (11), (5) and (12) are solved by the enthalpy method [7] in 
which (11) and (5) are replaced by 

Oh 02 
Ot - Ox 2 {u(h)} + 1 (13) 

with 
h -  1, h > 1, 

u =  0, 1 > h > 0 ,  (14) 
h, 0 > h, 

taken in the sense of distributions, we find that (5), which would have been the 
anticipated "Rankine-Hugoniot" condition, is lost. Instead, the solid domain abuts not 
a liquid one but a mushy region in which u - 0 and 0 < h < 1 and it can be proved 
that at the interface between the two 

Ou 
U - -  - - 0 .  

Ox 

Hence, identifying h with ( -c ) ,  the behaviour in the solid in the vicinity of the 
solid/mush interface is precisely that of a (CG) problem with oxygen being removed 
volumetrically. Thus there is no tendency to blow-up as there might have been in the 
absence of mush. 

A helpful way of thinking about good and bad Stefan problems is to observe 
that it is only when h(u) cannot be defined as a monotone increasing function that 
the weak formulation (13) will possibly lead to a backwards heat equation, and h(u) 
can only be defined to be monotone as in (14) in cases where both superheating and 
supercooling are absent. 

An even more subtle and dramatic link between (1PS) and (CG) is revealed when 
we consider their multidimensional generalisations, replacing 02/Ox 2 by V 2, O/Ox 
by the normal derivative O/On and ~ by Vn, the normal velocity of the free boundary. 
Whereas (CG) is, at least in its weak form as a parabolic variational inequality, still 
as well-behaved as in one space dimension except in very rare cases, the superheated 
and/or supercooled Stefan problem exhibits not just blow-up possibilities for which 
results like (10) are available, but also genuine ill-posedness. This is presaged by the 
famous "Mullins-Sekerka" linear stability analysis for a nearly planar interface; any 
corrugation in such an interface will grow at a rate that increases without bound as the 
wavelength decreases. The stability analysis leading to this result is quite complicated 
but fortunately it can be illustrated with a simple non-trivial limit of the one-phase 
two-space-dimensional Stefan problem, called the Hele-Shaw problem [22]. In this 
problem, to which we will refer as (HS), the pressure p in a liquid in a Hele--Shaw 
cell satisfies 

v a p =  0 (15) 

with 
0io = - Vn (16) 

p = O, On 
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at the free boundary, conveniently written t = w(x, y); hence (HS) corresponds to 
(1PS) in a liquid with zero specific heat (i.e., the coefficient of Ou/Ot in (4) vanishes) 
with negative pressures relative to ambient, corresponding to suction, being interpreted 
as "supercooling". The stability analysis referred to above shows that a fluid region 

x < Vt+~eatcosny ,  n > 0, (17) 

evolves so that cr = - n V  which demonstrates ill-posedness when V < 0. However, 
a much more important attribute of (HS) compared to (1PS) is that it is susceptible 
to complex analysis and many very helpful explicit solutions can be written down. 
These demonstrate that blow-up is much more likely to occur in two dimensions via 
a singularity in the geometry of the boundary such as a cusp, than via the infinite-speed 
"Sherman" blow-up in which a tangent plane always exists. 

We can now ask about the connection between (HS) and the "quasi-steady" 
two-dimensional (CG) problem in which Oc/Ot is dropped, viz 

0c = 0  o n t = w ( z , y ) ,  (18) V2c -- 1, c = 0---£ 

in which t only appears as a parameter. It is tempting to conjecture that if c sat- 
isfies (18) then Oc/Ot can be interpreted as the pressure in a Hele-Shaw cell, but 
the relationship between the generic behaviour of solutions of (CG) and (HS) is far 
less well-understood than that between (CG) and (SP) in one dimension (the one- 
dimensional Hele-Shaw problem is, of course, trivial and no blow-up can occur). 
However, (18) has recently been shown to be a very effective tool for revealing some 
dramatic and unexpected regularity properties of the free boundary of solutions of 
(HS) in the unstable (suction) case. This will be discussed further in section 3 and 
this leads, in section 4, to another important consequence of the relation between the 
full two-dimensional (CG) and (1PS); this is that comparison results can be made 
between Stefan problems with different specific heats. Hence some of the welter of 
information that is available in the zero-specific heat case can be exploited to analyse 
the hitherto unexplored area of supercooled two-dimensional Stefan problems. 

It is amusing, and also sometimes helpful mathematically to note that there is a 
free boundary problem intermediate between (18) and (HS), namely 

O p _ _ v ~  o n t  aJ, (19) V2p = f(~e,t), p = 0, On 

which models Hele-Shaw "squeeze film" flows in a cell whose geometry is char- 
acterised by f ( x , t ) .  This problem is such that if we set u = p + fc, where c 
satisfies (18), then u, rather than p, satisfies (HS). Hence (18) can be used as a 
stepping stone to relate standard (HS) problems to those with a distributed driving 
mechanism f .  

In the conclusion we will make very brief mention of some possible generalisa- 
tions of these very fruitful analogies. They are all based on the central theme that (CG) 
is, perhaps, the nicest free boundary problem ever posed from the mathematical point 
of view. Its apparently close relationship to some not-so-nice problems has meant that 
it has played and continues to play a pivotal role in the theories of well-posedness of 
free boundary problems. 
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2. One-dimensional problems: (CG) and (1PS) models 

The identification between (CG) and (1PS) began by assuming the existence of a "clas- 
sical" solution c(x, t) of (CG). As proposed in [8], the formal approach (6) can be 
made much more rigorous if we begin with the solution u of (4)-(5), say with initial 
and boundary data (12). The existence of u is assured from the results of [21], so we 
can now define 

f c(x,t) = d~__ ~ (U(rht)+ l)d~. (20) f 
(t) Js(t) 

Then, known smoothness properties allow us to manipulate this expression to show 
that c satisfies (UCG) with data 

O--~C(o,t) = O, c(x,O) = co(x) where r.d2 _ 1 = uo(x) (21) 
Ox dx 2 

and similar manipulations are possible for more general initial and boundary data. 
Hence there is a more-or-less one-to-one correspondence between (UCG) and (1PS): 
the blow-up behaviour that is known to occur in the latter when supercooling is present 
will also occur in the former, and thus the elaborate blow-up categorisation of [10] 
applies to (UCG). We will not describe all the possibilities here but we remark that 

(i) (10b) is only a very crude sufficiency condition for blow-up. The precise distri- 
bution of uo(x) is important, as has been discussed in [18] by the introduction 
of a "weighting function" into (10b). Even though (10b) can be violated, it is 
vital that u0 < - 1  at some points of the initial interval; 

(ii) the behaviour near blow-up is far from obvious and published asymptotic results 
are only just available [11]; 

(iii) in most cases, blow-up is such that no temporal continuation is possible there- 
after, but exceptional cases of so-called "non-essential blow-up" can occur [8]. 

For our purposes the most important attribute of blow-up is its close association with 
the existence of a negativity set of c as defined by (6) or (20). The approach of the 
free boundary x = s(t) to this negativity set can be seen to engender blow-up because, 
conversely, if blow-up does not occur, then Ou/Ot and hence c must ultimately be 
non-negative [8]. 

None of this blow-up theory is relevant to (CCG); far from it. The constraint of 
forbidding negative values of c, and thereby introducing new free boundaries, exerts 
a remarkable tranquilising effect on the model and endows it with the smoothness prop- 
erties mentioned in the introduction that enable it in turn to be turned into a parabolic 
variational inequality. 

This state of affairs, and in particular the relationship between blow-up and the 
negativity set of c, suggests the intriguing possibility of using (CCG) to "regularise" the 
badly-behaved (1PS). For, suppose we have a supercooled situation, with the potential 
for blow-up, and suppose also that the corresponding c defined by (20) is positive 
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for some short initial time interval before it develops an interior zero. We could now 
hypothesise a "mathematical nucleation" event in which we introduce a new region 
of zero-temperature that spreads out from this zero, thereby introducing two new 
components into the free boundary. Moreover, we could continue to do this whenever 
c threatened to vanish and, because we would be associating (IPS) with (CCG), (IPS) 
would have become equivalent to a well-posed parabolic variational inequality. 

As described in [8], such a mathematical nucleation and growth procedure is 
vague because it neither encompasses all the ways in which a negativity set of c could 
be bom, nor is it in any sense a unique regularisation. For example, we could "pin" c 
to be zero at a point rather than nucleate new solid as soon as a zero occurs, and all 
these possibilities are enumerated in [8]. Also that paper shows how to formulate a 
"least nucleation" principle in the hope that one day some physical relevance might 
be ascribed to the regularisation. 

The main point to emerge from this discussion is that (CCG) is the starting point 
for a method for smoothing what would otherwise be a commonly occurring ill-posed 
mathematical model. As such it is to be compared with the idea of introducing a mushy 
region (as in (13)-(14)) or of  introducing a smoothing term, such as might model 
chemical kinetics, into the free boundary conditions. The mathematical nucleation 
and growth philosophy has been applied in more space dimensions, but only with 
radial symmetry; without this last assumption, things become much more complicated 
as we will discover in the next section. 

3. Two-dimensional problems: (CG) and (HS) models 

Perhaps the best understood, and certainly one of the commonest two-dimensional 
free boundary problems is (HS) (15)-(16). As can be seen by explicit calculations, 
this problem is innocuous enough in one dimension, but its extreme sensitivity to 
two-dimensional disturbances has been mentioned in the introduction. 

We have already pointed out that the links between (HS) and the two-dimensional 
"zero specific heat" (CG) (henceforth referred to as (ZSCG)) can, like (6), be related 
to the ideas of Schatz. However, more fundamentally, they are applications of the 
famous "Baiocchi transform" introduced for "dam-type" free boundary problems. Such 
problems are themselves generalisations of (HS) to account for the presence of a body 
force and steady states of dam problems correspond to travelling wave solutions of 
(HS). 

For the "well-posed" (HS) where p is positive and the free boundary is being 
blown outwards, the Baiocchi transform was used in [6] to achieve a reduction to 
a one-parameter family of elliptic variational inequalities and hence to deduce many 
well-posedness results. Roughly speaking, the idea is to relate c in (ZSCG) to p in 
(HS) by 

C = p(x ,  y, 7") dT" (22) 
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in ~0, the region initially occupied by fluid, and by 

j~ t c = p(x,  y, 7-) d r  (23) 
(z,u) 

in f2/f~o, where 0f2 is the free boundary for t > 0, given by t = w(x,  y); this gives 
the now-fashionable variational formulation for 

V2c = X(x )H(c)  (24a) 

which is equivalent to the linear complementarity problem 

C ) 0, X -- •2c  ) 0, (X - VZc) c = 0. (24b) 

Here X is the characterstic function of the fluid region, and it is inherent in the 
distributional interpretation of (24) that c = Oc/On = 0 on 0Y2 as in (18). 

As pointed out in [18], (22) is unnecessary when we try formally to use this type 
of transformation in the ill-posed "suction" (HS) problem. There, when we write (23), 
we retrieve (24) but, in contrast to the blow-up problem, we cannot even determine 
c(x, y, 0) without solving the ill-posed Cauchy problem 

Oc 
~72C = 1 in,q0 with c =  On 0 on Oflo. (25) 

Another obvious hazard is that (24) only has a chance of being tree at points that 
are crossed by the free boundary, which, in view of the propensity for blow-up, may 
not form a very large set. Nonetheless, when it does make sense, (23) has many 
consequences; for example it can be shown that if we put z = x + iy and consider the 
function ( oc 

9(z,  t) = 2 - 2 -~x - 1 (if. = X -- iy), (26) 

we find that it is analytic ( c -  (1/4)z~" is harmonic) and is the Schwarz function of 
0~ ,  i.e., the function such that 

2 = g(z,  t) (27) 

is t = w(x,  y). Information about blow-up can now be inferred from a knowledge of 
the singularities of 9. In fact, since 

~0 t c(x, y, t) = c(x, y, O) + p(x,  y, T) dT, 

it is easy to see from (26) that 

~o t dw g(z , t )  = g(z,O) - 2 -~z(Z,T)  dT, (28) 
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where the fluid velocity - V p  is the conjugate of the analytic function dw/dz.  Hence 
the singularities of  g in the fluid region are fixed in time since dw/dz  is analytic 
there, and they provide an immovable obstacle to the inward motion of the bound- 
ary. Also, as in the one-dimensional cases of the previous section, it is easy to 
see that any negativity set of c must increase in time (since p = 0c /0 t  < 0) 
and trigger a singularity when it meets the contracting boundary 0£2. Another in- 
sight is gained from the fact that sequences of one-parameter variational inequali- 
ties of the form (24) can have singularities in the form of cusps that are locally 
y O (  X (4n+1)/2, 7/. = 1 , 2 , 3 . . . ,  [23], and hence, if a contracting free boundary 
is lucky enough to encounter such a singularity, it can be analytically continued 
thereafter. However, a more powerful application of this idea is in connection with 
the likelihood that blow-up in (HS) occurs in accordance with the two-dimensional 
generalisation of the "energy" criterion (10b). In [18] it was found that blow-up 
could be proved to occur even when we violate the condition that co < - 1 ,  which, 
we recall, was a vital necessary condition for one-dimensional blow-up of (UCG). 
The key idea was to consider initial data for which co has certain judiciously cho- 
sen singularities, and it can even be generalised to three-dimensional versions of 
(HS). 

The fact that genuine two-dimensional "blow-up" can occur has been known 
for many years because of the multitude of explicit solutions that can be written 
down for (HS) by conformally mapping the flow domain onto a half plane or unit 
circle and guessing the fight mapping function to satisfy the free boundary conditions 
[12, 19, 20]. 

All the above evidence points to the fact that (HS) with suction and hence 
(ZSCG) are all ill-posed and we might reasonably think that the worse the initial data, 
the less likely would be the existence of any solutions at all. Indeed the appearance of 
the ill-posed Cauchy problem (25) suggests that a~o should be analytic if we are to 
even get started and, in fact, it can be proved by generalised Cauchy-Kowalevskaya 
methods that the analyticity of 0~20 does indeed permit the existence of a local-in-time 
solution. It is all the more surprising therefore that there is one wildly nonanalytic 
initial value problem where the initial values for (ZSCG) do exist, and that is when 
there is a comer in Of~0.4 We cannot catalogue here the astonishing variety of flows 
that are possible near such a comer but [15] have shown that waiting times and 
discontinuities in the comer angle as a function of time can both occur. The proof 
of these results is greatly facilitated by the convenience of the formulation (24) over 
(15)-(16) for deriving the existence and uniqueness of weak solutions and also for 
comparison theorems. 

Given the ubiquity and practical importance of (HS) in science and industry, it is 
clear that the indicators provided by (ZSCG) will continue to provide more and more 
insight into the myriad free boundary problems modelled by (HS). 

4 In fact many other nonanalytic Cauchy problems appear to have local solutions in which the free 
boundary is nonanalytic [J. R. King, private communication]. 
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4. Two-dimensional problems: (CG) and (S) 

When u satisfies a supercooled (1SP) we can, as usual define 

Z 
t 

c =  U(x,y,T)dT 

to obtain the (UCG) 

cqc Oc 
V 2 c = ~ - + 1 ,  C - O n - O  o n O ~  (29) 

with initial data that must again be found by solving an ill-posed Cauchy problem. 
Exactly as in sections 2 and 3 we can see that, whenever c has a negativity set, blow- 
up eventually occurs. However, the question of the morphology of 0 ~  at blow-up 
has long been a thorn in the side of theoreticians: in [17] it was conjectured that the 
cusps that occur in (HS) might still exist in cases when specific heat is non-zero but 
this was the only statement in the literature until very recently. 

Although the panoply of complex variable theory is no longer available to help 
us study (29), the idea of comparison theorems does carry over from (HS). In fact it 
is relatively easy to construct comparison theorems for (29) when Oc/Ot is replaced 
by aac/Ot, o~ being a positive specific heat, but only inasmuch as (29) applies to 
well-posed, unsupercooled problems. Then the guaranteed positivity of c allows one 
to show that the expanding free boundary for a larger c~ lies inside that for a smaller a 
and, moreover, the dependence of a£2 on a is continuous [16]. However, as also 
shown in [16], this argument can be applied locally in the supercooled case because, 
even then, c > 0 sufficiently close to 0g~ while the solution continues to exist. Hence 
we can assert that, as c~ --+ 0, 0f2 approaches that of the Hele-Shaw problem. Thus 
the free boundary of the Stefan problem can approach arbitrarily close to a cusp, and 
indeed tend to a cusp as t --+ co in certain cases. 

This picture has been further refined, although not completely rigorously, in [26]. 
There, rigorous matched expansion estimates are derived to prove the existence of 
cuspidal behaviour in supercooled (S), but there is as yet no regularity theory for the 
earlier behaviour of a ~  from which to start the rigorous discussion. By now not 
surprisingly, the asymptotic estimates in [26] are all developed for (29), for the very 
same reasons that pertained at the end of section 3. Two noteworthy features emerge; 

(i) As hinted in [ 18], cusp formation (rather than "Sherman" blow-up) is possible in 
two-dimensional supercooled (S) for arbitrarily small initial undercooling (i.e., 
u0 does not have to be anywhere near the critical value -1 ,  as in (10b), just as 
long as it is suitably negative sufficiently near 0£20). 

(ii) The method is capable of generalisation to three dimensions. 
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5. Conclusion 

A monograph would be required even to list all the known implications of (CG) for 
other free boundary problems. Here we will simply cite three other aspects not yet 
mentioned: 

1. We have not entered into any discussion of the numerical aspects of (CG). Clearly 
the variational formulation suggests a variety of finite element schemes, at least 
for well-posed problems, and other possibilities are discussed in [3]: one of 
these is the alternating phase truncation method [2], where, as mentioned in the 
introduction, negative values of c are automatically discarded. 

2. We have said almost nothing about two-phase problems, but a two-phase (CG) 
model has in fact been proposed in [8]. It is, from (20), 

Oc 02c Ou 
Ot -- Ox 2 1 + -~z (s + O,t)(s  - x), 

where u is the temperature of the two-phase material in x > s. Although the 
presence of the last term is inconvenient, to say the least, the negativity of u, 
i.e., the absence of any superheating, enhances the consumption rate for c. 

3. The idea of smoothing "rough" free boundary problems such as (S) by relating 
them to smooth ones such as (CG) has recently been proposed for generalised 
Hele-Shaw problems [13] and for problems in slow viscous flow where the field 
equation is biharmonic [14]. 

In summary, as the theory of free boundary problems becomes more and more elaborate 
and widely applicable, the crucial role played by really well-behaved paradigms, of 
which (CG) is the progenitor, becomes more and more apparent. 
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