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On a Moving Boundary Problem from Biomechanics
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A moving boundary problem arising in biomechanical diffusion theory which has
previously been investigated by Crank & Gupta (1972a, b) is studied using a different
method of solution. The method is based on an integral equation for the function
defining the position of the moving boundary and an integral formula for the concentra-
tion. The integral equation is solved asymptotically for small times and numerically
during the entire motion of the boundary. The concentration is estimated asymptotically
for small times and computed by numerical quadrature at later instants. The results are
compared with those of Crank & Gupta. In most cases the agreement is fair.

1. Introduction

IN TWO recent papers Crank & Gupta (1972a, b) studied a moving boundary problem
arising from absorption and diffusion of oxygen in tissue. In the following their
papers are referred to as I and II respectively. They used a one-dimensional model
where the tissue occupies the interval 0 ^ x < oo, and the absorption rate F (amount
of absorbed oxygen per unit length and time) was assumed to depend on the con-
centration c of oxygen in the following manner:

F(c) = {J i f c > 0
ifc = O.

(Throughout the present paper the non-dimensional quantities defined in I are used.)
During a diffusion and absorption process the on-off character of this absorption rate
will cause the medium to be divided into two regions, one in which c > 0 everywhere,
and one in which c s O . In general the boundary between the two regions will be
moving in the course of the process and it becomes part of the problem to determine
its position as a function of time.

With the absorption rate given by (1.1) the non-dimensional equation for the
concentration c = c(x, t) becomes

in the region where c > 0. Since no diffusion takes place into the region where c = 0,
c and dc/dx must vanish on the boundary. Thus, if x = xo(t) is the equation of the
boundary in the (x, t) plane, the following relations hold:

c(xo(t), t) = 8c/dx(xo(t), t) = 0 for t > 0. (1.3)

In the problem studied in I and II it is supposed that during a long interval of time
ending at t = 0 the concentration at x — 0 has been maintained at the value \.
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386 E. HANSEN AND P. HOUGAARD

Therefore, the concentration at t = 0 is put equal to the time-independent solution of
(1.2) which satisfies the conditions (1.3) and for which c = \ at x = 0. So, the initial
condition is

c(x, 0) = Kl -xf for 0 < x ^ 1, (1.4)

and c(x, 0) = 0 for x > 1. It is further supposed that the surface is sealed off at time
t = 0 so that

p0,0 = 0 for t > 0. (1.5)

The relations (1.2)—(1.5) define the problem we shall consider. As seen from (1.4),
*o(0) = 1.

In I three methods are applied to this problem. The first is an approximate analytic
method based upon the assumption that in the beginning of the process the boundary
will move extremely slowly so that the concentration may be computed approximately
for small t by replacing the present problem by one where the boundary stays at
x = 1. The second method is a finite difference method with the step length of x
being the same everywhere except at the interval next to the boundary. The third one
is a so-called integral method. In this method the concentration is approximated by a
fourth degree polynomial. Applying the results of the approximate analytic method
mentioned above and satisfying (1.2) in an average sense an approximate differential
equation for x0 is derived which is solved numerically. In II a finite difference method
is used again, the main difference being that the interval of variable length is now
placed next to the fixed boundary at x = 0.

In the present paper we shall also solve the problem given by (1.2)—(1.5) but using a
different method. We derive an integral equation for x0 and an integral formula for c
in terms of x0. The integral equation is solved asymptotically for t -*• 0 and numerically
for all t. Thus, in our method the determination of the motion of the boundary which
is the characteristic feature of this problem is disconnected from the computation of
the concentration. Once x0 is found, c(x, t) is computed from the integral formula.
We also derive a simple formula for the integral of x0 taken over the time interval of
the entire absorption process. This formula is used as a partial check of the results
from the numerical solution of the integral equation.

Essentially the results we obtain using this method agree well with those found by
Crank & Gupta. However, our method allows us to find some additional results.
Thus for example from the very form of our expression for the concentration it can be
concluded that certain of Crank & Gupta's numerical results are less accurate than
those obtained from their approximate analytical solution. Also, by solving our
integral equation numerically we have been able to trace the moving boundary closer
to the termination value x0 = 0 than has been reported in I and II.

Integral equation methods have been applied previously by several authors in
connection with the classical Stefan problem and similar freezing or melting problems.
Some of them are concerned with problems of existence and similar matters while
others solve concrete problems. Among the latter ones we mention Lightfoot (1930)
who used physical reasoning to set up an integral equation for the position of the
freezing front in the one-dimensional freezing problem. He solved the equation
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MOVING BOUNDARY PROBLEM 387

approximately by making a special assumption about the functional dependence of
the position on time. Portnov (1962) treated the same problem. He used Laplace-
transform technique to set up an integral equation and found the position for small
times by series expansion. His method was subsequently used by Jackson (1964) and
Westphal (1966). Evans, Isaacson & MacDonald (1950) used a method similar to
Portnov's on a generalized version of the one-dimensional freezing problem. Rathjen
& Jiji (1971) extended Lightfoot's method and obtained an integral equation for
the two-dimensional problem of freezing of a rectangular corner. They solved the
equation approximately by assuming a special functional form of the equation of the
freezing front and obtained rather extensive numerical results. For other applications
of integral equation methods we refer the reader to a recent review by Noble (1971).

2. An Integral Equation Formulation of the Problem

As mentioned in the introduction, we shall apply an integral equation method to
solve the problem defined by (1.2)—(1.5). The use of such a method is especially advan-
tageous in the case of a linear problem since then it reduces the problem to one
involving only the values of the unknowns on the boundary of the domain considered
in the problem. In case of non-linear boundary value problems the same is in general
not true.

The absorption rate F denned in (1.1) makes the problem under consideration a
non-linear one. However, the dependence of F on c is such, that the problem is linear
in c as long as only one of the regions where c > 0 or c = 0 is considered. Therefore
we may set up an integral formula expressing c everywhere in the interior and on the
boundary of the region where c > 0 in terms of the known boundary values of c and
dc/dx and the unknown function x0. From this formula we may then derive an
integral equation for x0.

In order to obtain the integral formula for c we use a Green's function technique.
Let G be Green's function defined by

for /' > t and

G(x,x',t'-t) = 0 (2.2)

for t > t'. For x and x' ^ 0 and for all t, G satisfies the equation

H + ¥ = -<5(*-*W-0, (2.3)

where 8 denotes the Dirac delta function. For x' > 0 and for all t it satisfies the]boun-
dary condition

Gx{0,x',t'-t) = 0. (2.4)
Now consider the integral

f r°ll)rjS2c dc\ (d2G 8G\1
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388 E. HANSEN AND P. HOUGAARD

where G = G(x, x', t' — t). In virtue of equations (1.2) and (2.3) this integral is equal to
Pt' f*o(<)

G(x,x',t'-t)dxdt+c(x',t'). (2.6)
Jo Jo

Integrating by parts and using (2.2) we may also rewrite the integral in (2.5) as

Here t = to(x) denotes the inverse of the function x = xo(t). Because of the boundary
conditions (1.3), (1.5), and (2.4) the first integral in (2.7) and the contribution from
t = to(x) in the second one vanish. Inserting c(x, 0) from (1.4) and equating (2.6) and
(2.7) we thus obtain the formula

c(x', t') = -\ G(x, x', t'-1) dx dt+± G(x, x', t')(l-x)2 dx. (2.8)
Jojo Jo

As described in the Appendix, this formula may be put in the following form:

c{x', t') = i ( l -x ' ) 2 -2 K exp (-X^)+x' e r ^ ( 2 ^ ) + ^ ' ' O, (2-9)

where

(2.10)

Once the function x = xo(t) has been determined, c can be computed from (2.9)
everywhere in the region where c > 0. In order to find xo(t) we may let x' in (2.9)
approach xo(t'). Noting that c(xo(t'), t') = 0 we thereby obtain an integral equation
for the function x = xQ(t). Another integral equation is obtained by differentiating
(2.9) with respect to x' and employing the boundary condition 8c/dx(xo(t'), t') = 0.
Since the conditions c(xo(t), t) = dc/dx(xo(t), t) = 0 imply that dc/dt(xo(t), t) = 0
a third integral equation may be obtained by differentiating (2.9) with respect to t
and putting x' = xo(t'). The second of these equations turns out to be somewhat
simpler than the two others. Therefore, we shall use it for the determination of xo(t).
The equation, of which the derivation is indicated in the Appendix, may be written
in the following form:

X' - l -

Here for brevity, x, and x' stand for xo(t) and xo(t'), respectively.
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MOVING BOUNDARY PROBLEM 389

We conclude this section by deriving a formula which may serve as a partial check
of the numerical evaluation of the function x0.

In I (equation 5.4) the following formula is derived:

[x,t)dx= -xo(t). (2.12)

The reader may convince himself about the validity of (2.12) by the following argu-
ment : since c(x, t) = 0 for x > xo(t), the left-hand side is equal to the increase per
unit of time of the total content of oxygen in the interval 0 < x < oo. The oxygen
escapes by absorption only. Therefore, this increase is equal to minus the integral
of the absorption rate /"over the same interval. Since, from (1.1), F = 1 for x < xo(t)
and F = 0 for x > Jco(f), this integral is equal to xo(t).

By integrating (2.12) we get that

fX° ° c(x, t) dx = - f XO(T) dx+K. (2.13)
Jo Jo

When in this formula we put / = 0 and use the fact that xo(0) = 1 together with the
initial condition (1.4), the constant A' is found to be

K=[1

Jo
c(x, 0) dx = [ Kl -x)2 dx = | . (2.14)

o Jo
Inserting this value in (2.13) and putting t equal to the termination time t1 i.e. the
value of / for which xo(t) = 0 we obtain the formula

XO(T) dx = i (2.15)
o

Physically, (2.15) expresses the obvious fact that the amount of oxygen absorbed
during the entire process equals the total content of oxygen at t = 0.

3. An Asymptotic Solution for Small /

In the problem we are considering the boundary condition at x = 0 is changed at
time t - 0 from being c(0, 0 = \ for t < 0 to dc/dx(0, t) = 0 for / > 0. Experience
from other problems involving the heat equation indicates that for / positive but small
this change will cause the concentration to be less than its value at / = 0 by an amount
of order exp (—ix2/t). This dependence on x and t is reflected in the form of the Green's
function given by (2.1). We may therefore expect that for t small the moving boundary
will move away from xo(O) = 1 through a distance which is of order exp (—(4*)"1).
Indeed, as we prove in the Appendix, for t -» 0 (2.11) has the asymptotic solution

(3.1)
V-VV \ \ • " / /

As t -> 0,

ft / 1V / 1 \ \
(3.2)
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390 E. HANSEN AND P. HOUGAARD

which shows that the shift of the moving boundary is of the anticipated exponential
order of size.

In Fig. 1 the function x0 as determined from (3.1) is compared with results found
by the numerical solution of equation (2.11) which is described in Section 4. The figure
also shows an iterated asymptotic solution of (2.11), this solution being defined as
the right-hand side of (2.11) with the expression (3.1) inserted for JC and x'. In evaluat-
ing the iterated asymptotic solution the integral on the right-hand side of (2.11) was
computed numerically using Romberg's method with double precision.

10

FIG. 1. The moving boundary as determined by numerical solution of (2.11). The curve denoted
asymptotic corresponds to the asymptotic solution (3.4). The curve denoted iterated is determined
from (2.11) with x and x' on the right-hand side inserted from (3.4).

As shown in the Appendix, one may use (3.2) to derive the following asymptotic
representation of c(x', t'), valid for 1 — x' » 1 -xo(t') with a relative error of O(t'):

')2(2-x')

—

(2+x')2Y| (3.3)

We shall now discuss some of the results obtained so far.
Formula (2.9) for the concentration may be compared with the corresponding

result derived in I by an approximate analytic method applicable for small t. In this
method the two boundary conditions (1.3) are replaced by the single one c(l, t) = 0
for t > 0, and (1.2) is assumed to hold also for c ^ 0. By these changes of the original
problem one obtains a classical solvable one. Solving this problem by a Laplace
transform technique Crank & Gupta find that for small t the concentration is approxi-
mately given by

^ [ ^ ] ( ^ ) (3.4)
(equation (3.3) in I). Comparing this formula with (2.9) we see that they are identical
except for the term R = R(x', /') in (2.9). Therefore the various terms in (2.9) may be
interpreted as follows. The first term is the concentration at t = 0. The two next
terms account for the change of c due to the fact that at t = 0 the boundary condition
at x = 0 is changed from c = 0 to dc/dx = 0. Finally, R accounts for the change of c
caused by the motion of the boundary.
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MOVING BOUNDARY PROBLEM 391

With regard to the term R two remarks are appropriate. The first one is that as seen
from (2.10), R is positive for all t' > 0 and all x' between 0 and xo(t'). This means that
the concentration is everywhere larger than that given by (3.4) which, as was
mentioned, is a result derived from the approximate analytical method in I. The fact
that this method leads to a lower bound for the concentration agrees with the following
physical consideration. In the original problem the absorption ceases to take place
when c becomes zero. On the other hand, when c becomes zero in the problem
considered in the approximate analytical method, the absorption is assumed to con-
tinue so that c is allowed to become negative, and because of the diffusion this extra
reduction of c is transmitted to all points in the region where c > 0. We shall return
to this point in connection with Table 4.

The second remark we wish to make about R is that as seen from (3.3), R increases
extremely slowly from its value zero at / = 0. The formula shows that at a distance
y = 1 — x from the boundary the change of the concentration caused by the motion
of the boundary is of order exp (—£(1 +y)2/t) for small t. This may be compared with
the fact that the change of the boundary condition at x = 0 from c = 0 to dc/dx = 0
at t = 0 gives rise to a change of c which is of order exp (—ix2/t) for small /. The fact
that there is a difference in order is understandable on physical grounds since while
the change of boundary condition at x = 0 happens abruptly the motion of the
boundary away from x = 1 is very slow in the beginning of the process. Of course,
strictly speaking (3.3) can only be relied upon for small times. Still, in the authors'
opinion this asymptotic result, together with the physical mechanism to which we have
ascribed it above, throws some light on the remarkable fact, which is pointed out in
I, that during the entire process, (3.4) agrees very well with results obtained from
numerical methods. That this is so will be seen later from Table 4.

4. Numerical Solution

We now describe the numerical procedure which has been used for determining the
moving boundary, that is the function x = xo(t),

 a nd the concentration. As mentioned
in Section 2, x0 is found from the integral equation (2.11) and thereafter c is evaluated
from (2.9).

We wish to find *0('i) for f, = ih, where i = 1,2,... and A is a suitable time step.
For 11 < 002, xo(t,) is computed from the asymptotic formula (3.4). For larger values
of /(, xo(tj) is found from (2.11) by an iterative procedure. Approximating the integral
in (2.11) by a sum, we write (2.11) as

, N(fh tt)
fl = ( 4 1 )

Here

26
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= 1+erf[$h*M\- (4.3)

The coefficients a,- depend on the quadrature formula applied. In the present case
the standard Simpson integration formula was used together with Newton's £ rule
since this method was available as a standard routine on the IBM 370/165 computer
which was used for the numerical work.

TABLE 1

Position of the moving boundary as function of time

Time

00100
00200
00400
O-O50O
00510
0-0600
00800
01000
0-1200
01400
0-1500
0-1600
0-1800
01850
0-1900
01950
01955
01960
01965
01970
0-1972

INT-EQ

100000
100000
0-99918
0-99679
0-99642
0-99180
0-97155
0-93501
0-87916
0-79891
0-74668
0-68337
0-50109
0-43341
0-34537
0-20652
018708
016266
013284
009175
006708

straightforward iterative

FGL

100000
100000
0-99920
0-99709
0-99673
0-99220

0-93518
0-87885
0-79756
0-74487
0-68128
0-49607
0-41780
0-33873
016128

procedure comes

IM

10000

0-9750
0-9321
0-8686
0-7817

0-6634
0-4892

0-3505
0-2331

out of (4.1)

FDS

0-9993

0-9327
0-8739
0-7892

0-6664
0-4680
0-3917

as

FDP

0-9992

0-9344
0-8780
0-7968

0-6798
0-4948
0-4258

d
\

the starting value f\0) being obtained by quadratic extrapolation from the three
preceding values fi-ufi-i an^fi-3- The iterative cycle is stopped and/( is put equal
to/*"+1} when \fl"+l)—f\n)\ < e/*0, where e is an error parameter, or when n becomes
equal to a prescribed maximum number K.

Following the scheme just described, computations were carried out for different
values of the parameters h, e and K. It was found that the iterative process is mono-
tonic and, when t is not close to tu quite fast.

For /' ^ 01950 the parameter values were h = 5.10~4, e = 10"9, and K = 40.
The number of iterations required to reach this accuracy was less than 8 for t' < 0160
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MOVING BOUNDARY PROBLEM 393

and increased to 26 for t' = 01950. With these values of h and e the highest value of
t' for which the required accuracy could be reached with K = 40 was t' = 01960.
Therefore, for t' > 01950, h was reduced to 10~4 while e and K were unaltered. For
t' = 0-1972 the required accuracy was then reached after 39 iterations.

TABLE 2

Tabulated values are 106c for small times. The first row on each time level gives values obtained
from (2.9), the second row shows values computed by the approximate formula (3.19) and the

third row values which are taken from I, where the FGL-method has been used

00 0 1 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9

464318 404606 320000 245000 180000 125000 80000 45000 20000 5000
0001 "464318 404606 320000 245000 180000 125000 80000 45000 20000 5000

460000 405000 320000 245000 180000 125000 80000 45000 20000 5000

449537 401927 319973 245000 180000 125000 80000 45000 20000 5000
0002 449537 401927 319973 245000 180000 125000 80000 45000 20000 5000

452000 405000 320000 245000 180000 125000 80000 45000 20000 5000

438196 397811 319760 244998 180000 125000 80000 45000 20000 5000
0003 438196 397811 319760 244998 180000 125000 80000 45000 20000 5000

437600 398000 320000 245000 180000 125000 80000 45000 20000 5000

125000 80000 45000 20000 5000
125000 80000 45000 20000 5000
125000 80000 45000 20000 5000

125000 80000 45000 20000 5000
125000 80000 45000 20000 5000
125000 80000 45000 20000 5000

124986 79999 45000 20000 5000
124986 79999 45000 20000 5000
125000 80000 45000 20000 5000

124198 79847 44977 19997 5000
124198 79847 44977 19997 5000
124370 79905 44991 19999 5000

109634 72961 42029 18856 4629
109634 72961 42027 18845 4588
109945 73208 42199 18955 4673

0004

0005

0010

0020

0050

428635
428635
429600

420212
420212
420320

387162
387162
387497

340423
340423
340661

247687
247687
247841

393156
393156
394760

388337
388337
389128

365072
365072
365668

325881
325881
326222

240175
240175
240358

319211
319211
320000

318302
318302
318976

309949
309949
310719

286674
286674
287180

218841
218841
219089

244981
244981
245000

244924
244924
245000

243275
243275
243726

233277
233277
233793

186952
186952
187264

180000
180000
180000

179999
179999
180000

179804
179804
179927

176604
176604
176960

148990
148990
149327

Table 1 shows values of the function x0 as computed by the present authors com-
pared with those obtained in I and II. The columns denoted F G L and I M are taken
from I; these results were obtained by a finite difference method with a Lagrangian
interpolation and by an integral method, respectively. The last two columns are taken
from II where finite difference methods using cubic splines (FDS) and cubic poly-
nomials (FDP) were applied.

26»
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394 E. HANSEN AND P. HOUGAARD

It is seen that over most of the time interval the agreement is fair. However, when t
becomes large the differences between the values compared increase, our computations
being larger than those of I and II. When our calculations were repeated with the smaller
time step h = 10"4 (expecting this to improve the accuracy) it was found that the
values of x0 changed less than 0-01 % for 0 < t ^ 0160 and less than 0-8% for t s$
0-195. In all cases the changes were towards larger values. In the authors' opinion this
indicates that the values calculated by Crank & Gupta are too small. Our observation
is supported by the fact that as seen from I their values found by the FGL-method
were increased when the mesh-width was diminished.

Since we were able to trace the moving boundary closer to the termination point
than has been reported in I and II, no comparison was possible for the last five of
our results shown in the table.

In order to carry out the check made possible by (2.17) an estimate of /, is necessary.
Since none of the methods compared offers an acurate way of rinding tu approximate
bounds for this quantity were obtained by linear extrapolation from the two last of
our results in Table 1. We hereby found that 0-1972 < t1 < 01977. Using/, = 0-1974
the integral in (2.18) was found to be equal to 0166645 for h = 5.10"4 and 0166661
for h = 10"*, which should be compared with the exact value £.

After x0 had been found the concentration c was computed from (2.9) using the
standard Simpson's integration formula together with Newton's $ rule. The results
are shown in Tables 2 and 3.

In Table 2 on each time level the values in the top line are computed from (2.9),
those in the middle line correspond to (3.19) i.e. the approximate analytical solution
of I, and those in the bottom line are the results from the finite difference method as
given in Table 4.2 of I. As will be noted, our results and those from the approximate
analytical method are very close. This means that the quantity R in (2.10) which is
equal to the difference between these two set of results is very small for / ^ 0-050.
Since x0, which is the only quantity in (2.9) which was not known from the beginning,
only enters in c through R, it may be concluded that these two sets of results are very
close to the true values for t less than or equal to 0050.

For larger values of x the agreement with the results from the finite difference
method in I is excellent while, when x becomes smaller, the latter results deviate
somewhat from ours. Especially this is so when / too is small. The explanation
probably is that, as pointed out in I, the change of the boundary condition at x = 0
from c = 0 to dc/dx = 0 at t = 0 gives rise to computational difficulties for x ~ t ~ 0
as far as the finite difference method is concerned. Since we compute c from an explicit
integral formula such difficulties are avoided in our method of attack.

In Table 3 on each time level the top and the bottom lines again give our results and
those from the finite difference method of I, respectively, while the middle line is
found from the integral method as given in Table 6.1 of I. As is seen, the agreement
between our results and those from the finite difference method is quite good every-
where except again when both x and t are small. Here our results agree better with
those of the integral method. In this connection it should be borne in mind that the
values from the integral method of I are so adjusted that they agree with c(0, t) as
determined from the approximate analytical method.

In Table 4 results for the concentration at the sealed surface (x = 0) obtained by
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MOVING BOUNDARY PROBLEM 395

means of different methods are compiled. The results in the first row have been obtained
from (2.9) while those in the next three rows are taken from II, the abbreviations of
the various methods being explained in connection with Table 1. The results denoted
Approx. are computed from (3.4) which, as mentioned earlier, is identical with a

TABLE 3

Tabulated values are 106c. The first row on each time level gives values obtained from (2.9), the
second row shows values from the so-called integral-method of I and the third row values

from the FGL-method of I

V 00 01 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9

245176 237786 216782 185345 147853 108906 72539 41808 18752 4590
0051 245176 236403 213648 181831 145308 107868 72736 42571 19469 4957

245329 237966 217026 185652 148186 109216 72788 41981 18854 4635

223605 217168 198777 170979 137379 101928 68291 39451 17581 4129
0060 223605 215950 195945 167714 137974 101028 68767 40671 18809 4837

223746 217330 198992 171251 137684 102227 68548 39645 17705 4186

143177 139294 128082 110787 89295 65892 43018 23059 8232 603
0100 143175 138758 126795 109243 88096 65385 43176 23569 8703 751

143287 139414 128338 110996 89502 66112 43228 23232 8342 619

109129 106019 97025 83117 65795 46941 28667 13204 2873 0
0120 _ _ _ _ _ _ _ _ _ _

109228 106125 97149 83265 65963 47115 28827 13324 2924 0

0140

0150

77850

77937

63078
62981
63157

75351

75442

60845
61083
60928

68130

68233

54403
55236
54496

56988

57105

44503
45725
44602

43197

43322

32353
33529
32453

28416

28536

19583
20315
19668

14638

14730

8251
8443
8298

4204

4249

1005
962
1007

0

0

0
0
0

0

0

0
0
0

48823 46840 41136 32434 21927 11304 2890 0 0 0
0160 _ _ _ _ _ _ _ _ _ _

48893 46912 41212 32511 21996 11346 2890 0 0 0

0180

0190

0195

21781
21269
21824

9021
8151
9039

2884
1721
2880

20287
20771
20328

7817
8028
7827

1914
1304
1909

16066
17750
16096

4578
5315
4575

32
0
0

9942
11681
9950

799
925
750

0
0
0

3523
4387
3506

0
0
0

0
0
0

0
42
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0
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396 E. HANSEN AND P. HOUGAARD

formula obtained from Crank & Gupta's approximate analytical method. Finally,
the last row denoted Asymp. contains results computed from (3.3) in which a correction
found from our asymptotic solution of the integral equation has been added to the
results denoted Approx.

The table shows that some of the results obtained by the various finite difference
methods of Crank & Gupta are smaller than those denoted Approx. although, as
pointed out earlier, the latter ones constitute lower bounds for the exact values. In the

TABLE 4

Tabulated values are 106c at the sealed surface. The values computed by the integral-equation
method are compared to those obtained by the various finite-difference methods of Crank &
Gupta and to values computed from the approximate formula (3.19) and from the asymptotic

formula (3.16)

\Time
Method\

INT.-EQ.
F G L (Ax = 005)
™ p ((Ax = 010)
r \(Ax = 005)
FDS (Ax = 010)
Approx.
Asymp.

0040

2743
2742
2745
2742
2736
2743
2743

0060

2236
2234
2238
2234
2277
2236
2236

0100

1432
1430
1434
1429
1424
1432
1432

0120

1091
1089
1093
1089
1083
1091
1091

0140

779
111
780
776
771
778
778

0160

488
486
490
486
481
486
488

0180

218
216
219
216
210
213
216

0185

153
151
155
151
145
147
151

authors' opinion, the fact that Crank & Gupta's approximate analytical method in
certain cases leads to more correct results than some of the finite difference methods
illustrates the very high degree to which the physical idea underlying the approximate
method is able to account for a large part of the diffusion process. A further illustra-
tion of this is given by the fact that when the asymptotic correction is added, the
discrepancy from the results obtained from our integral equation method becomes
still smaller.

The numerical computations described in this paper were carried out on the IBM
370/165 computer of the Northern Europe University Computing Center.

Appendix

In this Appendix we describe the derivation of some of the formulas in Sections 2
and 3.

In order to write (2.8) in the form given by (2.9) and (2.10) we use the formula

G(x, x', f) = T r,5(;c-x')<5(<-O+0(x, x', f'-ol dt (Al)

which follows immediately from (2.3) and (2.2). Substituting G(x, x', t') in the second
integral of (2.8) by the right-hand side of (Al) and using the fundamental property of
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MOVING BOUNDARY PROBLEM 397

the delta function we rewrite (2.8) as

c(x', t') = i(l-x')2- G(x, x',t'~t)dxdt
Jo Jo

poo fl fl2f

+i —i(x,x',t'-t)(l-x)2dxdt. (A2)
Jo Jo dx2

When the last integral in (A2) is twice integrated by parts with respect to x and (2.4)
and (2.2) are used, (A2) becomes

c(x', O = i ( l - f G(0, x', t'-t) dt+ f f1 G(x, x , t'-t) dx dt. (A3)
JO J O J xo«)

Here, when integrated by parts, the first integral becomes identical with the second
and the third term in (2.9). In each term of G{x, x', t' — t) in the second integral the
square root of the exponent is introduced as a new variable of integration instead of x.
This integral is thereby found to be equal to the quantity R(x', t') given by (2.10).

The integral equation (2.11) is derived by differentiating (2.9) with respect to x'
and putting x' = xo(t) so that dc/dx (x\ t') = 0. In order to write the equation in the
form given by (2.11) we integrate by parts two terms in dR/dx (xr, t') which contain
1+x' in the exponent. We also introduce the term —(t' — t)~* in the integral, and the
compensating term — 2(t'/n)* outside, so that the integrand remains bounded in the
limit t ->• t'.

We prove that x0 given by (3.1) is an asymptotic solution of (2.11) by estimating
the various terms in (2.11) under the assumption that (3.1), and consequently (3.2),
are true. By straightforward estimates using (3.2) it is found that the sum of all the
terms on the right-hand side of (2.11) except the first two is O(^Jt' exp (~(2t')~l) for
t' -* 0, so that (2.11) becomes

(A4)
V-W1 / \ \ - " / /

Using (3.2) again we find that
/ 1 \ / / 1 \ \

(A5)

Inserting (A5) in (A4) we see that the assumption is confirmed.
In (3.3) the first three terms on the right-hand side are identical with the first three

terms on the right-hand side of (2.9). Thus, in order to derive (3.3) we must show that
the quantity R(x', t') given by (2.10) is represented asymptotically by the rest of the
right-hand side of (3.3) To do so we write

R(x', t') = 0(1 - x', t')+6(1+x', f) (A6)

where

W^k] J>fe]' <A7)
Here/ = f(t) = 1 -xo(t). For t' -» 0 the difference between the two integrals in (A7)
is exponentially smaller than each of them. Therefore, they must be combined into one
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398 E. HANSEN AND P. HOUGAARD

integral containing a single exponential in order that standard methods of asymptotic
evaluation can be applied. This may be done as follows. We introduce the monotone
substitutions

>-w=?ana z-w=<? <A8)

in the first and the second integral respectively and integrate by parts. Since /(0) = 0,
the end point contributions cancel so that we get

1 f*°° (n— f\2 1 r°° a2

Q(a,t') = - - r \ K?—fLexp(-y*)dy + - r \ -2exp(-z2)dz. (A9)

These two integrals may be combined into one to give

Oka, 0 = T V r ( 2 a~/ ( 0V(0 exp (-y2) dy, (A10)

where t is related to y through the first formula in (A8). In (A10) we substitute 2a—f(t)
by 2a and y by the variable z given by the second formula in (A8):

6(a, n~-£-\ -V ^P (-z2) dz. (All)

The relative errors introduced by these substitutions are exponentially small if fit')
« a. In (Al 1) we insert the asymptotic representation of f(t) = 1 — xo(t) as given by
(3.2) and introduce the variable T = t/t'. The integral in (All) then becomes

I f.
the relative error now being 0(t'). The asymptotic representation of this integral may
be evaluated by Laplace's method (Erde"lyi 1956: 36). The result is

The relative error is still 0(t'). (3.3) is now obtained when (A13) is used in (A6) and
the resulting expression for R(x', t') in turn is inserted in (2.9) for c(x', t').
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