
The Chain Rule and Implicit Function Theorems

1 The Chain Rule for Functions of Several Variables

First recall the Chain Rule for functions of one variable.

Chain Rule for Functions of One Variable. Let f be differentiable at a and let g be differentiable at f(a).
Then g ◦ f is differentiable at a and (g ◦ f)′(a) = g′(f(a))f ′(a).

The reader should be familiar with the concept of composition for functions of one variable. For example
the function arcsin(x3) is the composition of the function f(x) = x3 by the function g(x) = arcsin x. Notice
that the composition of g by f is a different function; namely, (f ◦g)(x) = arcsin3 x. We employ the Chain Rule

to determine
d

dx
arcsin(x3). Using the notation of the preceding example g′(x) =

1√
1− x2

and f ′(x) = 3x2.

By the Chain Rule
d

dx
arcsin(x3) = g′(x3)f ′(x) =

3x2

√
1− (x3)2

.

Similarly
d

dx
arcsin3 x = f ′(arcsin x)g′(x) = (3 arcsin2 x)

(
1√

1− x2

)
.

The Chain Rule for functions of several variables begins with a discussion of the type of functions to which
the rule applies. The outer function g should be a function of several variables; g : E ⊂ Rk → R. Consequently
the range of the inner function must be Rn but in addition the inner function should be a function of several
variables. Specifically let F : D ⊂ Rn → Rk. When the range of a function is more than one dimensional, we
introduce the so-called coordinate functions. (Recall studying r(t) = (x(t), y(t), z(t)),) So for each j = 1, 2, . . . , k
let fj : D ⊂ Rn → R such that for each P ∈ D we have F (P ) = (f1(P ), f2(P ), . . . , fk(P )). Guided by our
study of paths in Rn, we will say that the function is continuous (differentiable) at P means that for each
j = 1, 2, . . . , k the coordinate function, fj is continuous (differentiable) at P . Finally the composition g ◦ F is
obtained by replacing the jth variable of g by the function fj creating a new function h = g ◦ F . Specifically
h(x1, x2, . . . , xn) = g(f1(x1, x2, . . . , xn), f2(x1, x2, . . . , xn), . . . , fk(x1, x2, . . . , xn)). Then h : D ⊂ Rn → R.

In the first example the outer function, g, will a function of two variables and each of these variables will
be replaced by a function of one variable resulting in a function of one variable.

Example 1. Let g(x, y) = x3 arctan y Let x = sin t and let y = t2. Then h(t) = (sin t)3 arctan t2.

In the next example g will be a function of one variable and that one variable will be replaced by a function
of three variables resulting in a function of three variables.

Example 2. Let g(x) = ln x and let x(u, v, w) = u2 + vw. Then h(u, v, w) = ln(u2 + vw).

In the third example, g is a function of three variable and each of these variables is replaced by a function
of two variables. resulting in a function of two variables.

Example 3. Let g(u, v, w) = eu2+v2
cosw and let u(x, y) = x + y, v(x, y) = ln(xy) and let w(x, y) = x

y . Then

h(x, y) = e(x+y)2+(ln(xy))2 cos(x
y ).

The partial derivatives for all of the above examples can be computed my elementary techniques. But if all
that is known is the partial derivatives of the outer function, standard techniques don’t apply, but the Chain
Rule does.

Chain Rule for Fucntions of Several Variables. Let F : D ⊂ Rn → Rk with coordinate functions
fj : D ⊂ Rn → R for j = 1, 2, . . . , k and let g : E ⊂ Rk → R. Suppose F is differentiable at P0, an interior
point of D, (That is, fj is differentiable at P0 for each coordinate function fj.), and that g is differentiable at
F (P0) = (f1(P0), f2(P0), . . . , fk(P0)) an interior point of E. Then the function h = g ◦F is differentiable at P0

and for each i = 1, 2, . . . n
∂h

∂xi
=

∂g

∂y1

∂f1

∂xi
+

∂g

∂y2

∂f2

∂xi
+ · · ·+ ∂g

∂yk

∂fk

∂xi
.
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It can be useful the think of the function h as

h(x1, x2, . . . , xn) = g(f1(x1, x2, . . . , xn), f2(x1, x2, . . . , xn), . . . , fk(x1, x2, . . . , xn).

Then the formula for a partial derivative of h can be interpreted as multiplying the partial derivative of g with
respect to one of its variables by the partial derivative of the function replacing that variable with respect to
the variable of differentiation and adding all such products together.

It is easy to overlook the first assertion of the theorem; namely, that if F is differentiable at P0; that is, if
each fj is differentiable at P0 and if g is differentiable at F (P0), then h is differentiable at P0. Remember being
able to compute the partial derivatives doesn’t imply that the function is differentiable.

Example 4. Let g, x and y be as in Example ??. Then

h′(t) =
∂g

∂x
x′(t) +

∂g

∂y
y′(t) = 3x2 arctan y cos t +

x3

1 + y2
2t = 3 sin2 t arctan(t2) +

sin3 t

1 + t4
.

Example 5. Let g and x be as in Example ??. Then

∂h

∂u
= g′(x)

∂x

∂u
=

1
x

2u =
1

u2 + vw
2u

∂h

∂v
= g′(x)

∂x

∂v
=

1
x

w =
1

u2 + vw
w

and
∂h

∂w
= g′(x)

∂x

∂w
=

1
x

u =
1

u2 + vw
u

Example 6. Let g, u, v, and w be as in Example ??. Then

∂h

∂x
=

∂g

∂u

∂u

∂x
+

∂g

∂v

∂v

∂x
+

∂g

∂w

∂w

∂x
= (2ueu2+v2

cos w)1 + (2veu2+v2
cosw)

1
x

+ eu2+v2
(− sin w)

1
y

= 2(x + y)e(x+y)2+(ln(xy))2 cos
(x

y

)
+ 2 ln(xy)e(x+y)2+(ln(xy))2 cos

(x

y

) 1
x

+ e(x+y)2+(ln(xy))2
(
− sin

(x

y

))1
y

∂h

∂y
=

∂g

∂u

∂u

∂y
+

∂g

∂v

∂v

∂y
+

∂g

∂w

∂w

∂y
= (2ueu2+v2

cosw)1 + (2veu2+v2
cosw)

1
y

+ eu2+v2
(− sin w)(− x

y2
)

= 2(x + y)e(x+y)2+(ln(xy))2 cos
(x

y

)
+ 2 ln(xy)e(x+y)2+(ln(xy))2 cos

(x

y

)1
y

+ e(x+y)2(ln(xy))2
(
− sin

(x

y

))
(− x

y2
)

Each of the formulas derived in each of the above examples can be verified by computing the corresponding
derivative directly from the formula for h.

2 Implicit Function Theorems

Several of the problems in the text pertain to the Implicit Function Theorem. The theorem give conditions
under which it is possible to solve an equation of the form F (x, y) = 0 for y as a function of x.

Implicit Function Theorem I. Let F : D ⊂ R2 → R and let (x0, y0) be an interior point of D with
F (x0, y0) = 0. Suppose both first order partial derivatives of F exist in D and are continuous at (x0, y0) with
Fy(x0, y0) 6= 0. Then there is an interval I ⊂ R with x0 an interior point of I and a function φ : I → R such
that φ is differentiable on I, φ(x0) = y0 and F (x, φ(x)) = 0 for each x ∈ I.

The Chain Rule for Functions of Several Variables is then used to compute a formula for φ′(x). Because
F (x, φ(x)) = 0 for all x ∈ I, the derivative of the function h(x) = F (x, φ(x)) is 0. But this derivative can also
be computed using the Chain Rule for Functions of Several Variables.

0 = F1(x, φ(x)) + F2(x, φ(x))φ′(x).

Solving this equation for φ′(x) yields

φ′(x) =
−F1(x, φ(x))
F2(x, φ(x))

.

It is also possible to “solve” an equation of the form F (x, y, z) for z as a function of z and y.
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Implicit Function Theorem II. Let F : D ⊂ R3 → R and let (x0, y0, z0) be an interior point of D with
F (x0, y0, z0) = 0. Suppose all first order partial derivatives of F exist in D and are continuous at (x0, y0, z0)
with Fz(x0, y0, z0) 6= 0. Then there is a rectangle R ⊂ R2 with (x0, y0) an interior point of R and a function φ :
R → R such that φ has continuous first order partial derivatives on R, φ(x0, y0) = z0 and F

(
(x, y, φ(x, y)

)
= 0

for each (x, y) ∈ R.

As before the Chain Rule for Functions of Several Variables is then used to derive a formulas for φ1(x, y)
and for φ2(x, y). Because F

(
(x, y), φ(x, y)

)
= 0 for all (x, y) ∈ R, the partial derivatives of the function

h(x, y) = F
(
(x, y, φ(x, y)

)
are 0. But these partial derivatives can also be computed using the Chain Rule for

Functions of Several Variables. First compute the partial derivative with respect to x.

0 = F1

(
(x, y, φ(x, y)

)
+ F3

(
(x, y, φ(x, y)

)
φ1(x, y).

Solving this equation for φ1(x, y) yields

φ1(x, y) =
−F1

(
(x, y, φ(x, y)

)

F3

(
(x, y, φ(x, y)

) .

As an exercise, you are encouraged to show that

φ2(x, y) =
−F2

(
(x, y, φ(x, y)

)

F3

(
(x, y, φ(x, y)

) .

These types of applications of the Chain Rule for Functions of Several Variables are typical of its use. It
isn’t used to compute specific partial derivatives. The Chain Rule from first semester calculus is sufficient for
that purpose.
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