
Integrating Transformer and Autoencoder Techniques with
Spectral Graph Algorithms for the Prediction of Scarcely
Labeled Molecular Data

Nicole Hayesa, Ekaterina Rapinchuka,b,∗ and Guo-Wei Weia,c,d

aDepartment of Mathematics, Michigan State University, MI 48824, USA.

bDepartment of Computational Mathematics, Science and Engineering, Michigan State University, MI 48824, USA.

cDepartment of Electrical and Computer Engineering, Michigan State University, MI 48824, USA.

dDepartment of Biochemistry and Molecular Biology, Michigan State University, MI 48824, USA.

A R T I C L E I N F O

Keywords:

spectral graph

transformer

autoencoder

small data

scarcely labeled data

R-S scores

A B S T R A C T

In molecular and biological sciences, experiments are expensive, time-consuming,
and often subject to ethical constraints. Consequently, one often faces the challenging
task of predicting desirable properties from small data sets or scarcely-labeled data
sets. Although transfer learning can be advantageous, it requires the existence of a
related large data set. This work introduces three graph-based models incorporating
Merriman-Bence-Osher (MBO) techniques to tackle this challenge. Specifically, graph-
based modifications of the MBO scheme is integrated with state-of-the-art techniques,
including a home-made transformer and an autoencoder, in order to deal with scarcely-
labeled data sets. In addition, a consensus technique is detailed. The proposed models
are validated using five benchmark data sets. We also provide a thorough comparison
to other competing methods, such as support vector machines, random forests, and
gradient boosted decision trees, which are known for their good performance on small
data sets. The performances of various methods are analyzed using residue-similarity
(R-S) scores and R-S indices. Extensive computational experiments and theoretical
analysis show that the new models perform very well even when as little as 1% of
the data set is used as labeled data.

1. Introduction
In recent years, machine learning has significantly impacted many fields, including science, technology,
and medicine [28, 32, 50]. For instance, machine learning and deep learning methods have been applied
to drug discovery, which has traditionally been a long and expensive process [16]. In particular, drug
discovery requires the knowledge of an assortment of molecular properties, such as toxicity, permeability,
binding affinity, solubility, etc. Determining these properties experimentally is costly and time-consuming
and may involve ethical concerns, so in silico (i.e., computational) methods for predicting such molecular
properties have become popular [4, 16]. This work develops new computational techniques for making
accurate predictions of many kinds of molecular properties.

Overall, a significant challenge of machine learning algorithms, and in particular deep learning methods,
is their reliance on a sufficient amount of labeled data to make accurate predictions about unlabeled data
[4, 42]. Because of the complexity, cost, and time required to obtain molecular information experimentally,
it is often difficult to obtain large labeled molecular data sets [25, 27, 49, 52, 53]; this signifies a need for
algorithms that can accurately predict molecular properties with limited labeled data [5, 42].
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One technique which has demonstrated predictive success for small scientific data sets is transfer learning,
which aims to improve the performance of machine learning methods on a target domain by transferring
the knowledge contained in a different but related domain; in this case, it is required that the two tasks
have a relationship between each other. For example, the information obtained while learning to identify
passenger cars could be used when trying to recognize pickup trucks or other large vehicles. Overall,
transfer learning techniques can be viewed from the model viewpoint [64]. Transfer learning techniques
that incorporate model-level regularizers in the objective function of the learner include the domain
adaptation machine [7, 8], the consensus regularizer [38, 63], and the domain-dependent regularizer [9, 29].
Other transfer learning techniques, such as parameter sharing [36, 62] and parameter restriction [55], focus
on the parameters of the models. In addition, many scientists use various deep learning procedures to
build their transfer learning models. Some examples of transfer learning approaches using deep learning
techniques include transfer learning with deep autoencoders [61], transfer learning motivated by deep
residual learning [37], a selective adversarial network [3], domain-adversarial neural network [14] and
domain adversarial networks for the multisource transfer learning problem [60].

Jiang et al. [27] improved on the performance of existing transfer learning and deep learning methods
for small data sets by introducing a boosting tree-assisted multitask deep learning (BTAMDL) framework,
which consists of multitask deep transfer learning and gradient boosting decision trees (GBDT) in sequence.
GBDT typically performs well on small data sets, while deep learning performs better on larger data
sets, and in fact can perform significantly worse than traditional machine learning methods on small
data sets [10]. The BTAMDL model thus pairs small scientific data sets with related large data sets and
utilizes multitask deep transfer learning to simultaneously learn the target and source tasks (involving the
small and large data sets, respectively) and transfer knowledge from the source to the target task. Unlike
traditional multitask learning, which may attempt to benefit both related tasks, the BTAMDL framework
only focuses on improving the performance of the small data set. Although the framework outperformed
state-of-the-art methods on selected small data sets, its applications are limited to cases in which there exists
a large data set that is sufficiently similar to the target small data set. Also, the performance of BTAMDL
relies on the quality of the large datasets, which may be difficult to ensure in practice [27].

In addition to transfer learning, active learning has been proposed for data sets with a small amount of
labeled elements. In particular, active learning is a subset of machine learning which designs techniques
that are able to interactively query a user to label some data elements. Specifically, in active learning, a
method selects a subset of the most useful unlabeled data elements, which the human annotator then
labels. The overall goal of active learning is to maximize a model’s performance gain while using the fewest
labeled data samples possible. Active learning techniques can be divided into membership query synthesis
[1, 31], stream-based selective sampling [6, 33], and pool-based active learning from application scenarios
[34, 51]. Since deep learning methods often require a lot of labeled data, many deep active learning works
have been developed. Some deep active learning techniques include deep Bayesian active learning [13],
deep active learning for link prediction in knowledge graphs [45], farthest first active learning [21], active
learning with incremental neural architecture search [22], and deep reinforcement active learning [35].

However, the proposed methods of this work utilize a self-supervised learning approach for cases of low
label rates. While traditional supervised machine learning methods require a labeled training data set,
from which the algorithm attempts to learn the underlying pattern or structure of the data, self-supervised
learning (SSL) uses unlabeled data, making it useful in cases where labeled data is difficult to acquire,
such as with scientific data sets [46]. SSL selectively masks portions of unlabeled data, allowing the model
to be trained in a supervised manner. One example of a self-supervised technique is one by Chen et al.
[5], which involves a self-supervised learning framework to pretrain models from hundreds of millions
of unlabeled molecules from multiple publicly available chemical databases. Their proposed bidirectional
encoder transformer model, which generates molecular fingerprints that can subsequently be passed to
machine learning algorithms for prediction, demonstrated state-of-the-art performance on regression and
classification tasks involving molecular data sets. Although their SSL platformnce was pretrained on
unlabeled data, the downstream tasks require labeled data; in this particular study, Chen et al. used 90%
of each molecular data set as their training set. One of the present aims is to examine the applicability
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of this transformer model on much lower amounts of labeled data. In particular, the proposed methods
incorporate both autoencoder and transformer methods, to be discussed shortly in more detail, which do
not require labeled data to generate latent-space vectors and can be used as fingerprints for molecular
prediction. Furthermore, the proposed techniques incorporate variants of a graph-based Merriman-Bence-
Osher (MBO) technique [18, 41, 42], which has been shown to perform successfully on data sets with low
amounts of labeled data, obtaining accurate results with at most 1% to 5% of data as the training set [18, 42].

In addition, the proposed techniques incorporate molecular fingerprints for multi-task learning. In
fact, methods using molecular fingerprints based on three-dimensional (3D) structures, which capture
molecular spatial and structural information, have recently been successful in molecular classification
and prediction problems [4, 5, 15]. However, 3D molecular data sets are complex and suffer from high
dimensionality. Furthermore, methods using 3D fingerprints have limited applicability due to their reliance
on the availability of reliable 3D molecular data, which can be difficult to obtain [4, 5]. Two-dimensional
(2D) molecular fingerprints are easier to obtain and less computationally complex because they do not
depend on 3D structural information, such as stereochemistry of molecules [4, 5, 15]. Moreover, Gao
et al. [15] observed that, while this lack of complexity in 2D fingerprints makes them less effective
than 3D fingerprints in predictions involving macromolecules like proteins, 2D-fingerprint-based models
perform as well as 3D-fingerprint-based models in predicting toxicity, solubility, partition coefficient and
protein–ligand binding affinity (for models based only on ligand structure).

Therefore, the proposed algorithms incorporate 2D molecular fingerprints. Overall, there are numer-
ous methods for generating fingerprints from 2D molecular data sets, including four main categories:
substructure key-based fingerprints, topological or path-based fingerprints, circular fingerprints, and
pharmacophore fingerprints [4, 15]. Another method uses an autoencoder [17], which typically consists
of two neural networks: an encoder and a decoder. The encoder converts an input, such as 2D molecular
data, into a fixed-size latent-space representation. The decoder aims to reconstruct the latent-space
representation to recover the input. This process is unsupervised, meaning it needs no labels for the data.
Moreover, the latent-space representation generated by the encoder can be extracted as a fingerprint for
other tasks. Similarly, Chen et al. [5] proposed a method for generating fingerprints using a transformer,
which is based on the attention mechanism, for SSL on unlabeled data. Their usage of SSL eliminated the
need for a complete autoencoder with the encoder-decoder framework, allowing them to encode molecular
data using only an encoder, specifically a bidirectional encoder transformer. The transformer is more
easily parallelizable and achieves faster training than recurrent neural network (RNN)-based autoencoder
models. The method in [5] achieved very good results in both molecular classification and regression.

Overall, in this work, we propose three new machine learning models: an autoencoder coupled with an
MBO scheme (AE-MBO), a bidirectional encoder transformer coupled with an MBO scheme (BT-MBO), and
an extended-connectivity fingerprint (ECFP) algorithm coupled with an MBO scheme (ECFP-MBO). We
also detail a consensus model (Consensus-MBO). We validate these models on five benchmark classification
data sets. In particular, we evaluate our models’ performance on various amounts of labeled data, including
as little as 1% labeled data. Our AE-MBO model combines the autoencoder model developed earlier [17]
and the graph-based MBO method [18]. The encoder from the autoencoder converts 2D molecular data in
simplified molecular input line entry specification (SMILES) [58] format to a latent-space representation.
These latent-space vectors serve as autoencoder-based molecular fingerprints (AE-FPs), which are then
used as features in the MBO method. Similarly, our BT-MBO model integrates the bidirectional encoder
transformer developed earlier [5] and the graph-based MBO method. The transformer converts SMILES
input to latent-space vectors called bidirectional transformer-based fingerprints (BT-FPs), which are
subsequently passed to the MBO algorithm for the classification task. Our ECFP-MBO method utilizes
the circular fingerprint generator from the RDKit library [47], which produces ECFPs that serve as an input
to our MBO method. Additional details of the autoencoder, transformer, and ECFP models are discussed
in Section 2, and detailed results of the methods on the five classification data sets are given in Section 3.

The main advantage of our proposed models is their ability to perform accurately even in cases of a small
amount of labeled elements, a significant feat due to scarcity of labeled data for many applications.
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2. Methods
In this section, we discuss the details of the proposed AE-MBO (autoencoder with MBO), BT-MBO
(bidirectional transformer with MBO), ECFP-MBO (extended-connectivity fingerprints with MBO), and
Consensus-MBO methods used in our work.

2.1. Data Preprocessing
Our proposed methods require data consisting of SMILES strings of molecular compounds as well as a label
corresponding to each compound. In the present work, only binary classification problems is considered,
but the process for the multiclass case is similar. We test our models on five data sets, summarized in Table
1, each of which contains SMILES strings and labels in addition to other molecular data. Further details
of the contents of the five data sets are discussed in Section 3. Thus, we first accordingly extract only the
necessary information from each data set: a vector of SMILES strings and a corresponding vector of binary
labels. Upon obtaining these vectors for each data set, we then construct AE-FPs as discussed in Section 2.3,
BT-FPs as discussed in Section 2.4, and ECFPs as discussed in Section 2.5, which are then passed as features
for our MBO algorithm as discussed in Section 2.2.

2.2. MBO scheme
The MBO scheme utilized in the present work is based on the techniques outlined in the literature [18, 42],
which adapt the original MBO algorithm [43] to the important tasks of data classification and segmentation.
Our MBO scheme relies on a similarity graph-based framework represented by a graph G = (V ,E), where
V is the set of vertices representing the data set elements, and E is the set of edges connecting some pairs of
vertices. Moreover, we consider a weight function w ∶ V ×V → ℝ, which measures the degree of similarity
between pairs of vertices; the value w(i, j) represents the degree of similarity between vertices i and j. A
large value of w(i, j) indicates a high degree of similarity between vertices i and j, while a small value of
w(i, j) indicates that the vertices are dissimilar. Overall, the choice of weight function depends on the data
set at hand, but one commonly used weight function is the Gaussian function:

w(i, j) = exp
(

−
d2(i, j)
�2

)

,

where d(i, j) represents the distance between data elements represented by vertices i and j, � > 0 [18, 42].

We can define a weight matrix W by Wij = w(i, j) and let the degree of a vertex i ∈ V be di =
∑

j∈V w(i, j).
If we define D as the diagonal matrix with diagonal elements {di}, then the graph Laplacian is defined as

L = D −W. (1)

The goal of the MBO algorithm for our data classification problem is to generate an optimal label matrix
U = (u1,… ,uN )T , where ui ∈ ℝ2 represents the probability distribution over the classes for data element
represented by vertex i. Each vector ui is an element of the Gibbs simplex with m vertices, where m is the
number of classes:

Σm ∶=

{

(z1, ..., zm) ∈ [0, 1]m|
m
∑

k=1
zk = 1

}

(2)

The vertices of this simplex are given by the unit vectors {ei}, with only one nonzero entry of 1, which
represent nodes belonging exclusively to each of the classes.

In general, many graph-based optimization-based data classification problems aim to minimize the energy
E(U) = R(U) + Fid(U), where U is the data classification matrix, with each row representing a probability
distribution of a data element over all classes,R(U) is a regularization term that contains the graph weights,
and Fid(U) is a fidelity term that incorporates labeled points or other information [18, 42].
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One term that can be used for Fid(U) is an L2 fit to all elements with known class, i.e., all labeled elements.
For the regularization term R(U), one can consider a variant of the Ginzburg Landau functional [18, 42],
which is related to the total variation functional often used in image processing applications. To minimize
the energy E in the L2 sense in the continuous case, one can apply the gradient descent procedure and
obtain a modified Allen-Cahn equation containing a forcing term. Applying a time-splitting scheme to this
equation yields an algorithm that alternates between diffusion and thresholding steps, where the diffusion
step involves the heat equation with a forcing term. In a graph-based framework, the Laplace operator in
the heat equation can be replaced by a version of the graph Laplacian (1). For both the binary and multiclass
case, the thresholding step can be replaced by displacement toward the closest vertex in the Gibbs simplex
(2), as further derived in the literature [18, 42].

Algorithm 1 MBO Algorithm (based on techniques in [40, 42])

Require: Labeled dataℒ = {(xi, yi)}Ni=1, where yi is the label of the compound whose fingerprint is xi, N (#
of data set elements), Nn (# of nearest neighbors), Ne (# of eigenvectors to be computed), C , dt > 0, Nt
(maximum # of iterations), Np (# of labeled points or # of points in training set), Nl (# of labeled sets),
Ns (# of times to apply diffusion operator in MBO method), m (# of classes), Γ (vector with 1 for labeled
nodes and 0 otherwise).

Ensure: uend, where each row of uend is a probability distribution of data point xi over the two classes.
1: Construct graph with Nn nearest neighbors or go straight to Step 3 using the Nyström technique
[2, 11, 12] (useful for very large data sets).
2: Compute the graph Laplacian L.
3: Compute (or approximate using the Nyström method) the first Ne eigenvalues Λ and eigenvectorsΦ
of the graph Laplacian.
4: Complete the following steps:

for i = 1→ Nl do
Randomly generate N × 1 vector Γ, where Γj = 1 for Np labeled points and Γj = 0 otherwise.

U 0
ik ← rand((0, 1)), except for labeled nodes, where u0i ← ek for labeled nodes, where k is the true

class.
u0i ← projectT oSimplex(u0i ), where ui is itℎ row of U0.

U ← U0

A ← Φ′U, B ← 0, E ← 1 + (dt∕Ns)Λ

for i = 1→ Nt do
for k = 1→ Ns do

for j = 1→ m do
Aj ← (Aj − (dt∕Ns)Bj).∕E

end for
un+1i ← ΦA
B ← C(Φ′(Γ ⋅ (U − U0))), with ⋅ indicating row-wise multiplication.

end for
un+1i ← projectT oSimplex(un+1i )

un+1i ← ek, where k is closest simplex vertex to un+1i (i.e., column of un+1i with highest probability)

end for
end for
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Accordingly, the MBO algorithm used in the present work can be summarized as follows. Given the input
data (AE-FPs, BT-FPs, or ECFPs, along with labels), a graph with a specified number of nearest neighbors
Nn is constructed. The graph Laplacian and a specified number Ne of eigenvalues and eigenvectors are
computed from the graph. A subset of the input data is selected as the training set, or labeled set, and
the remainder is unlabeled for testing. An initial guess for U is randomly generated, where the rows
corresponding to labeled points are given by their respective unit vectors {ek} in (2). Then, each successive
iterate of U is obtained via the following steps:

1. Diffusion: obtain Un+
1
2 from heat equation with forcing term, applied Ns times.

2. Projection to simplex: obtain Un+1 by projecting each row of Un+
1
2 onto (2).

3. Displacement: Each row of the projected matrix from step 2 is replaced by its closest vertex ek in the
simplex (2).

This process is repeated for a set number of iterations Nt to obtain a class prediction for each data point.

We note that the scheme’s efficiency is increased by using spectral techniques and a low-dimensional
subspace spanned by only a small number of eigenfunctions. In particular, the goal is to write the matrix U
as the product ΦA, where Φ is the matrix of Ne eigenvectors of the graph Laplacian and A is a coefficient
matrix to be determined. The forcing term in the diffusion step can also be written in terms of the Ne
eigenvectors of the graph Laplacian. This spectral technique allows the diffusion operation of the MBO
method to be decomposed into faster matrix multiplications, while sacrificing little accuracy in practice.

In addition, the MBO procedure can be efficiently used for very large data sets using the Nyström technique
[2, 11, 12]. In particular, the Nyström procedure allows the approximation of the Ne eigenvectors of the
graph Laplacian without the need to calculate all the graph weights; in fact, only a very small portion of
them need to be computed.

The details of this MBO method are outlined in Algorithm 1.

2.3. Autoencoder
We now outline the procedure for generating AE-FPs, which is summarized in Algorithm 2.

An autoencoder typically consists of two neural networks: an encoder and a decoder. The encoder aims to
convert some input (in this case, in simplified molecular-input SMILES format) to a latent space vector of
a specified length (in this case, 512). The decoder then attempts to recover the initial input from its latent
space representation. Specifically, the decoder converts the latent space representation to the probability
distribution of the target, which can in turn predict the target of interest (for instance, the SMILES string of
a molecule). The autoencoder is trained to minimize the error of this prediction [5]. Because the encoder and
decoder do not require data labels to construct the latent space representation of the input or the associated
prediction, autoencoders are unsupervised, allowing for prediction of unlabeled data sets.

The intermediate latent space vector in an autoencoder corresponding to each input sequence can be
thought of as encoding the "meaning" of that input sequence [16]. In fact, the latent space vectors are often
used as fingerprints for other tasks, such as the prediction of various molecular properties [65]. In such
cases, the decoder does not contribute to the final prediction and instead only aids in training the network
[5]. In the present work, we take this approach, using the autoencoder network developed by Gao et al. in
an earlier work [17], in which the encoder and decoder are comprised of long short-term memory (LSTM)
networks, to generate a fingerprint (AE-FP) corresponding to each input molecule. The fingerprints can
then be used as features in any data classification algorithm to predict the label for each molecule. In this
work, we propose utilizing an MBO scheme, outlined in Section 2.2, to classify the molecules, resulting in
an integrated AE-MBO model. We also compare the results of our proposed model with methods using
the AE-FPs as features in other data classification algorithms in Section 3. Before passing the AE-FPs to the
MBO algorithm and the comparison models for data classification, we scale the features to have zero mean
and unit variance.
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Algorithm 2 AE-MBO Algorithm (implemented using [17])

Require: Unlabeled data U = {si}Ni=1, where si is the SMILES string of a molecular compound, pretrained
LSTM model, a dictionary that assigns an integer value to each SMILES symbol.

Ensure: Set of fingerprints ℱAE = {xi}Ni=1.
1: Load pretrained LSTM model.
2: Extract hidden features from U using the pretrained model:
Initialize empty list of hidden features ℱAE of length N .
for i = 1→ N do

Generate a tensor ti with dimension equal to the length of the string si, where each element of ti is
the integer dictionary value of the character in the corresponding position in si.

Encode ti into a tensor Vi of shape (1, 1, 512) using pretrained LSTM model.
Reshape Vi into a one-dimensional vector xi.
Append xi to list of hidden features.

end for
3: Save set of fingerprints ℱAE = {xi}Ni=1 from hidden features.

4: Scale features ℱAE = {xi}Ni=1 to have zero mean and unit variance.

5: Send scaled features ℱAE = {xi}Ni=1 to the MBO method in Algorithm 1.

2.4. Transformer
We now outline the process for generating BT-FPs, the details of which are summarized in Algorithm 3.

Many models designed to process sequential data, as in language processing, utilize the encoder-decoder
structure of the autoencoder described in Section 2.3 integrated with recurrent neural networks (RNNs) or
convolutional neural networks (CNNs). It is advantageous to further connect the encoder and decoder via
an attention mechanism, which informs the decoder which portions of the input are most relevant. Such
models have demonstrated some of the best performance in sequential processing tasks [56]. Vaswani et
al. [56] introduced a transformer model based solely on an attention mechanism, avoiding the reliance on
RNNs and CNNs. Unlike RNNs, for instance, this proposed transformer model does not need to process
sequential data in order, allowing for more parallelization and, consequently, faster training.

The transformer model used in the present work was designed in earlier work [5] and was constructed
based solely on an attention mechanism for self-supervised learning, as in the literature [56]. The model
in Ref. [5], i.e., the self-supervised learning platform (SSLP), pretrains deep learning networks using over
700 million unlabeled SMILES strings. The platform constructs data-mask pairs by masking sections of
each SMILES input, which allows the SSLP to train the networks in a supervised manner, despite the data
itself being unlabeled. By using SSL, the model is able to encode SMILES input using only a bidirectional
encoder transformer rather than a full encoder-decoder structure [5].

Chen et al. [5] constructed three SSLP models trained on three different data sets: one model pretrained on
ChEMBL [19], one model pretrained on the union of ChEMBL and PubMed [30], and one model pretrained
on the union of ChEMBL, PubMed, and ZINC [26]. The sizes of these data sets range from over one million
to over 700 million [5]. The results of the predictive tasks associated with these three models are given
in Table 5 and demonstrate that the model trained on the largest data set did not always have the best
performance. In the present work, we use the SSLP model pretrained on ChEMBL only. In [5], this model
achieved the best predictive performance of the three pretrained models on three of the five benchmark
data sets considered in this work. Additionally, Chen et al. fine-tuned their selected pretrained model for
specific downstream tasks [5]. In the present work, we generated BT-FPs directly for each data set without
fine-tuning the model pretrained on ChEMBL.
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As in the AE-MBO model described in Section 2.3, the proposed BT-MBO method converts SMILES input
for a given molecular compound to a latent space vector, which is extracted as a fingerprint (BT-FP). The
BT-FPs for all molecules in a data set are then compiled into a set of features for that data set. The features
are scaled to have zero mean and unit variance and subsequently passed to an MBO algorithm, which
ultimately predicts the molecular labels. For comparison, we also passed these scaled BT-FPs as features to
other data classification algorithms, as outlined in Section 3.

Algorithm 3 BT-MBO Algorithm (incorporating similar techniques as in [5])

Require: Unlabeled data U = {si}Ni=1, where si is the SMILES string of a molecular compound, a selected
pretrained model (from model pretrained on ChEMBL, model pretrained on union of ChEMBL and
PubMed, or model pretrained on the union of ChEMBL, PubMed, and ZINC), a dictionary that assigns
an integer value to each SMILES symbol.

Ensure: Set of fingerprints ℱBT = {xi}Ni=1.
1: Preprocessing: binarize input SMILES data.
2: Load selected pretrained model.
3: Extract hidden information from U using the pretrained model:
Initialize empty dictionary Dhidden of length N of hidden features.
for i = 1→ N do

Generate a tensor ti with dimension equal to the length of the string si, where each element of ti is
the integer dictionary value of the character in the corresponding position in si.

Pass ti to the bidirectional encoder transformer from the pretrained model and extract the inner
state from the last hidden layer Ti, whose dimensions are (li, 1, 512) (where li is the length of ti).

Reshape Ti into a tensor Vi with dimensions (li, 512).
Save Vi as ith element of Dhidden.

end for
4: Generate fingerprints from hidden information:
Initialize empty list of fingerprints ℱBT of length N .
for i = 1→ N do

Extract first row xi from the ith element of Dhidden.
Save xi as ith fingerprint in ℱBT.

end for
5: Scale features ℱBT = {xi}Ni=1 to have zero mean and unit variance.

6: Send scaled features ℱBT = {xi}Ni=1 to the MBO method in Algorithm 1.

2.5. Extended-Connectivity Fingerprints
Extended-connectivity fingerprints (ECFPs) are a type of circular fingerprints used for molecular charac-
terization. ECFPs aim to encode features that represent molecular activity. ECFPs have been shown to be
useful in molecular prediction tasks involving drug activity [5, 48]. The ECFP algorithm is a variation on the
Morgan algorithm [44], which uses an iterative process to identify each atom in a molecule with a numerical
label. The standard Morgan algorithm first records an initial atom identifier from numbering-invariant
information about the atoms. Then, it generates new identifiers using the identifiers from the previous
iteration, where new identifiers are independent of the original atom numbering in the molecule. This
algorithm continues until the atom identifiers are as unique as possible, comprising a canonical numbering
of the atoms, and the intermediate identifiers are subsequently discarded [48].
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Instead of proceeding until identifier uniqueness or near-uniqueness is achieved, the ECFP algorithm
terminates after a set number of iterations. Also, the ECFP algorithm stores the initial atom identifiers
and identifiers from intermediate steps rather than discarding them. In fact, the extended-connectivity
fingerprint is defined by the set of initial, intermediate, and final atom identifiers. Because it does not aim
for a unique, canonical numbering as the standard Morgan algorithm does, the ECFP algorithm is less
computationally expensive and generates identifiers that are comparable between different molecules [48].

To generate ECFPs, we utilized functions from the RDKit library [47] that build circular fingerprints based
on the Morgan algorithm. These RDKit functions require a radius parameter, which indicates the number
of iterations (i.e., updates to the atom identifiers) the algorithm should perform. Each iteration considers a
neighborhood of increasing radius centered at each atom to update that atom’s identifiers. Accordingly, the
RDKit radius parameter describes the radius of the largest neighborhood the algorithm considers for each
atom. However, ECFPs are typically identified by the diameter, rather than the radius, used to generate
them, where the diameter is then twice the number of iterations the algorithm performs [48]. To remain
consistent with ECFP naming conventions, we thus refer to all ECFPs generated in the present work using
the diameter parameter. More information about the ECFP notation used here can be found in Section 3.2.

As in the AE-MBO and BT-MBO methods, we pass the set of ECFPs for each data set as features to an MBO
scheme, resulting in an integrated ECFP-MBO model. We also generated comparisons, reported in Section
3, by passing the ECFPs as features to other data classification algorithms. Unlike in the AE-MBO and BT-
MBO methods, we did not scale or otherwise normalize the ECFP features, since all entries in the ECFPs
are either 0 or 1. Further details of the ECFP-MBO model used in the present work are given in Algorithm 4.

Algorithm 4 ECFP-MBO Algorithm (incorporating similar techniques as in [48], implemented using [47])

Require: Unlabeled data U = {si}Ni=1, where si is the SMILES string of a molecular compound, diameter d,
number of bits Nbits (also called folding length).

Ensure: Set of fingerprints ℱECFP = {xi}Ni=1.
1: Initial assignment: assign each atom an integer identifier, ignoring hydrogen atoms and bonds to
hydrogen atoms. Store identifiers in ℱECFP.
2: Iterative updating:
for i = 1→ d

2 do

Update each identifier to indicate (1) its neighbors’ identifiers and (2) if it is a duplicate of other
features.

Store identifiers in ℱECFP.
end for
3: Duplicate identifier removal: reduce feature duplicates to a single feature.
4: Send fingerprints ℱECFP = {xi}Ni=1 stored as bit vectors with length Nbits to the MBO method in
Algorithm 1.

2.6. Consensus Model
To attempt to achieve better performance among the proposed MBO-integrated methods, we introduce
the Consensus-MBO method, a consensus model of our proposed methods. To generate a prediction using
the consensus model for a given data set and percentage of labeled data, we first identify the two best-
performing MBO-integrated models from among BT-MBO, AE-MBO, and ECFP-MBO (results displayed
and discussed in Section 3.4). Then, instead of outputting the predicted labels, we output an N × 2 matrix
of probabilities from each of the two selected proposed methods, where the (i, j)th entry represents the
probability that the ith data element is in class j. For each data element, we average these probabilities
over the two methods and threshold the averaged probability to get the consensus prediction. In the binary
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Data Set Description # Compounds Source
Ames Ames mutagenicity 6512 [23]
Bace �-Secretase 1 inhibition 1513 [54]
BBBP Blood–brain barrier penetration 2039 [39]
Beet Toxicity in honeybees 254 [57]

ClinTox Clinical trial results 1478 [20]

Table 1
The five classification data sets used in benchmarking our models.

classification task, this thresholding step amounts to assigning each data element to the class with higher
averaged probability.

3. Results and Discussion
3.1. Data Sets
We tested the proposed models on five benchmark classification data sets:

• The Ames data set contains results of the bacterial reverse mutation assay (Ames test), which detects
mutagenicity in vitro. The data set includes SMILES strings of 6,512 compounds paired with their
binary labels (positive or negative mutagenicity) from the Ames test results [23].

• The Bace data set consists of binding data for 1,513 inhibitors of human �-secretase 1 (BACE-1),
namely the SMILES strings of the inhibitor compounds and their corresponding binary binding result
labels [54].

• The BBBP data set records results of a study on the blood-brain barrier permeability. The data
set contains SMILES strings of 2,039 compounds and binary labels indicating each compound’s
penetration or non-penetration of the blood-brain barrier [39].

• The Beet data set contains results of a study on toxicity of pesticides in honeybees. For each of
the 254 compounds in the data set (given as SMILES strings), the study recorded an experimental
value of the amount of active substance per bee, then classified compounds as positive if their
experimental values were above a certain threshold and negative otherwise. The study used two
different toxicity thresholds to generate two sets of binary labels. In the present work, we utilize the
labels corresponding to the 100�/bee threshold [57] to be consistent with results from Chen et al. [5].

• The ClinTox data set lists records of drugs that have been approved by the FDA and drugs that
have failed clinical trials due to toxicity. The data set consists of SMILES representations for 1,478
drugs along with two sets of binary labels representing their FDA approval status (approved or not
approved) and their clinical trial results (toxicity or absence of toxicity). In the present work, we use
labels corresponding to the clinical trial results [20].

Note that each data set sorts its elements into two classes. The details of these five data sets are summarized
in Table 1.

3.2. Hyperparameter Selection
In this section, we outline our selections for the various parameters needed for the models in the present
work. The transformer model from [5] requires specification of a pretraining data set. Chen et al. generated
their proposed self-supervised learning fingerprints using pretraining data from the publicly available
ChEMBL [19], PubChem [30], and ZINC [26] data sets. In the reporting of their results, as in Table 5, the
pretraining data set used for each set of SSLP-FPs is recorded. Set C indicates only the ChEMBL data set,
CP indicates the union of the ChEMBL and PubChem data sets, and CPZ indicates the union of all three
aforementioned data sets. Notably, in [5], of the C, CP, and CPZ models, the C transformer model (i.e.,
the model pretrained on only the ChEBML data set) achieved the best predictive performance for three of
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the five benchmark data sets used in the present work. Consequently, we use only the ChEMBL data set
as our pretraining set. Aside from the model selection for the transformer, the generation of AE-FPs and
BT-FPs did not require any parameter selection on our part; in fact, all model parameters were saved in the
pretrained models [5, 17].

To generate ECFPs, we used the same parameters as outlined by Chen et al. [5] with the Morgan fingerprint
algorithm from the RDKit library [47]. That is, we used three radii (1, 2, and 3) and three folding lengths
(512, 1024, and 2048) for a total of nine parameter settings, which are indicated in the tables and plots in
Section 3.4. Note that the ECFPs generated using a radius of 1, 2, or 3 are denoted by 2, 4, and 6, respectively,
in the table to account for the discrepancy between the RDKit Morgan algorithm and ECFP algorithm
conventions (see Section 2.5 for more details).

Our MBO algorithm (outlined in Algorithm 1) requires several parameters, some of which we set
manually and some of which we designated as hyperparameters to tune. The MBO algorithm begins by
constructing a graph with Nn neighbors for each data point (as opposed to constructing the full graph).
After constructing the graph and computing the graph Laplacian, we compute its first Ne eigenavlues and
eigenvectors. We designated both Nn and Ne as hyperparameters to tune. Additional hyperparameters for
the MBO algorithm are the factor C in the diffusion operator, the time step dt in applying the diffusion
operator, and the maximum number of iterations Nt of the diffusion and thresholding steps. We searched
the space of these parameters and tuned to yield the best ROC-AUC score for each data set with a given set
of features and amount of labeled data. The optimal hyperparameters for our proposed AE-MBO, BT-MBO,
and ECFP-MBO methods are detailed in the Supporting Information.

The number of times Ns to apply the diffusion operator in the MBO algorithm was set to 3 for all tasks.
The number of labeled points or points in the training set Np was varied for different tasks; we conducted
experiments for 1% up to 90% of the points in each data set being labeled. In the cases of 1%, 2%, and 5%
labeled data, we set the number of labeled sets Nl to 50. For all other amounts of labeled data, we set the
number of labeled sets Nl to 10.

As detailed in Section 3.4, we compare the performance of our proposed methods to the methods proposed
and cited in [5], which use gradient boosting decision tree (GBDT), random forest (RF), and support vector
machine (SVM) algorithms for their downstream classification tasks. We also generate some of our own
comparisons using GBDT, RF, and SVM algorithms. To appropriately compare results across these methods,
we set all parameters used in these algorithms to be identical to those used by Chen et al., which are listed
in the Supporting Information in Ref. [5].

3.3. Evaluation and Visualization Metrics
In all classification tasks, model performance is quantified using the area under the receiver operating
characteristic (ROC) curve, or the ROC-AUC score. Given predicted labels from a classifier for a set of data
along with the associated true labels, the ROC curve plots the true positive rate (TPR) versus the false
positive rate (FPR) of the classifier. Given a classification task with positive and negative labels, the TPR
is defined as the ratio of true positives (i.e., correctly classified positive data points) to the total number
of actual positive data points. The FPR is defined as the ratio of false positives (i.e., negative data points
that the classifier predicted as positive) to the total number of negative data points. A higher ROC-AUC
score indicates that the classifier is better at distinguishing between the two classes [5]. For all proposed
MBO-integrated models in the present work, we calculated the ROC-AUC score using the perfcurve
function in MATLAB. For the comparison methods using RF, GBDT, and SVM algorithms, we calculated
the ROC-AUC score using the roc_auc_score function from the scikit-learn library in Python.

To further examine the various featurizations used for the data sets in the present work, we also utilized the
residue-similarity (R-S) scores and corresponding R-S plot proposed by Hozumi et al. in Ref. [24]. Consider
a classification problem with labeled data ℒ = {(xi, yi)}Ni=1, where yi ∈ {0, 1,… , K − 1} is the ground truth
label of the data point xi, N is the number of samples, and K is the number of classes. Let Ck = {xi|yi = k}.
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Then, the residue score for xi is defined as

Ri ∶= R(xi) =
1

Rmax + �
∑

xj∉Ck

‖xi − xj‖,

where ‖ ⋅ ‖ is Euclidean distance between vectors, and Rmax is the maximal residue score over all data
points. The similarity score for xi is defined as

Si ∶= S(xi) =
1

|Ck| + �
∑

xj∈Ck

(

1 −
‖xi − xj‖
dmax + �

)

,

where dmax is the maximal pairwise distance of the data set. In both defined quantities above, � is a small
constant intended to account for cases in which Rmax, |Ck|, and dmax may be equal to zero, which can occur
when some Ck is empty for a given training/testing split of a data set. Because our focus is on very small
training sets, certain random training/testing splits of our data sets can result in training sets containing
data points from only one class. To make such situations computationally stable, we set � = 10−5 in the
present work.

Both the residue and similarity scores for a data point have a range of [0, 1] due to scaling. The residue score
measures the sum of distances across classes; that is, a high residue score indicates that a class is far from
other classes. The similarity score measures the average score within a class; consequently, a high similarity
score indicates that data in a class is clustered close together [24]. The R-S plot graphs the similarity score
versus the residue score for each data point. In the plots used in the present work, R-S plots are separated
by class, and each data point in the R-S plot is assigned a color indicating its predicted label. Further details
are given in Section 3.4 along with selected R-S plots.

The residue and similarity scores discussed above are defined for single data points. The class residue index
(CRI) and class similarity index (CSI) can be defined for an entire class k as

CRIk =
1

|Ck| + �
∑

i
Ri

and
CSIk =

1
|Ck| + �

∑

i
Si,

respectively. These indices allow comparisons across classes [24].

Furthermore, indices independent of classes can be defined, allowing for description of an entire data set.
Two such indices are the residue index (RI), defined as

RI = 1
K

∑

k
CRIk,

and the similarity index (SI), defined as

SI = 1
K

∑

k
CSIk.

Higher residue and similarity indices are better for a data set. A high residue index indicates that the classes
or clusters in a data set are well separated on average, and a high similarity index indicates that the data
points in each class tend to be similar or clustered close together. Finally, we can define R-S index (RSI) as
[24]

RSI = 1 − |RI − SI|.

Note that, by definition, all of these indices have a range of [0, 1]. Visualizations of the R-S indices and
selected R-S scores associated with all three models on all five data sets are displayed in Section 3.4.
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3.4. Performance and Discussion
To examine the effectiveness of MBO-based models for low amounts of labeled data compared to those
involving other machine learning algorithms, we evaluated our models’ performance against other
methods for 1%, 2%, 5%, and 90% labeled data passed to the MBO model or other machine learning
algorithm for the five molecular classification data sets. To generate comparisons for 1%, 2%, and 5%
labeled data, we reproduced the processes proposed by Chen et al. [5] for the lower percentages of labeled
data. In this section, we compare the performance of our proposed BT-MBO, AE-MBO, ECFP-MBO, and
Consensus-MBO models to that of the transformer and autoencoder model [5, 17] paired with gradient
boosting decision tree (BT-GBDT and AE-GBDT), random forest (BT-RF and AE-RF), and support vector
machine (BT-SVM and AE-SVM) algorithms, as well as the ECFP algorithm [47, 48] paired with GBDT, RF,
and SVM.

More specifically, for the BT-GBDT, BT-RF, and BT-SVM models, we pass the BT-FPs generated from the
transformer model to GBDT, RF, and SVM algorithms, respectively. For the AE-GBDT, AE-RF, and AE-SVM
models, we pass the AE-FPs generated from the autoencoder model to the GBDT, RF, and SVM algorithms,
respectively, for prediction. The results from these six models for 1%, 2%, and 5% labeled data are shown
in Tables 2, 3, and 4. To evaluate the ECFP algorithm performance with other machine learning algorithms,
we pass the ECFPs generated by each of the nine parameter settings as features to the GBDT, RF, and SVM
algorithms. We chose the results from the best-performing machine learning algorithm for each parameter
setting and data set to display in Tables 2, 3, and 4. In all cases, we use the GBDT, RF, and SVM algorithms
from the scikit-learn library. Note that in all classification tasks, the models are evaluated using the ROC-
AUC score (see Section 3.3 for more details).

The comparisons for 90% labeled data are reported slightly differently, as all results for this percentage
of labeled data in 5 other than those for our proposed methods were generated and reported by Chen et
al. [5]. In particular, note that the transformer models listed in the table are SSLP-FPs(C), SSLP-FPs(CP),
and SSLP-FPs(CPZ), which are the self-supervised learning fingerprints generated from their transformer
model with three different pretraining sets. For the prediction task for each of the three models, Chen et
al. used GBDT, RF, and SVM algorithms from the scikit-learn library, then chose the best-performing of
the three algorithms for their final results. Similarly, for the autoencoder model performance (Auto-FPs),
they chose the best-performing of the GBDT, RF, and SVM algorithms. The results for the ECFP algorithm
are reported in the same manner as in Tables 2, 3, and 4. For each listed model, Chen et al. evaluated its
performance using 10-fold cross-validation. Specifically, they randomly split the five data sets 10 times into
training, validation, and testing sets in the ratio of 8:1:1, for 90% labeled data and 10% unlabeled data. The
results are given as the average ROC-AUC score for the 10 splits.

Similarly, to evaluate our proposed BT-MBO, AE-MBO, and ECFP-MBO methods for 90% labeled data,
we randomly split each input data set into labeled and unlabeled sets 10 times and performed the MBO
method for each split. To split the data into labeled and unlabeled sets with Np labeled points for the MBO
scheme, we randomly chose Np points of the input data set to be labeled and designated the remaining
data points as unlabeled. The known labels are then propagated on the graph to the unlabeled elements.
For each of the 10 splits, after performing the MBO method to generate predicted labels, we calculated
the ROC-AUC score for that split. We then averaged the ROC-AUC scores of the 10 splits. These results
are displayed in Table 5. For 1%, 2%, and 5% labeled data, we repeated this process with 50 instead of 10
training/testing splits and calculated the average ROC-AUC score over the 50 data splits. In these cases
with low percentages of labeled data, the training sets contained very few points, so the increase in the
number of different data partitions was intended to account for the likely variability among partitions. All
displayed results for the proposed methods are the best average ROC-AUC score over all tested parameters
(see Section 3.2 for information about parameter search and selection).

To evaluate our Consensus-MBO method, we chose the two top-performing methods among BT-MBO, AE-
MBO, and ECFP-MBO for a given data set and percentage of labeled data. We then applied the Consensus-
MBO model (more details in 2.6) as described above, with 10 labeled sets for 90% labeled data and 50
labeled sets for 1%, 2%, and 5% labeled data. We repeated the Consensus-MBO method in this way for 10
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ROC-AUC Scores for 1% Labeled Data
Model Ames Bace BBBP Beet ClinTox

BT-MBO (Proposed) 0.649 ± .024 0.580 ± .039 0.695 ± .068 0.545 ± .062 0.669 ± .123
AE-MBO (Proposed) 0.600 ± .023 0.561 ± .038 0.640 ± .053 0.535 ± .048 0.544 ± .038

ECFP-MBO (Proposed) 0.639 ± .030 0.623 ± .058 0.657 ± .044 0.557 ± .064 0.542 ± .032
Consensus-MBO (Proposed) 0.646 ± .033 0.598 ± .049 0.658 ± .055 0.538 ± .066 0.605 ± .094

BT-GBDT [5] 0.604 ± .036 0.540 ± .029 0.592 ± .074 0.5 ± 0.0 0.501 ± .003
BT-RF [5] 0.626 ± .031 0.540 ± .034 0.561 ± .070 0.5 ± 0.0 0.504 ± .019

BT-SVM [5] 0.653 ± .027 0.563 ± .035 0.598 ± .096 0.530 ± .053 0.524 ± .037
AE-GBDT [17] 0.599 ± .028 0.558 ± .035 0.579 ± .061 0.5 ± 0.0 0.504 ± .008

AE-RF [17] 0.604 ± .027 0.550 ± .038 0.561 ± .060 0.5 ± 0.0 0.501 ± .003
AE-SVM [17] 0.596 ± .024 0.547 ± .036 0.566 ± .066 0.507 ± .045 0.505 ± .008

ECFP2_512 [48] 0.637 ± .028 0.580 ± .044 0.569 ± .050 0.536 ± .049 0.505 ± .007
ECFP2_1024 [48] 0.633 ± .027 0.585 ± .040 0.581 ± .060 0.542 ± .058 0.505 ± .008
ECFP2_2048 [48] 0.629 ± .028 0.588 ± .040 0.588 ± .063 0.545 ± .072 0.505 ± .008
ECFP4_512 [48] 0.619 ± .029 0.574 ± .052 0.558 ± .048 0.528 ± .049 0.504 ± .008

ECFP4_1024 [48] 0.623 ± .030 0.595 ± .041 0.562 ± .051 0.534 ± .056 0.504 ± .005
ECFP4_2048 [48] 0.623 ± .028 0.589 ± .048 0.558 ± .048 0.517 ± .034 0.505 ± .006
ECFP6_512 [48] 0.611 ± .026 0.577 ± .041 0.558 ± .054 0.519 ± .038 0.503 ± .006

ECFP6_1024 [48] 0.617 ± .024 0.574 ± .045 0.559 ± .045 0.522 ± .036 0.503 ± .005
ECFP6_2048 [48] 0.617 ± .028 0.582 ± .045 0.545 ± .042 0.521 ± .042 0.504 ± .005

Table 2
Comparison of our models’ performance on the five data sets with 1% labeled data with other models’ performance.
Our four models are AE-MBO (autoencoder with MBO), BT-MBO (transformer with MBO), ECFP-MBO (extended-
connectivity fingerprints with MBO), and Consensus-MBO, a model generating the consensus from our top two scoring
methods for a given data set and percent of labeled data (more details in Section 2.6). The BT-GBDT, BT-RF, and
BT-SVM models use the BT-FPs as features for gradient boosting decision trees, random forest, and support vector
machine, respectively (note that these models are denoted by ’SSLP-FP’ in [5]). AE-GBDT, AE-RF, and AE-SVM refer
to the AE-FPs used as features for the specified machine learning method. Performance is given as average ROC-AUC
score over 50 labeled sets with standard deviation, and Consensus-MBO performance is given as the average over 10
trials with standard deviation.

total trials. The results recorded in Tables 2, 3, 4, and 5 for the Consensus-MBO method are the average
ROC-AUC score and standard deviation over these 10 trials.

Table 2 and Figure 1 show the results for 1% labeled data for the five molecular classification data sets.
For four out of five data sets, one of our proposed models outperforms the best-performing comparison
methods. In all cases, either the BT-MBO or ECFP-MBO method was the best performing of our methods.
Note that the Consensus-MBO method did not yield the best results for any data set, likely due to the
relatively large difference in performance between our two best-performing methods for most of the data
sets. With 1% labeled data, our models perform particularly well compared to other methods for the
ClinTox data set, with our BT-MBO method achieving an ROC-AUC score of 0.669 versus the best score
of 0.524 for other methods, and for the BBBP data set, with our BT-MBO model achieving an ROC-AUC
score of 0.695 versus 0.598 for other methods.

The results for 2% labeled data are displayed in Table 3 and Figure 2. Here, one of our proposed models
outperformed all other comparison methods for all five data sets. Again, our models perform significantly
better than other methods on the ClinTox and BBBP sets, with our BT-MBO method achieving an ROC-
AUC score of 0.704 for the ClinTox data set and a score of 0.736 for the BBBP data set. The best performance
achieved by the comparison methods was an ROC-AUC score of 0.569 for the ClinTox data set and 0.663
for the BBBP data set, both from the BT-SVM method. Our proposed ECFP-MBO method achieved the best
performance for the Beet (ROC-AUC = 0.614) and Bace (ROC-AUC = 0.67) data sets. For the Ames data set,
our Consensus-MBO method achieved the best performance (ROC-AUC = 0.683), averaging our BT-MBO
and ECFP-MBO methods.
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ROC-AUC Scores for 2% Labeled Data
Model Ames Bace BBBP Beet ClinTox

BT-MBO (Proposed) 0.677 ± .021 0.618 ± .037 0.736 ± .051 0.576 ± .075 0.704 ± .113
AE-MBO (Proposed) 0.619 ± .016 0.589 ± .029 0.685 ± .048 0.548 ± .067 0.561 ± .030

ECFP-MBO (Proposed) 0.672 ± .021 0.670 ± .034 0.682 ± .028 0.614 ± .089 0.551 ± .026
Consensus-MBO (Proposed) 0.683 ± .023 0.642 ± .043 0.712 ± .058 0.593 ± .090 0.656 ± .076

BT-GBDT [5] 0.674 ± .023 0.600 ± .036 0.643 ± .075 0.521 ± .035 0.513 ± .024
BT-RF [5] 0.666 ± .025 0.588 ± .034 0.619 ± .071 0.510 ± .020 0.504 ± .010

BT-SVM [5] 0.680 ± .017 0.605 ± .036 0.663 ± .082 0.522 ± .040 0.569 ± .080
AE-GBDT [17] 0.632 ± .018 0.588 ± .038 0.614 ± .068 0.529 ± .036 0.504 ± .010

AE-RF [17] 0.631 ± .019 0.581 ± .034 0.596 ± .054 0.517 ± .022 0.502 ± .004
AE-SVM [17] 0.627 ± .015 0.580 ± .035 0.625 ± .066 0.512 ± .028 0.508 ± .012

ECFP2_512 [48] 0.658 ± .018 0.629 ± .039 0.643 ± .051 0.552 ± .064 0.512 ± .017
ECFP2_1024 [48] 0.663 ± .018 0.635 ± .038 0.621 ± .048 0.565 ± .057 0.508 ± .010
ECFP2_2048 [48] 0.666 ± .019 0.634 ± .044 0.641 ± .041 0.541 ± .058 0.509 ± .010
ECFP4_512 [48] 0.646 ± .019 0.634 ± .042 0.609 ± .052 0.542 ± .052 0.505 ± .008

ECFP4_1024 [48] 0.655 ± .020 0.638 ± .036 0.617 ± .045 0.538 ± .050 0.505 ± .006
ECFP4_2048 [48] 0.652 ± .021 0.645 ± .040 0.619 ± .053 0.549 ± .057 0.506 ± .008
ECFP6_512 [48] 0.635 ± .025 0.632 ± .040 0.604 ± .051 0.531 ± .056 0.506 ± .011

ECFP6_1024 [48] 0.639 ± .020 0.632 ± .046 0.592 ± .048 0.542 ± .049 0.503 ± .006
ECFP6_2048 [48] 0.650 ± .022 0.635 ± .046 0.584 ± .046 0.531 ± .047 0.505 ± .007

Table 3
Comparison of our models’ performance on the five data sets with 2% labeled data with other models’ performance.
Our four models are AE-MBO (autoencoder with MBO), BT-MBO (transformer with MBO), ECFP-MBO (extended-
connectivity fingerprints with MBO), and Consensus-MBO, a model generating the consensus from our top two scoring
methods for a given data set and percent of labeled data (more details in Section 2.6). The BT-GBDT, BT-RF, and
BT-SVM models use the BT-FPs as features for gradient boosting decision trees, random forest, and support vector
machine, respectively (note that these models are denoted by ’SSLP-FP’ in [5]). AE-GBDT, AE-RF, and AE-SVM refer
to the AE-FPs used as features for the specified machine learning method. Performance is given as average ROC-AUC
score over 50 labeled sets with standard deviation, and Consensus-MBO performance is given as the average over 10
trials with standard deviation.

Table 4 and Figure 3 display the results for 5% labeled data. Again, one of our proposed models
outperforms all other comparison methods for all five benchmark data sets. Here, our Consensus-MBO
method achieved the best results for both Beet (ROC-AUC = 0.666) and Ames (ROC-AUC = 0.722) data
sets, averaging over our ECFP-MBO and BT-MBO methods in both cases. As in the 1% and 2% labeled data
cases, our BT-MBO method performs significantly better than other comparison methods for the ClinTox
(ROC-AUC = 0.774) and BBBP (ROC-AUC = 0.785) data sets. Our proposed ECFP-MBO method again
achieved the best performance of all considered methods for the Bace data set (ROC-AUC = 0.72). For the
performance of our AE-MBO and BT-MBO models on amounts of labeled data between 5% and 90%, see
Table 6.

Chen et al. [5] evaluated their proposed bidirectional encoder transformer models against other models
using 90% labeled data. Table 5 displays the performance of the self-supervised learning fingerprints (SSLP-
FPs) generated from their proposed transformer model as well as their results using autoencoder-generated
fingerprints (Auto-FPs) [59] and extended-connectivity fingerprints (ECFPs) [48]. Table 5 also displays the
performance of our proposed BT-MBO and AE-MBO models with 90% labeled data passed to the MBO
algorithm. For 90% labeled data, our proposed BT-MBO method outperforms our AE-MBO method on all
data sets, though the AE-MBO method comes closest on the Bace and BBBP data sets. Our ECFP-MBO
method outperforms our BT-MBO method on the Bace and Beet data sets and comes very close to the
best-performing comparison method on the Beet data set. While the proposed methods perform very well,
comparison with other techniques shows that the proposed algorithms are most advantageous when small
labeled sets, such as 1% of the data set, is considered as a labeled set.
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ROC-AUC Scores for 5% Labeled Data
Model Ames Bace BBBP Beet ClinTox

BT-MBO (Proposed) 0.716 ± .014 0.680 ± .027 0.785 ± .036 0.621 ± .070 0.774 ± .058
AE-MBO (Proposed) 0.653 ± .012 0.646 ± .024 0.730 ± .040 0.578 ± .047 0.596 ± .032

ECFP-MBO (Proposed) 0.710 ± .012 0.720 ± .026 0.721 ± .025 0.662 ± .073 0.563 ± .029
Consensus-MBO (Proposed) 0.722 ± .013 0.702 ± .032 0.765 ± .034 0.666 ± .070 0.712 ± .055

BT-GBDT [5] 0.717 ± .009 0.654 ± .029 0.696 ± .061 0.551 ± .054 0.524 ± .029
BT-RF [5] 0.709 ± .014 0.642 ± .030 0.684 ± .057 0.555 ± .058 0.513 ± .025

BT-SVM [5] 0.721 ± .011 0.679 ± .027 0.739 ± .052 0.566 ± .051 0.635 ± .084
AE-GBDT [17] 0.666 ± .011 0.653 ± .030 0.665 ± .050 0.549 ± .042 0.506 ± .007

AE-RF [17] 0.662 ± .013 0.663 ± .028 0.632 ± .063 0.551 ± .040 0.503 ± .006
AE-SVM [17] 0.653 ± .010 0.644 ± .028 0.716 ± .044 0.535 ± .036 0.520 ± .023

ECFP2_512 [48] 0.700 ± .010 0.706 ± .025 0.703 ± .029 0.596 ± .059 0.517 ± .018
ECFP2_1024 [48] 0.703 ± .011 0.701 ± .031 0.701 ± .028 0.603 ± .057 0.513 ± .010
ECFP2_2048 [48] 0.705 ± .009 0.700 ± .031 0.696 ± .033 0.609 ± .063 0.512 ± .012
ECFP4_512 [48] 0.685 ± .015 0.706 ± .025 0.677 ± .036 0.575 ± .058 0.513 ± .011

ECFP4_1024 [48] 0.691 ± .010 0.704 ± .032 0.686 ± .036 0.587 ± .050 0.515 ± .012
ECFP4_2048 [48] 0.700 ± .013 0.712 ± .025 0.678 ± .032 0.602 ± .064 0.510 ± .010
ECFP6_512 [48] 0.669 ± .012 0.694 ± .029 0.664 ± .032 0.580 ± .057 0.508 ± .009

ECFP6_1024 [48] 0.677 ± .009 0.698 ± .025 0.672 ± .033 0.574 ± .055 0.511 ± .009
ECFP6_2048 [48] 0.688 ± .012 0.710 ± .028 0.670 ± .034 0.572 ± .057 0.510 ± .009

Table 4
Comparison of our models’ performance on the five data sets with 5% labeled data with other models’ performance.
Our four models are AE-MBO (autoencoder with MBO), BT-MBO (transformer with MBO), ECFP-MBO (extended-
connectivity fingerprints with MBO), and Consensus-MBO, a model generating the consensus from our top two scoring
methods for a given data set and percent of labeled data (more details in Section 2.6). The BT-GBDT, BT-RF, and
BT-SVM models use the BT-FPs as features for gradient boosting decision trees, random forest, and support vector
machine, respectively (note that these models are denoted by ’SSLP-FP’ in [5]). AE-GBDT, AE-RF, and AE-SVM refer
to the AE-FPs used as features for the specified machine learning method. Performance is given as average ROC-AUC
score over 50 labeled sets with standard deviation, and Consensus-MBO performance is given as the average over 10
trials with standard deviation.

To further evaluate our proposed models, we utilize the R-S scores and R-S index discussed in Section 3.3.
Recall that the R-S index for a given data set and model (i.e., a given featurization of a data set) essentially
measures the closeness of that data set’s residue index and similarity index–if the residue and similarity
indices are close together in value, the R-S index will be close to 1, while dissimilar residue and similarity
indices produce an R-S index closer to 0. Further recall that residue scores measure how far a class is from
other classes, and similarity scores measure how closely clustered data are in a class.

Figures 4, 5, 6, 7, and 8 display R-S index and R-S score plots for our AE-MBO, BT-MBO, and ECFP-MBO
models on the five benchmark data sets used in this work. For a given data set and model, the R-S index
was calculated for each training/testing split of the data, and then the average R-S index was calculated
over 50 random splits for 1%, 2%, and 5% labeled data and over 10 random splits for 90% labeled data.
R-S scores were calculated on a random training/testing split with 5% labeled data. The panels in the R-S
score plots display data points in the two classes, and each point is assigned a color based on its predicted
class from the model. The x and y axes in the R-S score plots represent the residue and similarity scores,
respectively.

For the Ames data set, the best-performing model (in terms of ROC-AUC score) for 1% labeled data was the
BT-MBO model, with the ECFP-MBO model following close behind and the AE-MBO model performing
significantly worse. The same trend can be seen for 2%, 5%, and 90% labeled data. In Figure 4, we see
that the BT-MBO method has markedly lower R-S indices for the Ames data set across all percentages of
labeled data. Considering the R-S score plots, the BT-MBO method displays a higher degree of dissimilarity
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ROC-AUC Scores for 90% Labeled Data
Model Ames Bace BBBP Beet ClinTox

BT-MBO (Proposed) 0.801 ± .013 0.839 ± .02 0.902 ± .034 0.831 ± .067 0.948 ± .048
AE-MBO (Proposed) 0.737 ± .017 0.818 ± .037 0.886 ± .029 0.785 ± .079 0.807 ± .085

ECFP-MBO (Proposed) 0.787 ± .019 0.855 ± .026 0.858 ± .041 0.842 ± .051 0.634 ± .060
Consensus-MBO (Proposed) 0.788 ± .015 0.833 ± .030 0.876 ± .030 0.750 ± .080 0.819 ± .015

SSLP-FPs(C) [5] 0.87 ± .022 0.872 ± .036 0.949 ± .016 0.797 ± .079 0.963 ± .044
SSLP-FPs(CP) [5] 0.861 ± .025 0.869 ± .029 0.953 ± .009 0.818 ± .075 0.939 ± .047

SSLP-FPs(CPZ) [5] 0.856 ± .023 0.868 ± .033 0.946 ± .015 0.827 ± .061 0.941 ± .035
Auto-FPs [5, 59] 0.887 ± .018 0.903 ± .022 0.969 ± .01 0.838 ± .059 0.95 ± .037

ECFP2_512 [5, 48] 0.867 ± .016 0.904 ± .024 0.913 ± .019 0.83 ± .06 0.831 ± .056
ECFP2_1024 [5, 48] 0.868 ± .016 0.905 ± .022 0.92 ± .015 0.839 ± .058 0.821 ± .058
ECFP2_2048 [5, 48] 0.869 ± .02 0.906 ± .024 0.919 ± .021 0.833 ± .063 0.833 ± .053
ECFP4_512 [5, 48] 0.865 ± .013 0.896 ± .023 0.908 ± .025 0.824 ± .061 0.801 ± .049

ECFP4_1024 [5, 48] 0.867 ± .016 0.901 ± .024 0.914 ± .024 0.833 ± .058 0.782 ± .052
ECFP4_2048 [5, 48] 0.872 ± .017 0.907 ± .023 0.916 ± .021 0.828 ± .066 0.784 ± .053
ECFP6_512 [5, 48] 0.861 ± .013 0.889 ± .026 0.9 ± .032 0.848 ± .062 0.77 ± .048

ECFP6_1024 [5, 48] 0.862 ± .013 0.893 ± .026 0.907 ± .029 0.833 ± .059 0.77 ± .054
ECFP6_2048 [5, 48] 0.864 ± .014 0.899 ± .024 0.911 ± .026 0.828 ± .063 0.75 ± .059

Table 5
Comparison of our models’ performance on the five data sets with 90% labeled data with other models’ performance.
Our four models are AE-MBO (autoencoder with MBO), BT-MBO (transformer with MBO), ECFP-MBO (extended-
connectivity fingerprints with MBO), and Consensus-MBO, a model generating the consensus from our top two scoring
methods for a given data set and percent of labeled data (more details in Section 2.6). Performance of our models is
given as average ROC-AUC score over 10 labeled sets with standard deviation, and Consensus-MBO performance is
given as the average over 10 trials with standard deviation.

between its residue and similarity scores, which aligns with the low R-S index values. Furthermore, the BT-
MBO model has higher residue scores than the other two models, indicating that the two classes are well
separated from each other. This may contribute to the BT-MBO model’s superior performance.

Our proposed ECFP-MBO method consistently had higher ROC-AUC scores than the AE-MBO and BT-
MBO methods on the Bace data set for 1%, 2%, 5%, and 90% labeled data. Figure 5 shows that the ECFP-
MBO method has the lowest R-S indices for all amounts of labeled data. The points in the R-S score plot for
the ECFP-MBO model are concentrated in the lower right corner for both classes, reflecting that the Bace
data points, on average, have high residue scores and low similarity scores. The high residue scores for this
model correlate with its improved performance compared to the other models.

Examining Figure 6 for the BBBP data set, we begin to see different R-S score distributions for the two
classes. The three models all generally performed well in making predictions the BBBP data set. In fact, for
a given amount of labeled data, one of our models almost always achieved the highest ROC-AUC scores
on the BBBP data set compared to the other four data sets (with the only exception being the ClinTox
data set for 90% labeled data). Compared to the previous two data sets, the BBBP data set shows higher
R-S indices for all three models and all percentages of labeled data. We do see less obvious dissimilarity
between the residue and similarity scores for the three models in Figure 6, which corresponds to higher R-S
index values. We also observe that data points in the first class tend to have high residue scores, indicating
that points in this class are far from points in the second class. However, points in the second class have
comparatively lower residue scores with varying similarity scores.

For the Beet data set, our ECFP-MBO method achieved higher ROC-AUC scores than the AE-MBO and
BT-MBO methods for all tasks, and the AE-MBO model consistently performed the worst. Comparing
the R-S indices shown in Figure 7, the AE-MBO method has markedly higher R-S indices than the other
two methods for all percentages of labeled data. This reflects the closeness of the residue and similarity
scores for the AE-MBO method; the points on the R-S score plot for the AE-MBO method are much more
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Amount Data Sets and Models
Labeled Ames Bace BBBP Beet ClinTox

Data AE BT AE BT AE BT AE BT AE BT

90% 0.737 0.801 0.818 0.839 0.886 0.902 0.785 0.831 0.807 0.948
80% 0.731 0.794 0.800 0.830 0.868 0.889 0.747 0.798 0.759 0.920
75% 0.728 0.791 0.797 0.826 0.866 0.885 0.746 0.783 0.752 0.917
70% 0.728 0.788 0.795 0.824 0.862 0.883 0.741 0.772 0.752 0.910
60% 0.724 0.785 0.789 0.812 0.856 0.879 0.716 0.770 0.749 0.908
50% 0.718 0.781 0.775 0.806 0.854 0.874 0.697 0.761 0.731 0.901
40% 0.714 0.776 0.766 0.795 0.841 0.868 0.693 0.749 0.727 0.897
30% 0.707 0.771 0.756 0.786 0.830 0.861 0.667 0.734 0.723 0.883
25% 0.703 0.767 0.746 0.777 0.820 0.855 0.664 0.722 0.711 0.879
20% 0.697 0.761 0.735 0.768 0.810 0.848 0.657 0.713 0.698 0.857
10% 0.678 0.743 0.700 0.734 0.777 0.825 0.626 0.673 0.656 0.828
5% 0.653 0.716 0.646 0.680 0.730 0.785 0.578 0.621 0.596 0.774
2% 0.619 0.677 0.589 0.618 0.685 0.736 0.548 0.576 0.561 0.704
1% 0.600 0.649 0.561 0.580 0.640 0.695 0.535 0.545 0.544 0.669

Table 6
Performance (given as average ROC-AUC score) of different models on five classification data sets with varying
amounts of labeled data. The AE-MBO model’s performance is denoted by "AE," and the BT-MBO model’s performance
is denoted by "BT."

centrally located than those in the other two plots. We can further observe that the AE-MBO method seems
to have more data point misclassifications than the other two methods. Specifically, the AE-MBO model
accurately classified most points in the second class but misclassified a large portion of points in the first
class. Furthermore, the ECFP-MBO method appears to have fewer misclassifications across the two classes
than the other two models.

The ClinTox data set displays a significant difference in R-S score distribution for its two classes, as seen in
Figure 8. Recall that, for all percentages of labeled data, the BT-MBO model performed significantly better
concerning ROC-AUC score than all other models on the ClinTox data set. We observe that the BT-MBO
model also has very high R-S index values for all amounts of labeled data. Although data points in the
first class tend to have low residue scores for all three featurizations, data points in the second class tend
to have high residue scores. A high R-S index corresponds to residue and similarity indices that are close
together. Because the residue index and similarity index are properties of the entire data set and involve
averaging across classes, low residue scores from one class can be offset by high residue scores from another
class. In the case of the ClinTox data set as evidenced by the R-S score plots in Figure 8, the residue index
and similarity index would then end up being similar in magnitude, resulting in a high R-S index value.
Furthermore, the high residue scores for data points in the second class may contribute to all three models’
superior performance on this data set.

4. Conclusion
Given the difficulty of obtaining labeled molecular data, particularly very large amounts of labeled
molecular data, the ability to accurately predict molecular properties with limited labeled data can be
crucial. This paper presents three novel techniques, namely the BT-MBO, AE-MBO, and ECFP-MBO
algorithms, which perform very well even with small amounts of labeled data. In particular, our proposed
methods achieve better or comparable AUC scores than state-of-the-art methods when as little as 1%
of the data set is designated as a labeled set. Notably, for the ClinTox and BBBP data sets, all four of
proposed methods (including the Consensus-MBO method) consistently rank among the top four or five
of all comparison methods for 1%, 2%, and 5% labeled data. Moreover, the proposed BT-MBO, ECFP-MBO,
and Consensus-MBO methods achieved the best performance for a benchmark data set in at least one
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of the low labeled data experiments. The analysis of residue and similarity (R-S) scores and R-S index
offers an explanation of the observed performance. Overall, the three new MBO-assisted models in this
work, together with the proposed Consensus-MBO technique, can serve as powerful predictive tools when
labeled data is scarce.
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Figure 1: Comparison of our proposed methods (shown in red) with other methods (shown in blue) on the five
benchmark data sets for 1% labeled data.
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Figure 2: Comparison of our proposed methods (shown in red) with other methods (shown in blue) on the five
benchmark data sets for 2% labeled data.
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Figure 3: Comparison of our proposed methods (shown in red) with other methods (shown in blue) on the five
benchmark data sets for 5% labeled data.
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Figure 4: R-S index and R-S score plots for the Ames data set. The R-S index plot displays R-S indices for our
AE-MBO, BT-MBO, and ECFP-MBO models for 1%, 2%, 5%, and 90% labeled data. The three R-S score plots display
R-S scores for a random split of the Ames data set with 5% labeled data for AE-MBO, BT-MBO, and ECFP-MBO, from
top to bottom. Each panel plots data points from one class, and the points are colored by their predicted class. The x
and y axes represent the residue and similarity scores, respectively.
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Figure 5: R-S index and R-S score plots for the Bace data set. The R-S index plot displays R-S indices for our AE-
MBO, BT-MBO, and ECFP-MBO models for 1%, 2%, 5%, and 90% labeled data. The three R-S score plots display R-S
scores for a random split of the Bace data set with 5% labeled data for AE-MBO, BT-MBO, and ECFP-MBO, from top
to bottom. Each panel plots data points from one class, and the points are colored by their predicted class. The x and
y axes represent the residue and similarity scores, respectively.
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Figure 6: R-S index and R-S score plots for the BBBP data set. The R-S index plot displays R-S indices for our
AE-MBO, BT-MBO, and ECFP-MBO models for 1%, 2%, 5%, and 90% labeled data. The three R-S score plots display
R-S scores for a random split of the BBBP data set with 5% labeled data for AE-MBO, BT-MBO, and ECFP-MBO, from
top to bottom. Each panel plots data points from one class, and the points are colored by their predicted class. The x
and y axes represent the residue and similarity scores, respectively.
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Figure 7: R-S index and R-S score plots for the Beet data set. The R-S index plot displays R-S indices for our AE-MBO,
BT-MBO, and ECFP-MBO models for 1%, 2%, 5%, and 90% labeled data. The three R-S score plots display R-S scores
for a random split of the Beet data set with 5% labeled data for AE-MBO, BT-MBO, and ECFP-MBO, from top to bottom.
Each panel plots data points from one class, and the points are colored by their predicted class. The x and y axes
represent the residue and similarity scores, respectively.
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Figure 8: R-S index and R-S score plots for the ClinTox data set. The R-S index plot displays R-S indices for our
AE-MBO, BT-MBO, and ECFP-MBO models for 1%, 2%, 5%, and 90% labeled data. The three R-S score plots display
R-S scores for a random split of the ClinTox data set with 5% labeled data for AE-MBO, BT-MBO, and ECFP-MBO, from
top to bottom. Each panel plots data points from one class, and the points are colored by their predicted class. The x
and y axes represent the residue and similarity scores, respectively.
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