1) Determine the Taylor polynomial of degree 4 of $f(x)=\ln (1+x)-x^{2} \sin x$ at $a=0$. (Hint: It may help to use the Maclaurin series of $\sin x$ and the geometric series with sum $\frac{1}{1+x}$. Note that the Maclaurin series of $\sin x$ is $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$.
2) Determine an upper bound for the error in approximating the function $f(x)=\cos x$ by $1-\frac{x^{2}}{2}+\frac{x^{4}}{24}$ on the interval $[-\pi / 2, \pi / 2]$.
