Name:

Section: \qquad
Clear your desk of everything except pens, pencils and erasers. Show all your work.
If you have a question raise your hand and I will come to you.

1. (3 points) What is the area of the region bounded by the graph of $y=e^{x}$ and the x-axis between $x=0$ and $x=\ln 2$?

$$
\begin{aligned}
A=\int_{0}^{\ln (2)} e^{x} d x & =\left.e^{x}\right|_{0} ^{\ln 2} \\
& =e^{\ln (2)}-e^{0} \\
& =2-1 \\
& =1
\end{aligned}
$$

2. (3 points) Evaluate the following integral.

$$
\begin{aligned}
& \text { Let } u=\cos (x), \\
&-d u=\sin (x) d x . \text { Then } \\
& \int\left(\frac{1}{2}\right)^{\cos (x)} \sin (x) d x \\
& \sin x d x=-\int\left(\frac{1}{2}\right)^{u} d u=-\left(\frac{1}{2}\right)^{u} \cdot \frac{1}{\ln \left(\frac{1}{2}\right)}+C \\
&=-\frac{\left(\frac{1}{2}\right)^{\cos x}}{\ln \left(\frac{1}{2}\right)}+C
\end{aligned}
$$

3. (4 points) Find the function $y=y(x)$ which satisfies the initial value problem

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{\sin x}{2 y} \quad y(0)=-2 \\
& 2 y d y=\sin x d x \\
& \Rightarrow \int 2 y d y=\int \sin x d x \\
& \Rightarrow y^{2}=-\cos (x)+C \\
&(-2)^{2}=-\cos (0)+C
\end{aligned}
$$

$$
\text { So, } y^{2}=5-\cos (x) \text {, and }
$$

$$
y= \pm \sqrt{5-\cos (x)}
$$

Since $y(0)=-2<0$, we have

$$
y(x)=-\sqrt{5-\cos x}
$$

