1. Determine if the following series converge or diverge. If the series converges, also compute the sum. You must show all of your work and support your conclusions.
(a) (7 points) $\sum_{n=0}^{\infty} \frac{3^{n-1}}{2^{2 n}}=\sum_{n=0}^{\infty} \frac{1}{3} \frac{3^{n}}{4^{n}}=\sum_{n=0}^{\infty} \frac{1}{3}\left(\frac{3}{4}\right)^{n}$.

This is a geometric series with a ratio $r=\frac{3}{4},|r|<1$. Thus it converges, and its sum is

$$
\frac{1^{s t} \operatorname{ten} m}{1-r}=\frac{\frac{1}{3}\left(\frac{3}{4}\right)^{0}}{1-\frac{3}{4}}=\frac{\frac{1}{3}}{\frac{1}{4}}=\frac{4}{3}
$$

(b) (7 points) $\sum_{n=1}^{\infty} \frac{\sqrt{n^{2}+5}}{3 n+4}$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\sqrt{n^{2}+5}}{3 n+4} & =\lim _{n \rightarrow \infty} \frac{\sqrt{n^{2}\left(1+5 / n^{2}\right)}}{n\left(3+\frac{4}{n}\right)}=\lim _{n \rightarrow \infty} \frac{n \sqrt{1+5 / n^{2}}}{n(3+4 / n)} \\
& =\frac{\sqrt{1+0}}{3+0}=\frac{1}{3} \neq 0
\end{aligned}
$$

By the $n \stackrel{\text { th }}{=}$ term test for divergence, the Seriesabone diverges.
2. Determine if the following series converge or diverge. You must show all of your work and justify your use of any series convergence tests.
(a) (7 points) $\sum_{n=1}^{\infty} \frac{3 n^{2}+5}{2^{n}}$ Let $a_{n}=\frac{3 n^{2}+5}{2^{n}}$; Hen $a_{n+1}=\frac{3(n+1)^{2}+5}{2^{n+1}}$, and

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{3(n+1)^{2}+5}{2^{n+1}} \cdot \frac{2^{n}}{3 n^{2}+5}\right|=\frac{1}{2} \cdot \lim _{n \rightarrow \infty}\left|\frac{3\left(n^{2}+2 n+1\right)+5}{3 n^{2}+5}\right| \\
& =\frac{1}{2} \lim _{n \rightarrow \infty}\left|\frac{n^{2}\left(3+\frac{6}{n}+\frac{8}{n^{2}}\right)}{x^{2}\left(3+\frac{5}{n^{2}}\right)}\right|=\frac{1}{2} \cdot\left|\frac{3}{3}\right|=\frac{1}{2}<1
\end{aligned}
$$

By the ratio test, $\sum a_{n}$ converges absolutely, and
therefore Converges.
(b) (7 points) $\sum_{n=1}^{\infty} \frac{1}{3^{n}-1}$ Let $a_{n}=\frac{1}{3^{n}-1}, b_{n}=\frac{1}{2^{n}}=\left(\frac{1}{2}\right)^{n}$. Then $a_{n}>0, b_{n}>0$ for all $n \geqslant 1$, and $a_{n}<b_{n}$ for all $n \geqslant 1$. Also, $\sum b_{n}=\sum\left(\frac{1}{2}\right)^{n}$ Converges (geometric Series with ratio $\left.r=\frac{1}{2},|r|<1\right)$. Therefore, by the direct Comparison test, $\sum a_{n}$ Converges as well.
3. For each of the following functions, find its 3rd degree Taylor polynomial centered at the given $a$.
(a) (7 points) $f(x)=\sin (5 x)$, centered at $a=0$.

We know $\sin (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots \cdot$
Therefore, $\quad \sin (5 x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{(5 x)^{2 n+1}}{(2 n+1)!}=(5 x)-\frac{(5 x)^{3}}{3!}+\frac{(5 x)^{5}}{5!} \cdots$.

$$
\text { So, } \quad T_{3}(x)=5 x-\frac{5^{3} x^{3}}{3!}
$$

(b) (7 points) $g(x)=\ln (x)$, centered at $a=2$.

$$
\begin{aligned}
g(x) & =\ln (x), \quad g(2)=\ln (2) \\
g^{\prime}(x) & =\frac{1}{x}, \quad g^{\prime}(2)=\frac{1}{2} \\
g^{\prime \prime}(x) & =\frac{-1}{x^{2}}, \quad g^{\prime \prime}(2)=-\frac{1}{4} \\
g^{\prime \prime \prime}(x) & =\frac{2}{x^{3}}, \quad g^{\prime \prime \prime}(2)=\frac{2}{8}=\frac{1}{4} . \\
T_{3}(x) & =g(2)+\frac{g^{\prime}(2)}{1!}(x-2)+\frac{g^{\prime \prime}(2)}{2!}(x-2)^{2}+\frac{g^{\prime \prime \prime}(2)}{3!}(x-2)^{3} \\
& =\ln (2)+\frac{1}{2}(x-2)-\frac{1}{4 \cdot 2!}(x-2)^{2}+\frac{1}{4 \cdot 3!}(x-2)^{3} \cdot
\end{aligned}
$$

4. (7 points) Find the Maclaurin series (Taylor series centered at $a=0$ ) representation of $f(x)=\frac{3 x^{2}}{1+x^{2}}$. Express your answer in sigma notation.
We know $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+\cdots$ for all $|x|<1$.
Thus $\frac{3 x^{2}}{1+x^{2}}=3 x^{2} \cdot \frac{1}{1-\left(-x^{2}\right)}=3 x^{2} \cdot \sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}$

$$
\begin{aligned}
& =\sum_{n=0}^{\infty} 3 x^{2} \cdot(-1)^{n} x^{2 n} \\
& =\sum_{n=0}^{\infty} 3(-1)^{n} x^{2 n+2} .
\end{aligned}
$$

5. (7 points) Find the interval of convergence for the power series $\sum_{n=3}^{\infty} \frac{(7 x-2)^{n}}{(n+3)^{2}}$. (Leave your answer as an open interval; you do not have to test the end points for convergence.)
Let $a_{n}=\frac{(7 x-2)^{n}}{(n+3)^{2}}$. We want $\lim _{n \rightarrow 30}\left|\frac{a_{n}+1}{a_{n}}\right|<1$ for convergence, by the

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(7 x-2)^{n+1}}{(n+4)^{2}} \cdot \frac{(n+3)^{2}}{(7 x-2)^{n}}\right|=\lim _{n \rightarrow \infty}\left|(7 x-2) \cdot\left(\frac{n+3}{n+4}\right)^{2}\right| \\
& \left.=|7 x-2| \cdot \lim _{n \rightarrow \infty}| | \frac{1+\frac{3}{n}}{1+\frac{4}{n}}\right)^{2}\left|=|7 x-2| \cdot 1^{2}=|7 x-2|\right.
\end{aligned}
$$

Now, $|7 x-2|<1 \Leftrightarrow-1<7 x-2<1 \Leftrightarrow 1<7 x<3$

$$
\Leftrightarrow \frac{1}{7}<x<\frac{3}{7}
$$

The open interval of convergence is therefore $\left(\frac{1}{7}, \frac{3}{7}\right)$.

## Multiple Choice. Circle the best answer. No work needed. No partial credit available.

6. (4 points) Find the limit of the sequence $a_{n}$ where the $n^{\text {th }}$ term is given by $a_{n}=\frac{3 n+\cos (3 n)}{4 n}$.
A. 0
B. $\frac{3}{4}$
C. 3
D. 4

E. The sequence does not have a limit. as $n \rightarrow \infty$
 by the squeeze theorem
7. (4 points) Which statement about the series $\sum_{n=2}^{\infty} \frac{\ln (3 n)}{\sqrt{n^{2}-1}}$ is true?
$\ln (3 n)>1$ for $n \geqslant 2$
A. It diverges by using a comparison test with $\sum_{n=1}^{\infty} \frac{1}{n}$.

B. It converges by using a comparison test with $\sum_{n=1}^{\infty} \frac{1}{n}$.
C. It diverges by using a comparison test with $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.

D. It converges by using a comparison test with $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$. $\sum \frac{1}{n} d i v$
E. It diverges by the ratio test.

$$
\begin{gathered}
u=\ln (n), d u=\frac{1}{n} d n \\
\int_{\ln (2)}^{\infty} \frac{1}{u^{p}} d u=\infty \text { if } \\
p \leq 1 .
\end{gathered}
$$

A. The integral test shows that the series converges for all $p$.
8. (4 points) Which statement is true about the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln (n))^{p}}$ ?
B. The integral test shows that the series diverges for $p \leq 1$.
C. The integral test hypotheses are not met by this series, so it cannot be applied.
D. The integral test hypotheses are met by this series, however the test is inconclusive.
E. None of the above are true.
9. (4 points) Find the radius of convergence of $\sum_{n=1}^{\infty} \frac{(2 x+3)^{4 n+5}}{(n-1)!}$.
$\begin{aligned} & \begin{array}{l}\text { A. } 1 / 4 \\ \text { B. } 1 / 3 \\ \text { C. } 3\end{array}\end{aligned}\left|\frac{(2 x+3)^{4 n+9}}{n!} \cdot \frac{(n-1)!}{(2 x+3)^{4 n+5}}\right|=\left|(2 x+3)^{4}\right| \cdot\left|\frac{1}{n}\right| \rightarrow 0$ as $n \rightarrow \infty$
D. 4
(E) $+\infty$
for all $x$.
Thus $R=\infty$
10. (4 points) Determine whether the following series are absolutely convergent, conditionally convergent, or divergent:

D. (1) is divergent; (2) is conditionally convergent.
E. Both (1) and (2) are conditionally convergent.

$$
\begin{aligned}
& n^{2} \ln (n)>n^{2} \\
& \frac{1}{n^{2} \ln (n)}<\frac{1}{n^{2}} \leftarrow \sum \frac{1}{n^{2}} \\
& \quad \therefore \operatorname{conv} \text { abs }\left(\left|\frac{1}{n^{2} \ln (n)}\right|=\frac{1}{n^{2} \ln (n)}\right)
\end{aligned}
$$

11. (4 points) Which statement is true about the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}} ? \lim _{n \rightarrow \infty}\left|\frac{n^{2}}{(n+1)^{2}}\right|=1$
A. By the ratio test, the series converges.
A. By the ratio test, the series converges.
B. By the ratio test, the series diverges.

$$
\sum \frac{1}{n^{2}} \text { conv. by } p \text {-Series, } p=2>1 \text {. }
$$

C. The ratio test is inconclusive for this series, but the series converges by another test.
D. The ratio test is inconclusive for this series, but the series diverges by another test.
E. None of the above are true.
12. (4 points) By Taylor's Inequality, on the interval $[-2,2]$, the difference between $e^{x}$ and its degree 2 Taylor polynomial centered at $x=0$ is at most:
A. $\frac{|x|^{2}}{2}$.
B. $\frac{|x|^{3}}{6}$.

$$
R_{2}(x) \leqslant\left|\frac{f^{\prime \prime \prime}(x)}{3!}(x-0)^{3}\right|
$$

$=\left|\frac{e^{x}}{6} \cdot x^{3}\right|$
D. $\frac{|x|^{4}}{24}$.
$\leq \frac{e^{2}}{6}|x|^{3}$
13. (4 points) The Taylor series of the function $f(x)$, centered at $a=2$, is given by $\sum_{n=0}^{\infty} \frac{n^{2}+5}{n!}(x-2)^{n}$. What is the value of the third derivative $f^{\prime \prime \prime}(2)$ ?

$$
\begin{array}{ll}
\begin{array}{ll}
\text { A. } 9 / 2 & L \cdots=\frac{5}{0!}(x-2)^{0}+\frac{1^{2}+5}{1!}(x-2)^{1}+\frac{2^{2}+5}{2!}(x-2)^{2}+\frac{3^{2}+5}{3!}(x-2)^{3} \\
\text { B. } 9 & \\
\text { C. } 5 & f^{\prime \prime \prime}(2) \\
\text { D. } 14 / 6 & 3! \\
\text { E. } 14 & \text { Thus }
\end{array} & f^{\prime \prime \prime}(2)=3^{2}+5=9+5=14
\end{array}
$$

14. (4 points) The Taylor series up to order 4 , centered at $a=0$, for $f(x)=\ln (1+x)-x \sin (x)$ is

$$
\begin{array}{ll}
\text { A. } 1+x-\frac{3 x^{2}}{2}+\frac{x^{3}}{2}-\frac{x^{4}}{4} & \ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{5} \cdots \cdots \\
\text { B. } x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4} \\
\text { C. } x-\frac{x^{2}}{2}+\frac{x^{3}}{6}-\frac{x^{4}}{4} & \quad x \sin x=x \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=x\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!} \cdots\right) \\
\text { D. } x-\frac{3 x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{12} & =x^{2}-\frac{x^{4}}{3!}+\frac{x^{6}}{5!} \cdots \\
\text { E. } x-\frac{3 x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4!} \quad \operatorname{So,} \quad \ln (1+x)-x \sin x=x-\frac{x^{2}}{2}-x^{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{4}}{5} \cdots \\
& =x=\frac{3}{2} x^{2}+\frac{x^{3}}{3}=\frac{x^{4}}{12}+\cdots
\end{array}
$$

More Challenging Questions. Show all work to receive credit. Please $\mathbf{B O X}$ your final answer.
15. (a) (4 points) A ball falls from a height of 1 m and continues bouncing forever. Each time it hits the floor, it bounces back to $\frac{3}{4}$ of the previous height. Write a (numerical) series that represents the total vertical distance traveled by the ball (ignore any horizontal displacement). (Hint: don't forget to include the distance traveled before the first bounce.)

$$
\begin{aligned}
& 1^{\text {st }} \text { borne }=1 \\
& 2^{\text {nd }} \text { bounce }=1 \times \frac{3}{4} \times 2 \\
& 3^{\text {nd }} \text { bounce }=1 \times \frac{3}{4} \times \frac{3}{4} 2=1 \times\left(\frac{3}{4}\right)^{2} \times 2 . \\
& \text { Total distance }=1+\sum_{n=1}^{\infty} 2\left(\frac{3}{4}\right)^{n}=1+2\left(\frac{3}{4}\right)+2\left(\frac{3}{4}\right)^{2}+2\left(\frac{3}{4}\right)^{3}+\cdots
\end{aligned}
$$

(b) (4 points) Compute the sum of the series you found in part (a).

$$
\begin{aligned}
& \text { (b) (4 points) Compute the sum of the series you found in part (a). } \\
& \text { geometric Series with ratio } r=\frac{3}{4},|r|<1 \text {. Converges to } \\
& 1+\frac{1^{s t}}{1-r} \text { term } \\
& 1-r+\frac{2\left(\frac{3}{4}\right)}{1-\frac{3}{4}}=7 \text {. }
\end{aligned}
$$

16. (6 points) By the ratio test, the radius of convergence of the power series $\sum_{n=1}^{\infty} a_{n} x^{n}$ is found to be $R=2$. If $b_{n}=\left(a_{n}\right)^{2}$, does the power series $\sum_{n=1}^{\infty} b_{n} x^{n}$ converge at $x=3$ ? Justify your reasoning.

$$
\text { By the Ratio text, } \sum b_{11} x^{n} \text { lomunges at } x=3 \text {. }
$$

$$
\begin{aligned}
& \text { So } \lim _{n \rightarrow \infty}\left|\frac{\left(a_{n+1}\right)^{2}}{\left(a_{n}\right)^{2}} \cdot(\sqrt{3})^{2}\right|<1 \Rightarrow \lim _{n \rightarrow \infty}\left|\frac{b_{n+1}}{b_{n}} \cdot 3\right|<1 \Rightarrow \lim _{n \rightarrow \infty}\left|\frac{b_{n+1} \cdot 3^{n+1}}{b_{n} \cdot 3^{n}}\right|<1
\end{aligned}
$$

