Exam 1 Review
5.2 Volumes.

Find the volume of the solid of revolution obtained by notating the region boomed by $y=\cos x, y=-1, x=-\pi$ and $x=\pi$ about the line $y=-2$.
We use the washer method (see figure). We have $R(x)=\cos (x)-(-2)=\cos x+2$, and $r(x)=-1-(-2)=1$

Therefor The vertical crost-section is a Ciccular Worker of area $A(x)=\pi\left(R^{2}(x)-R^{2}(x)\right)=\pi\left[(\cos x+2)^{2}-1^{2}\right]$. Finally $\quad V=\int_{-\pi}^{\pi} \pi\left[\cos ^{2} x+4 \cos x+3\right] a x=\cdots \cdot$

5.4 Work.

A tank of the shape of a downward pointing pyramid, with a square bose of side length 10 ft and height 20ft, is fill d with a liquid weighing 61bs $/ \mathrm{ft}^{3}$. Calculate the work required to -pump the liquid to a height of 2 feet above the top of the tank.

Take a horizontal evoss-setion at hight y;
it has a square shape of side length $S(y)$.
By similar triangles $\frac{S(y)}{y}=\frac{10}{20} \Rightarrow S(y)=\frac{1}{2} y$.
\rightarrow Area of slice is $A(y)=S^{2}(y)=\frac{1}{4} y^{2}$ and so volume of slice is $V(y)=A(y) \cdot \Delta y=\frac{1}{4} y^{2} \cdot \Delta y$. Thess, weight of slice is $\omega(y)=V(y), 61 \mathrm{bs} / \mathrm{ft}^{3}=\frac{6}{4} y^{2} \Delta y$. height of slice at is $y \Rightarrow$ distance to the permpio $d(y)=22-y$. Therefore, the work needed to pump the slice at y is $W(y)=W(y) \times d(y)=\frac{6}{4} y^{2} \cdot(22-y) \cdot \Delta y$.
Finally, total work is $W=\int_{0}^{20} \frac{6}{4} y^{2}(22-y) d y=28000 \mathrm{~J}$.
6.1. Inverse formations: $f(x)=y \Leftrightarrow f^{-1}(y)=x . \quad f\left(f^{-1}(x)\right)=f^{-1}(f(x))=x$. Graphs of f and f^{-1} are symmetric w.n.t. $y=x$.
Ir order for f to have am inverse, it must be one-to-one (parses the horizontal line test).
Derivative of $f^{-1}: \quad\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right.} ; \operatorname{Domain}(f)=\operatorname{Range}\left(f^{-1}\right)$ andvice-Verse. . To find a formula for f^{-1}, swap x and y and solve for y (if possible).
6.2. Natural $\log (\ln): \quad$ Domain $=(0, \infty)$, Range $=\mathbb{R} . \ln (1)=0, \ln (e)=1$ $\ln (x \cdot y)=\ln x+\ln y, \quad \ln (x / y)=\ln x-\ln y, \quad \ln \left(x^{n}\right)=r \ln (x)$.

$$
\frac{d}{d x} \ln x=\frac{1}{x}, \quad \int \frac{1}{x} d x=\ln |x|+c, \int \ln x d x=x \ln x-x+c \quad \text { (integration by Pant). }
$$

6.3. Natural exp. $\left(e^{x}\right) \quad$ Domain $=\mathbb{R}, \operatorname{Range}=(0, \infty) \cdot e^{\ln x}=\ln \left(e^{x}\right)=x$. $\frac{d}{d x} e^{x}=e^{x}, \int e^{x} d x=e^{x}+c$.
6.4- General \log and exp. $\log _{a} x=\frac{\ln x}{\ln a}, a^{x}=e^{x \cdot \ln (a)}, \log _{a}\left(a^{x}\right)=a^{\log _{a} x}=x=x$.

$$
\frac{d}{d x} a^{x}=a^{x} \ln a, \frac{d}{d x} \log _{a} x=\frac{1}{x \cdot \ln a}, \int a^{x} d x=\frac{a^{x}}{\ln a}+c^{a}
$$

$$
\int \tan x d x=-\ln |\cos x|+c=\ln |\sec x|+C \quad(u-\operatorname{sub}, u=\cos x)
$$

Log-differentiation: find $\frac{d}{d x}\left(x^{2}+x\right)^{x-2}$. let $y=\left(x^{2}+x\right)^{x-2}, \quad \ln (y)=(x-2) \ln \left(x^{2}+x\right)$ Then $\frac{y^{\prime}}{y}=\frac{1}{x^{2}+x} \cdot(2 x+1) \cdot(x-2)+1 \cdot \ln \left(x^{2}+x\right)$. Than multiply by y to get y !
9.3. Separable equations. Solve the initial value problem $\left(x^{2}+1\right) y^{\prime}=y, y(0)=\frac{1}{e}$.

$$
\begin{aligned}
& \left(x^{2}+1\right) \frac{d y}{d x}=y \Rightarrow \quad \frac{d y}{y}=\frac{d x}{x^{2}+1} \Rightarrow \int \frac{d y}{y}=\int \frac{d x}{x^{2}+1} \text { and so, } \\
& \ln |y|=\tan ^{-1}(x)+c . \quad y(0)=e^{-1} \Rightarrow \ln e^{-1}=\tan ^{-1} 0+c \Rightarrow c=-1-0=-1 \\
& \ln |y|=\tan ^{-1}(x)-1 \Rightarrow \quad y=e^{\tan ^{-1} x-1} .
\end{aligned}
$$

5- Exp bow th and Decay. Rate ofehonge of a quantity Pis proportional to its Current size: $\frac{d P}{d t}=K P ; K=$ relative growth rate.
Solution: $P(t)=P(0) e^{k t}$. At half life, $P(t)=\frac{1}{2} P(0)$. P(0) = initial size.

Continuously Compounded interest: $A(t)=A_{0} e^{\text {nt }}, A_{0}=$ principle, $r=$ interest rate.
66. Inverse trig. function. Most important fimetions are

$$
\begin{aligned}
& \operatorname{Sin}^{-1}(x) \text {, Range }=\left[-\frac{\pi}{2}, \pi / 2\right], d / d x\left(\sin ^{-1}(x)\right)=\frac{1}{\sqrt{1-x^{2}}} \\
& \operatorname{Cos}^{-1}(x), \quad \text { Range }=[0, \pi], \quad d d x\left(\cos ^{-1}(x)\right)=\frac{-1}{\sqrt{1-x^{2}}} \\
& \tan ^{-1}(x), \quad \text { Range }=\left(-\frac{\pi}{2}, \pi / 2\right), \quad d / d x\left(\tan ^{-1}(x)\right)=\frac{1}{1+x^{2}}, \lim _{x \rightarrow \infty} \tan ^{-1}(x)=\frac{\pi}{2} \\
& \operatorname{Sec}^{-1}(x), \text { Range }=\left[0, \frac{\pi}{2}\right) \cup\left[\pi, \frac{3 \pi}{2}\right), f^{\prime}(x)=\frac{1}{x \sqrt{x^{2}-1}} . \quad \lim _{x \rightarrow \infty} \tan ^{-1}(x)=-\frac{\pi}{2} .
\end{aligned}
$$

6.7. Hyperbolic function $\sinh x=\frac{e^{x}-e^{-x}}{2}, \cosh x=\frac{e^{x}+e^{-x}}{2}, \tanh x=\frac{\sinh x}{\cosh x}$. $\cosh ^{2} x-\sinh ^{2} x=1, \quad 1-\tanh ^{2} x=\operatorname{sech}^{2} x . \quad(\sinh x)^{\prime}=\cosh x,(\cosh x)^{\prime}=\sinh x$.
6.8 - L'Hospital's Rule. Woks on $\frac{\infty}{\infty}$ a $\frac{0}{0}$ type limits: $\lim _{x \rightarrow \infty} \frac{f}{g}=\lim _{x \rightarrow a} \frac{f^{\prime}}{g^{\prime}}$. - Differences: $\infty-\infty \rightarrow$ units as a quotient (common denominator). products: $\infty * 0 \underset{ \pm \infty}{ }$ write as a quotient: $f * y=f+\frac{1}{g}$. powers: $0^{\circ}, \infty^{\circ}, 1^{ \pm \infty}$: Use the natural log.
7.1 Integration by Part. $\int u d v=a v-\int v d u$. Choose U and dv-sothat U is cary to differentiate, and/on do is easy to integrate. Examples: $\int \ln x d x, \int \sqrt{x} \ln x d x, \int x^{2} \cos x d x, \int x^{3} e^{-5 x} d x, \int e^{x} \sin x d x, \int e^{x} \cos x d x$, $\int \tan ^{-1} x d x, \int \sec ^{3} x d x$, etc....
7.2 trig. integrals: $\int \sin ^{n}(x) \cos ^{m}(x) d x, \int \tan ^{n}(x) \sec ^{m}(x) d x$. Use identities $\cos ^{2} x+\sin ^{2} x=1, \quad \tan ^{2} x+1=\sec ^{2} x, \quad \sec ^{2} x-1=\tan ^{2} x, \quad \sin 2 x=2 \sin x \cos x$, $\cos ^{2} x=\frac{1+\cos 2 x}{2}, \quad \sin ^{2} x=\frac{1-\cos 2 x}{2}$. Examples include: $\int \sin ^{3} x \cos ^{2} x d x$, $\int \cos ^{3} x d x,^{2} \int \sec ^{2} x \tan ^{2} x d x, \int^{2} \int \sin ^{4} x d x, \int \sin ^{5} x \cos ^{-3} x d x$, etc,
7.3 Trig. Substitution: Use $\sin ^{2} x+\cos ^{2} x=1, \sec ^{2} x-1=\tan ^{2} x, \tan ^{2} x+1=\sec ^{2} x$ on:
$\sqrt{a^{2}-x^{2}}, x=a \sin \theta, \quad d x=a \cos \theta d \theta$
$\sqrt{a^{2}+x^{2}}: \quad x=a \tan \theta, \quad d x=a \sec ^{2} \theta d \theta$
$\sqrt{x^{2}-a^{2}}: x=a \sec \theta, \quad d x=a \quad \sec \theta \tan \theta \cdot d \theta$
7.4 Partial fraction: $\int \frac{P(x)}{Q(x)} d x, P, Q$ ne polynomials.

- Step zero: lng division if degree $(P) \geqslant$ degree (Q)
- stop 1: factor Q completely. If Q doesn't factor \rightarrow Complete the square.
- Sop 2: set-up partial fractions:
- linear factors $(a x+b)^{n}$ in $Q \rightarrow \frac{A_{1}}{a x+b}+\frac{A_{2}}{(a x+b)^{2}}+\cdots+\frac{A_{n}}{(a x+b)^{n}}$.
- In educible quadratic factors in $Q:\left(x^{2}+a^{2}\right)^{n}: \frac{A_{x}+B_{1}}{\left(x^{2}+a^{2}\right)}+\cdots+\frac{\left(A_{A} x+B_{1}\right)}{\left(x^{2}+a^{2}\right)^{n}}$.
7.5. Strategy fo integration.

1. Simplify the integrand: $\int \sqrt{x}(1+\sqrt{x}) d x=\int x+\sqrt{x} d x$
2. Look for obvious substitutions
3. Classify the integrand according to ito form:
(a) trig functurir
(b) rational $f(x$
(c) Inter. by parts
(d) radicals $\sqrt{ \pm x^{2} \pm a^{2}}$
7.8. Improper Integrals

Type I: $\int_{a}^{\infty}, \int_{-\infty}^{b}, \int_{-\infty}^{\infty}$. Use limits toreplace ∞ and 10 r $-\infty$
Type II: discontinuous integrands $\int_{a}^{b} f(x) d x$, f discntus at a and/orb, and/or a pointcimbetween: Split integral at c and use limits (1-sided).
Ex: $\int_{-1}^{1} \frac{1}{x^{2}} d x=\int_{-1}^{0} \frac{1}{x^{2}} d x+\int_{0}^{1} \frac{1}{x^{2}} d x=\lim _{t \rightarrow 0^{-}} \int_{-1}^{t} \frac{1}{x^{2}} d x+\lim _{t \rightarrow 0^{+}} \int_{t}^{1} \frac{1}{x^{2}} d x$.
Theorem: $\int_{1}^{\infty} \frac{1}{x^{p}} d x$ Cnnerges if $p>1$ and diverges if $p \leq 1$.
Direct Comparison feet: if $f(x) \geqslant g(x) \geqslant 0$, then
$\int f(x) d x$ diverges if $\int g(x) d x d i v$, and $\int g(x) d x$ lonnegle if $\int f(x) d x$ lone. Limit Comparison test: if $f(x), g(x) \geqslant 0$ and $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=L, \quad 0<L<\infty$, $\int f(x) d x$ and $\int g(x) d x$ either both converge on both diverge.

