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Abstract. In this short note, we consider the worst case noise robustness of any phase retrieval algorithm
which aims to reconstruct all nonvanishing vectors x ∈ Cd (up to a single global phase multiple) from
the magnitudes of shifted local correlation measurements. Examples of such measurements include both
spectrogram measurements of x using locally supported windows and masked Fourier transform intensity
measurements of x using bandlimited masks. As a result, the robustness results considered herein apply to
a wide range of both ptychographic and Fourier ptychographic imaging scenarios. In particular, the main
results imply that the accurate recovery of high-resolution images of extremely large samples using highly
localized probes is likely to require an extremely large number of measurements in order to be robust to worst
case measurement noise, independent of the recovery algorithm employed. Furthermore, recent pushes to
achieve high-speed and high-resolution ptychographic imaging of integrated circuits for process veri�cation
and failure analysis will likely need to carefully balance probe design (e.g., their e�ective time-frequency
support) against the total number of measurements acquired in order for their imaging techniques to be
stable to measurement noise, no matter what reconstruction algorithms are applied.

1. Introduction and Statement of Results

We consider the robustness of the �nite-dimensional phase retrieval problem in which one attempts to

recover a signal x := (x(1), . . . ,x(d))
T ∈ Cd from one of two nonlinear measurement maps α, β : Cd → RN

given by

α(x) = {|〈x, fk〉|}Nk=1 and β(x) = {|〈x, fk〉|2}Nk=1,

where the vectors {f1, . . . , fN} ⊂ Cd form a frame (i.e., a spanning set) of Cd. This problem is motivated
by inverse problems that arise in several scienti�c areas including optics [23], astronomy [10], quantum
mechanics [9], and audio signal processing [18, 22]. In particular, we will focus on a special class of frame
vectors fk which have localized support (i.e., all of whose nonzero entries are contained in an interval of length
at most δ � d). Such frames are commonly encountered in applications like ptychographic imaging in which
small overlapping regions of a much larger specimen are illuminated one at a time, and a detector captures
the intensities of the resulting local di�raction patterns [20].

It is clear that for any θ ∈ R one has α(eiθx) = α(x) and β(eiθx) = β(x). Therefore, we can at best hope
to recover x up to the equivalence relation x ∼ x′, if x = e

iθx′ for some θ ∈ R. Following the work of Balan
et al. [2, 3], we will consider two commonly used metrics on Cd/ ∼: the natural metric

D2(x,x′) := min
θ∈R
‖x− e

iθx′‖2,

and the matrix-norm induced metric

d1(x,x′) := ‖xx∗ − x′x′∗‖1 :=
∑
k

σk(xx∗ − x′x′∗),

where σk(xx∗ − x′x′∗) is the k-th singular value of the (at most rank-two) matrix xx∗ − x′x′∗. In [3], Balan
et al. showed that if α and β are injective on Cd/ ∼, then β is bi-Lipschitz with respect to d1, and α is
bi-Lipschitz with respect to D2, where in both cases RN is equipped with the Euclidean norm.

Motivated by applications such as (Fourier) ptychography [20, 24] and related numerical methods [15, 16],
we will study frames which are constructed as the shifts of a family of locally supported measurement vectors.
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Speci�cally, we assume that {m1,m2, . . . ,mK} is a family of measurement masks in Cd such that for all
1 ≤ k ≤ K the nonzero entries of mk are contained in the set [δ] := {1, . . . , δ} for some δ ≤ d

4 (although all
of our results remain valid if the support of our masks are contained in any interval of length δ).

De�nition 1. Let L be an integer which divides d, such that a := d
L < δ. We de�ne the quadratic nonlinear

phaseless measurement map Y : Cd → RK×L by its coordinate functions

Yk,`(x) := |〈S`amk,x〉|2. (1.1)

De�nition 2. Let L be an integer which divides d, such that a = d
L < δ. We de�ne the �rst-order nonlinear

phaseless measurement map Z : Cd → RK×L by its coordinate functions

Zk,`(x) := |〈S`amk,x〉|. (1.2)

In both De�niton 1 and De�nition 2, S` is the circular shift operator on Cd de�ned for all ` ∈ Z by

(S`x)(n) := x ((n+ `− 1) mod d+ 1) .

(The + 1 is needed because we are indexing our vectors from one.) For notational convenience, we will
assume that d is even, although our results remain valid, with similar proofs, when d is odd.

The purpose of this paper is to provide lower bounds on the Lipschitz constants of any maps, A and B,
which reconstruct x from Y and Z, respectively. With such lower bounds in hand, one would be better
equipped to, e.g., judge the optimality of theoretical noisy reconstruction guarantees for phase retrieval
algorithms which utilize locally supported measurements (see, e.g., [15, 16]). Unfortunately, Y and Z are
not injective on all of Cd/ ∼. For example, if two vectors x± ∈ Cd are de�ned by

x±(n) :=


1, 1 ≤ n ≤ d

2 − δ
0, d

2 − δ < n ≤ d
2

±1, d
2 < n ≤ d− δ

0, d− δ < n ≤ d

, (1.3)

then x+ 6∼ x−, but Y (x+) = Y (x−) and Z(x+) = Z(x−). (If d were odd, we could add an extra entry of 1
to x±.) However, it can be shown [15] that Y and Z are injective when restricted to the subset of Cd such
that x(n) 6= 0 for all 1 ≤ n ≤ d, for certain choices of masks in the case where L = d. Given this, we will
consider the maps Y and Z restricted to the subset

Cp,q = {x ∈ Cd/ ∼ such that p ≤ |x(n)| ≤ q for all 1 ≤ n ≤ d},
for some �xed 0 < p ≤ q, and provide lower bounds on the Lipschitz constants of A and B which grow
linearly with respect to the ratio q

p .

1.1. Related Work and Implications. Our local measurement maps, de�ned in (1.1) and (1.2), are
closely related to several practical measurement models that have been explored in the phase retrieval
literature including, for example, Short-Time Fourier Transform (STFT) magnitude measurements (see,
e.g., [5, 17, 19, 21]). In particular, suppose that our STFT magnitude measurements are generated by a
compactly supported window w ∈ Cd whose nth-entry w(n) is nonzero only if n ∈ [δ]. In this setting, we
can use one locally supported mask mk to represent each measured frequency ωk ∈ Ω ⊂ [d] := {1, . . . , d} by
letting mk := Wωkw for each frequency index k, where Wωk is the modulation operator de�ned on Cd by

(Wωkw)(n) := e
2πi(n−1)(ωk−1)

d w(n).

In this case, we have

|〈S`amk,x〉| = |〈x, S`aWωkw〉| =
∣∣∣〈x, e 2πi`a(ωk−1)

d WωkS`aw
〉∣∣∣ = |〈x,WωkS`aw〉|

for all k and `. Therefore, one can see that the main results below yield lower Lipschitz bounds for any such
STFT magnitude measurements in terms of the total number of shifts L, the number of measured frequencies
K, and the window w's support size δ.

Another common model considered in the phase retrieval literature concerns masked Fourier measurements
of the form

|F Diag(wk) x|2, (1.4)
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where F is the d× d discrete Fourier transform matrix whose entries are de�ned by

Fj,k := e
−2πi (j−1)(k−1)

d ,

and {w1, . . . ,wk} ⊂ Cd is a family of measurement vectors (see, e.g., [4, 7, 8, 13]). In this setting one can ask
what e�ect, if any, requiring each wk to be bandlimited (i.e., to have support size δ � d in the Fourier basis)
might have on the stability of these measurements. Furthermore, one might also consider subsampling each
of the masked Fourier measurements in frequency instead of acquiring measurements for all d frequencies.
(This may even be a necessity due to, for example, detector limitations.) We will show that our results may
also be applied to these types of measurements as a special case.

Suppose for example that each measurement vector wk has ŵk(n) := (Fwk)(n) = 0 for all n /∈ {1}∪{d−
δ+ 2, . . . , d}.1 For a vector u ∈ Cd, let ũ ∈ Cd be the vector obtained by re�ecting the entries of u about its
�rst entry so that

ũ(n) := u ((1− n) mod d+ 1) .

In this case, we see that the measurements (1.4) are given by the quadratic measurement map de�ned in

(1.1) applied to x̂ with the locally supported measurement masks mk := 1
d
˜̂wk. Indeed,

|〈S`amk, x̂〉| =
1

d

∣∣∣∣〈x̂, S`a ˜̂wk

〉∣∣∣∣ =
1

d

∣∣∣∣∣
d∑

n=1

x̂ (n)S`a ˜̂wk (n)

∣∣∣∣∣
=

1

d

∣∣∣∣∣
d∑

n=1

x̂ (n) ŵk ((1− `a− n) mod d+ 1)

∣∣∣∣∣
=

1

d
|(ŵk ∗ x̂) (−`a mod d+ 1)| , (1.5)

where ∗ is circular convolution given by

(x ∗ y)(m) =

d∑
n=1

x(n)y((m− n) mod d+ 1).

Continuing from (1.5), we see by the convolution theorem

|〈S`amk, x̂〉| = |F (wk ◦ x) ((−`a mod d) + 1)| = |F (Diag (wk)x) ((−`a mod d) + 1)| ,

where ◦ represents the Hadamard (componentwise) product.
As a result, we see that recovering a vector x from masked Fourier measurements of the form (1.4) with

bandlimited measurement vectors wk is equivalent to recovering x̂ from the quadratic measurements (1.1)
with locally supported measurement masks mk. Therefore, the main results below also yield lower Lipschitz
bounds for any such masked Fourier magnitude measurements in terms of the total number of frequencies
L collected per measurement vector, the total number K of measurement vectors used, and the maximum
Fourier support size δ of each bandlimited measurement vector.

1.2. Main Results. The main results of this paper are the following two theorems which provide lower
bounds for the Lipschitz constants of any maps A and B for which A(Y (x)) = x and B(Z(x)) = x for all
x ∈ Cp,q.

Theorem 1. Let 0 < p ≤ q, and consider the map Z, de�ned as in (1.2), restricted to the subset Cp,q ⊂
Cd/ ∼ . Assume that δ ≤ d

4 and that d = aL for some integer 1 ≤ a < δ. Then if B is any Lipschitz map
(with respect to D2) such that B(Z(x)) = x for all x ∈ Cp,q, we have that

CB ≥
1

8

q
√
da

p
√
K‖m‖∞δ3/2

=
1

8

qd

p
√
KL‖m‖∞δ3/2

, (1.6)

where CB is the Lipschitz constant of B, and ‖m‖∞ := max1≤k≤K ‖mk‖∞.

1Note that this particular support interval (modulo d) is not particularly special. The same arguments below can be extended
to apply to any interval of support of size ≤ δ in a straightforward fashion.
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Theorem 2. Let 0 < p ≤ q, and consider the map Y, de�ned as in (1.1), restricted to the subset Cp,q ⊂ Cd/ ∼.
Assume that δ ≤ d

4 and that d = aL for some integer 1 ≤ a < δ. Then if A is any Lipschitz map (with respect
to d1) such that A(Y (x)) = x for all x ∈ Cp,q, we have that

CA ≥
1

16

qd
√
a

p
√
K‖m‖2∞δ5/2

=
1

16

qd3/2

p
√
KL‖m‖2∞δ5/2

, (1.7)

where CA is the Lipschitz constant of A, and ‖m‖∞ := max1≤k≤K ‖mk‖∞.

Ideally, we would like a stable phase retrieval algorithm to have have CA = O(1) (or CB = O(1)) while
using only KL = O(d) total measurements, i.e., while having the frame redundancy KL

d = K
a = O(1).

Unfortunately, Theorems 1 and 2 demonstrate that this is impossible when δ, the support size of the masks,
is very small. At best, a phase retrieval algorithm that uses only KL = O(d) local correlation measurements
can have global Lipschitz constants that are of size O

(
d

δ5/2

)
in the case of the quadratic Y -measurements, and

O
( √

d
δ3/2

)
in the case of the �rst-order Z-measurements. This implies that extremely large samples x (i.e., with

d large) cannot be stably recovered from measurements which are noisy and extremely localized (i.e., with δ
small) in the worst case using only O(d) total measurements. To contextualize this in an application setting,
one may consider recent research initiatives aimed at achieving the ability to rapidly obtain detailed images
of relatively large circuit boards [14]. One approach to solving this problem involves using ptychographic
imaging and taking STFT magnitude measurements of the circuit board using a probe (i.e., an STFT
window function) with a comparably small e�ective support size δ. In this context, Theorem 2 implies that
the probe's e�ective support size should not be taken to be too small unless additional measurements are
taken in order to help ensure stability to noise.

Algorithms for inverting the quadratic measurements (1.1) were presented in [15] and [16] along with
upper bounds for the stability of these algorithms to noise. In particular, in [16], it was shown, in the case
that L = d, and K = 2δ − 1, that

D2(x,x′) ≤ Cκ q
p2

(
d

δ

)2

‖Y (x)− Y (x′)‖2 + Cd1/4
√
κ‖Y (x)− Y (x′)‖2, (1.8)

where κ is the condition number of a certain linear system which arises in the proposed algorithm. [16]
considers two examples of well-conditioned families of masks, and shows that in both cases κ can be bounded
as a function of δ. In particular, for the masks considered in section 3.2, it is shown that κ ≤ 4δ. These upper
bounds are not directly comparable to the main results of this paper because, in general, the quadratic
measurements (1.1) are not Lipschitz with respect to D2. However, like Theorems 1 and 2, (1.8) shows that
the stability of the measurements detioriates when d is much larger than δ or when q is much larger than p.

As we shall see, the proofs of both Theorems 1 and 2 will depend on signals modeled along the lines of
(1.3) whose support sets are composed of two disjoint components separated from one another by at least
δ zeroes. In [15] it was noted that phase retrieval of such signals using locally supported masks mk of
the type proposed herein was impossible, and that recovery of signals with more than δ consecutive small
entries appeared to be unstable. Interestingly enough, subsequent work in the in�nite-dimensional setting
has independently identi�ed such disjointly supported signals as being the principal cause of instability in
phase retrieval problems using continuous Gabor measurements as well because they lead to measurements
which are supported on disjoint subsets of the time-frequency plane [1, 12]. Similarly, we will use (essentially)
disjointly supported signals similar to those in (1.3) to provide lower bounds on the Lipschitz constants of
our maps A and B using the fact that they (i) are far apart with respect to the D2 and d1 metrics de�ned
above and (ii) produce measurements with respect to our maps Y and Z which are (nearly) identical. While
we do not prove that our bounds are sharp, we do note that the signals signals considered below are as close
as possible, among elements of Cp,q, to those in (1.3). Therefore, we believe our bounds are likely quite close
to being sharp, although this remains a conjecture at this point.

2. The Proofs of Theorem 1 and Theorem 2

We are now prepared to prove our main results.

Proof of Theorem 1. First observe that for any x,x′ ∈ Cp,q,
D2(x,x′) = D2(B(Z(x)), B(Z(x′))) ≤ CB‖Z(x)− Z(x′)‖2.
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Therefore,

CB ≥ sup
D2(x,x′)

‖Z(x)− Z(x′)‖2
, (2.1)

where the supremum is taken over all x 6∼ x′ ∈ Cp,q. De�ne x+ and x− ∈ Cd by

x±(n) :=


q, 1 ≤ n ≤ d

2 − δ
p, d

2 − δ < n ≤ d
2

±q, d
2 < n ≤ d− δ

p, d− δ < n ≤ d

.

Note that D2(x+,x−) ≥ q
√
d since δ < d

4 and for all θ ∈ R,

‖x+ − e
iθx−‖22 ≥

d/2−δ∑
n=1

|(1− e
iθ)q|2 +

d−δ∑
n=d/2+1

|(1 + e
iθ)q|2

=

(
d

2
− δ
)
q2|1− e

iθ|2 +

(
d

2
− δ
)
q2|1 + e

iθ|2

≥ d

4
q2
(
|1− e

iθ|2 + |1 + e
iθ|2
)

= dq2,

since |1− e
iθ|2 + |1 + e

iθ|2 = 4 for all θ. Let Z± := Z(x±). We will show that

‖Z+ − Z−‖2 ≤ 8
√
Kp‖m‖∞

δ3/2√
a
. (2.2)

Since B(Z±) = x±, combining this with (2.1) will complete the proof.
Observe that for all k, the support of S`amk is contained in [1 + `a, δ+ `a]. Therefore, Z+

k,` = Z−k,` except

when 1 + `a ≤ d
2 < δ + `a or 1 + `a ≤ d − δ < δ + `a since if the support of S`amk does not intersect

(d2 , d− δ], we have that 〈S`amk,x
+〉 = 〈S`amk,x

−〉, and if the support of S`amk is contained in (d2 , d− δ],
then 〈S`amk,x

+〉 = −〈S`amk,x
−〉.

We will obtain a bound for |Z+
k,` − Z

−
k,`| in the the case where 1 + `a ≤ d − δ < δ + `a. The case where

1 + `a ≤ d
2 < δ + `a can be bounded in a similar fashion. For �xed ` such that 1 + `a ≤ d− δ < δ + `a, let

j := `a+ 2δ − d

so that the last j nonzero entries of S`amk are located in positions greater than d − δ and the �rst δ − j
nonzero entries are located in positions less than or equal to d− δ. (Note that 1 ≤ j ≤ δ − 1.) Then,

〈S`amk,x
−〉 = −q

δ−j∑
n=1

mk(n) + p

δ∑
n=δ−j+1

mk(n) = −〈S`amk,x
+〉+ 2p

δ∑
n=δ−j+1

mk(n).

Therefore,

|Z−k,` − Z
+
k,`| ≤ 2jp‖m‖∞. (2.3)

Since 1 ≤ j ≤ δ − 1, summing over the set of ` such that 1 + `a ≤ d− δ < δ + `a, corresponds to summing
over j = a, 2a, . . . , b δ−1a ca if a divides d− 2δ, or summing over j = j0, j0 + a, j0 + 2a, . . . , j0 + b δ−j0−1a ca for
some 0 < j0 < a otherwise. Therefore, summing over both the terms corresponding to 1+`a ≤ d−δ < δ+`a
and to 1 + `a ≤ d

2 < δ + `a,

‖Z+ − Z−‖22 ≤ 2 · 22‖m‖2∞p2
K∑
k=1

bδ/ac+1∑
t=1

|at|2 ≤ 8Ka2‖m‖2∞p2
(
δ

a
+ 1

)3

≤ 64Kp2‖m‖2∞
δ3

a
, (2.4)

since δ
a ≥ 1. This proves (2.2) and therefore completes the proof. �

Proof of Theorem 2. Similarly to the proof of Theorem 1,

CA ≥ sup
d1(x,x′)

‖Y (x)− Y (x′)‖2
, (2.5)
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where the supremum is again taken over all x 6∼ x′ ∈ Cp,q. Let x± be in as in the proof of Theorem 1, and

let Y ± := Y (x±). By the same reasoning as in the previous proof, Y +
k,` = Y −k,`, unless 1 + `a ≤ d

2 < δ + `a or
1 + `a ≤ d− δ < δ + `a.

We will obtain a bound for |Y +
k,` − Y

−
k,`| in the case where 1 + `a ≤ d − δ < δ + `a. As in the proof of

Theorem 1, a similar bound can be obtained in the case where 1 + `a ≤ d
2 < δ + `a. Let ` be such that

1 + `a ≤ d− δ < d+ `a, and again let j := `a+ 2δ − d. Since for all k and `, we have

|Z±k,`| ≤ q‖m‖∞δ,
we see

|Y +
k,` − Y

−
k,`| = |(Z

+
k,`)

2 − (Z−k,`)
2| = |Z+

k,` + Z−k,`||Z
+
k,` − Z

−
k,`| ≤ 4‖m‖2∞qδpj,

by (2.3). Therefore, by the same reasoning as in (2.4),

‖Y + − Y −‖22 ≤ 32‖m‖4∞q2δ2p2
K∑
k=1

bδ/ac+1∑
t=1

|at|2 ≤ 32K‖m‖4∞q2δ2p2a2
(
δ

a
+ 1

)3

= 256K‖m‖4∞q2p2
δ5

a
.

Thus, the proof will follow from (2.5) once we show d1(x+,x−) ≥ dq2.
For n,m ∈ N, let 0n×m and 1n×m denote the n × m matrices of all zeros and of all ones respectively.

With this notation we see that

x± = (q11×η, p11×δ,±q11×η, p11×δ)
T ,

and

x±x±
∗

=


q21η×η qp1η×δ ±q21η×η qp1η×δ
qp1δ×η p21δ×δ ±qp1δ×η p21δ×δ
±q21η×η ±qp1η×δ q21η×η ±qp1η×δ
qp1δ×η p21δ×δ ±qp1δ×η p21δ×δ

 ,

where η := d
2 − δ. Therefore,

x+x+∗ − x−x−
∗

= 2q


0η×η 0η×δ q1η×η 0η×δ
0δ×η 0δ×δ p1δ×η 0δ×δ
q1η×η p1η×δ 0η×η p1η×δ
0δ×η 0δ×δ p1δ×η 0δ×δ


is a rank-two Hermitian matrix. One may use the identity 1m×n1n×k = n1m×k, to verify that

(ηq11×η, ηp11×δ,±
√

2ηδp2 + η2q211×η, ηp11×δ)
T

are linearly independent eigenvectors with corresponding eigenvalues ±2q
√
η2q2 + 2ηδp2. Therefore, the

singular values of x+x+∗ − x−x−
∗
are given by

σ1 = σ2 = 2q
√
η2q2 + 2ηδp2.

Since η ≥ d
4 , this implies d1(x+,x−) = 4q

√
η2q2 + 2ηδp2 ≥ dq2 as desired and therefore completes the proof.

�

3. Examples: Lower Bounds for Specific Measurement Masks

In this section, we will see that the estimates of Theorems 1 and 2 can be improved for speci�c choices of
well-conditioned measurement masks.

3.1. Windowed Fourier Measurement Masks. In this subsection, we consider a family of masks {mk}2δ−1k=1 ,
de�ned by

mk(n) :=

{
e
−n/b

(2δ−1)1/4 e
2πi(k−1)(n−1)/(2δ−1) 1 ≤ n ≤ δ

0 δ < n ≤ d
, (3.1)

for some �xed parameter b > 4.Masks of this form are closely related to those used in ptychographic imaging
(see, for example, [15], Section 1.3 and the references provided therein). In [15] it was shown that, with this
choice of masks, that the condition number κ of the linear system considered there satis�es

κ ≤ Cδ2.
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Combining this with (1.8) shows

D2(x,x′) ≤ C q

p2
d2‖Y (x)− Y (x′)‖2 + Cd1/4δ

√
‖Y (x)− Y (x′)‖2. (3.2)

Therefore, the map Y, restricted to the subset of Cd where x(n) 6= 0 for all 1 ≤ n ≤ d, can be inverted by an
algorithm which is both e�cient and numerically stable in the case where L = d.

We will prove two corollaries to Theorems 1 and 2, which show that the lower bounds for CB and CA can
be improved for this choice of masks.

Corollary 1. Let 0 < p ≤ q, and consider the map Z, de�ned as in (1.2), restricted to the subset Cp,q ⊂
Cd/ ∼ . Assume that δ ≤ d

4 and that d = aL for some integer a < δ. Then if {mk}2δ−1k=1 is the family of
masks given by (3.1) and B is any Lipschitz map (with respect to D2) such B(Z(x)) = x for all x ∈ Cp,q,
then

CB ≥
1

2
√

2
Kb

q
√
da

p(2δ − 1)1/4δ1/2
=

1

2
√

2
Kb

qd

p
√
L(2δ − 1)1/4δ1/2

, (3.3)

where Kb := e
1/b − 1, and CB is the Lipschitz constant of B.

Corollary 2. Let 0 < p ≤ q, and consider the map Y, de�ned as in (1.1), restricted to the subset Cp,q ⊂
Cd/ ∼ . Assume that δ ≤ d

4 and that d = aL for some integer a < δ. Then if {mk}2δ−1k=1 is the family of
masks given by (3.1) and A is any Lipschitz map (with respect to d1) such A(Y (x)) = x, for all x ∈ Cp,q,
then

CA ≥
1

4
√

2
K2
b

qd
√
a

p
√
δ

=
1

4
√

2
K2
b

qd3/2

p
√
L
√
δ
, (3.4)

where Kb := e
1/b − 1, and CA is the Lipschitz constant of A.

Remark 1. For this choice of masks, K = 2δ− 1 and ‖m‖∞ = e
−1/b(2δ− 1)−1/4. Therefore, the constants

obtained in Corollaries 1 and 2 have the same asymptotic behavior with respect to a and d, but are larger
with respect to δ than those obtained by directly applying Theorems 1 and 2 to this choice of masks.

Remark 2. Similar lower bounds can be derived for any choice of masks along the lines of (3.1) whose
nonzero entries have magnitudes that form a truncated geometric progression.

Proof of Corollary 1. Let x± and Z± be as in the proofs of Theorems 1 and 2. As before, note that
Z+
k,` = Z−k,` except when either 1 + `a ≤ d

2 < δ + `a or 1 + `a ≤ d − δ < δ + `a. We will again restrict
attention to the case where 1 + `a ≤ d− δ < δ + `a.

Fix ` such that 1 + `a ≤ d− δ < δ+ `a, and as in the proof of the preceding theorems, let j := `a+ 2δ− d
so that the last j nonzero entries of S`amk are located in positions greater than d − δ and the �rst δ − j
nonzero entries are located in positions less than or equal to d− δ. We have seen that

Z±k,` =

∣∣∣∣∣∣±q
δ−j∑
n=1

mk(n) + p

δ∑
n=δ−j+1

mk(n)

∣∣∣∣∣∣ .
Therefore,

|Z−k,` − Z
+
k,`| ≤ 2p

∣∣∣∣∣∣
δ∑

n=δ−j+1

mk(n)

∣∣∣∣∣∣ ≤ 2p

δ∑
n=δ−j+1

|mk(n)|. (3.5)

To estimate the above sum, we note that |mk(n)| = (2δ − 1)−1/4sn, where s := e
−1/b. Since 0 < s < 1,

δ∑
n=δ−j+1

|mk(n)| ≤ (2δ − 1)−1/4
δ∑

n=1

sn ≤ (2δ − 1)−1/4
s

1− s
.

For each 1 ≤ k ≤ 2δ − 1, there are at most δ
a choices of ` such that 1 + `a ≤ d− δ < δ + `a and δ

a choices of

` such that 1 + `a ≤ d
2 < δ + `a. Therefore,

‖Z+ − Z−‖22 ≤ 8(2δ − 1)
δ

a
p2(2δ − 1)−1/2

(
s

1− s

)2
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= 8(2δ − 1)1/2
δ

a
p2
(

e
−1/b

1− e−1/b

)2

= 8(2δ − 1)1/2
δ

a
p2
(

1

e1/b − 1

)2

.

Recalling that D2(x+,x−) ≥ q
√
d as shown in the proof of Theorem 1 and applying (2.1) completes the

proof. �

Proof of Corollary 2. Let x± and Y ± be as in the proofs of Theorems 1 and 2. Note that for all k, `,

|Z±k,`| ≤ q
δ∑

n=1

|mk(n)| ≤ q(2δ − 1)−1/4
δ∑

n=1

sn ≤ q(2δ − 1)−1/4
s

1− s
, (3.6)

where s = e
−1/b as in the proof of Corollary 1. We again note that Y +

k,` = Y −k,` except when either

1+`a ≤ d
2 < δ+`a or 1+`a ≤ d−δ < δ+`a and again restrict attention to the case where 1+`a ≤ d−δ < δ+`a.

Combining (3.5) and (3.6) gives

|Y +
k,` − Y

−
k,`| = |Z

+
k,` + Z−k,`||Z

+
k,` − Z

−
k,`|

≤ 4qp(2δ − 1)−1/2
(

s

1− s

)2

.

As in the proof of Corollary 1, for each 1 ≤ k ≤ 2δ − 1, there are at most δ
a choices of ` such that

1 + `a ≤ d− δ < δ + `a and δ
a choices of ` such that 1 + `a ≤ d

2 < δ + `a. Therefore,

‖Y + − Y −‖22 ≤ 32(2δ − 1)
δ

a
q2p2(2δ − 1)−1

(
s

1− s

)4

≤ 32
δ

a
q2p2

(
e
−1/b

1− e−1/b

)4

= 32
δ

a
q2p2

(
1

e1/b − 1

)4

.

Recalling d1(x+,x−) ≥ dq2, as shown in the proof of Theorem 2, completes the proof. �

3.2. Two-Shot Measurement Masks. Consider the family of masks {mk}2δ−1k=1 de�ned by

m1 := e1

m2j := e1 + ej+1 (3.7)

m2j+1 := e1 + iej+1

for 1 ≤ j ≤ δ − 1, where {e1, . . . , ed} is the standard orthonormal basis for Rd. This family of masks is
closely related to the pure-state informationally complete measurements considered by Finklestein in [11].
Similarly to the previous example, in [15] it was shown that the condition number κ of the relevant linear
system satis�es

κ ≤ 4δ.

Inserting this into (1.8) yields

D2(x,x′) ≤ C q

p2
d2

δ
‖Y (x)− Y (x′)‖2 + Cd1/4

√
δ‖Y (x)− Y (x′)‖2. (3.8)

Thus, the map Y, restricted to the subset of Cd where x(n) 6= 0 for all 1 ≤ n ≤ d, can be inverted by an
algorithm which is both e�cient and numerically stable in the case where L = d.

As in the previous subsection, we will prove two corollaries which improve upon our lower bounds for CB
and CA for this speci�c choice of masks.

Corollary 3. Fix 0 < p ≤ q, and consider the map Z, de�ned as in (1.2), restricted to the subset Cp,q ⊂
Cd/ ∼ . Assume that δ ≤ d

4 and that d = aL for some integer a < δ. Then if {mk}2δ−1k=1 is the family of masks
de�ned by (3.7) and B is any Lipschitz map (with respect to D2) such that B(Z(x)) = x for all x ∈ Cp,q,
then



LOWER LIPSCHITZ BOUNDS FOR PHASE RETRIEVAL FROM LOCALLY SUPPORTED MEASUREMENTS 9

CB ≥
1

2
√

2

q
√
da

pδ
=

1

2
√

2

qd√
Lpδ

,

where CB is the Lipschitz constant of B.

Corollary 4. Let 0 < p ≤ q, and consider the map Y, de�ned as in (1.1), restricted to the subset Cp,q ⊂
Cd/ ∼ . Assume that δ ≤ d

4 and that d = aL for some integer a < δ. Then if {mk}2δ−1k=1 is the family of masks
de�ned by (3.7) and A is any Lipschitz map (with respect to d1) such that A(Y (x)) = x for all x ∈ Cp,q, then

CA ≥
1

8
√

2

qd
√
a

pδ
=

1

8
√

2

qd3/2√
Lpδ

,

where CA is the Lipschitz constant of A.

Remark 3. Note that for this choice of masks K = 2δ− 1. Therefore, the constants obtained in Corollaries
3 and 4 exhibit the same asympotic behavior with respect to d and are asymptotically larger with respect to δ
than those obtained by applying Theorems 1 and 2 to this choice of masks.

Proof of Corollary 3. Let x± be as in the proof of Theorems 1 and 2. Note that for all 1 ≤ n ≤ d,
|x+(n)| = |x−(n)|. Therefore, it is clear that for all `,

|〈S`am1,x
+〉| = |x+(`a+ 1)| = |x−(`a+ 1)| = |〈S`am1,x

−〉|,
and

|〈S`am2j+1,x
+〉| = |x+(`a+ 1) + ix+(`a+ j + 1)| = |x−(`a+ 1) + ix−(`a+ j + 1)| = 〈S`am2j+1,x

−〉|
since the real and imaginary parts of 〈S`am2j+1,x

+〉 and 〈S`am2j+1,x
−〉 have the same absolute values.

Therefore, to estimate ‖Z+ − Z−‖2 we only need to consider the terms Z+
2j,` − Z−2j,`. Furthermore, it is

clear that Z+
2j,` will equal Z

−
2j,`, unless ` is chosen in such a way that either `a + 1 ≤ d

2 < `a + j + 1 or
`a+ 1 ≤ d− δ < `a+ j + 1. In either of these cases,

|Z+
2j,` − Z

−
2j,`| = 2p. (3.9)

Therefore, we will be able to compute ‖Z+ − Z−‖2 once we estimate the number of ` such that `a + 1 ≤
d
2 < `a+ j + 1 or `a+ 1 ≤ d− δ < `a+ j + 1, which we will do in the following lemma.

Lemma 3. For �xed j, the number of ` such that `a+1 ≤ d
2 < `a+j+1 is less than or equal to j

a . Likewise,

the number of ` such that `a+ 1 ≤ d− δ < `a+ j + 1 is less than or equal to j
a .

Proof. If `a+ 1 ≤ d
2 < `a+ j + 1, then d

2 − j ≤ `a ≤
d
2 − 1, and any set of j consecutive integers can contain

at most j
a multiples of a. Likewise, if `a+ 1 ≤ d− δ < `a+ j + 1, then d− δ − j ≤ `a ≤ d− δ − 1. �

Combining (3.9) and Lemma 3 gives

‖Z+ − Z−‖22 ≤
δ∑
j=1

2j

a
(2p)2 ≤ 8

p2δ2

a
= 8

Lp2δ2

d
.

Therefore, recalling the fact that D2(x+,x−) ≥
√
dq, as shown in the proof of Theorem 1, the proof follows

from (2.1). �

Proof of Corollary 4. Since each mk has at most two nonzero entries, |Z+
k,` + Z−k,`| ≤ 4q for all k and `.

Therefore, by (3.9) each nonzero entry of Y + − Y − satis�es

|Y +
k,` − Y

−
k,`| ≤ |Z

+
k,` + Z−k,`||Z

+
k,` − Z

−
k,`| ≤ 8qp.

Furthermore, similarly to the proof of Corollary 3, Y +
k,` − Y −k,` is nonzero if and only if k = 2j for some

1 ≤ j ≤ δ − 1 and `a+ 1 ≤ d
2 < `a+ j + 1 or `a+ 1 ≤ d− δ < `a+ j + 1. Therefore, by Lemma 3,

‖Y + − Y −‖22 ≤
δ∑
j=1

2j

a
(8pq)2 ≤ 128

q2p2δ2

a
= 128

Lq2p2δ2

d
.

Finally, recalling from the proof of Theorem 2 that d1(x+,x−) ≥ dq2, the result follows from (2.5). �
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4. Discussion and Future Work

We believe that this initial work opens up several interesting corridors for further research. First and
perhaps most obvious among these is the development of algorithms together with optimal STFT windows,
etc., that have Lipschitz upper bounds which match these lower bounds to the extent possible (keeping in
mind, of course, that the lower bounds developed here may be gross underestimates). Existing algorithms
for local correlation measurements such as [15, 16] yield upper bounds for the measurements Y considered
above (1.1) with respect to the D2-metric, a metric with respect to which an inverse of Y will not generally
be Lipschitz [3]. As a result, the upper bounds they provide are not quite appropriate to compare to the
lower bounds considered here. Nonetheless, the Lipschitz lower bounds developed here do seem to at least
heuristically justify the necessity of, e.g., the d-dependence present in those existing worst case upper bounds.

Another interesting avenue of research would be to explore the extension of the related in�nite-dimensional
results developed by Alaifari et al. [1, 12] to the �nite-dimensional discrete setting. The resulting theory
would potentially provide more �ne-grained insights into the recovery of samples x from discrete STFT
magnitude measurements, and could also possibly be extended to results concerning general local correlation
measurement maps of the type we consider here in a way that would allow for the relaxation of the support
assumptions currently made on the masks {m1,m2, . . . ,mK}. Finally, one could also consider local Lipschitz
and Hölder lower bounds as opposed to global lower bounds. Though perhaps more di�cult to analyze, such
lower bounds may be more likely to correspond to achievable upper bounds.

We also remark that in [15], it was shown that the requirement that p ≤ x(n) ≤ q can be relaxed slightly.
The authors instead consider so-called "m-�at vectors" which essentially require that there be at least one
large entry in each each block of consecutive b dmc entries. It is likely that our analysis can be extended to
this case. Alternatively, one might be also able to use an interpolation argument similar to [6] to remove the
assumption that the x(n) are non-vanishing.
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