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Sami Merhi, Pierce O’Donnell, and Dr. Xiaodi Wang
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Abstract—In this paper, we propose a new facial recognition
algorithm based on wavelet analysis. M−Band wavelets are used
to decompose face images into M2 frequency levels. The efficiency
of this approach is tested using the eigenface procedure for face
recognition. Along with signal decomposition, Wavelet methods
allow for data compression, thus reducing computational efforts.

Index Terms—Eigenface; Face Recognition; M−Band
Wavelets; Wavelet transforms

I. INTRODUCTION

AS security needs grow, the capability of positively
recognizing individuals becomes a necessity. In an

attempt to solve identity issues, researchers have devised
numerous recognition algorithms. Among these, we have seen:
signature, fingerprint, iris, voiceprint, and many others. How-
ever, face recognition is arguably the most convenient method
of identification. Biomedical research has shown that human
beings often recognize one another through facial characteris-
tics. As early as the late nineteenth century, researchers have
tried to identify dominant facial features through automatic
methods of classification. Popular face recognition algorithms
include: Principal Component Analysis (Eigenface), Linear
Discriminate Analysis, Elastic Bunch Graph Matching, Fish-
erface, and Hidden Markov Chain Models. Of these, the
Eigenface Method has shown to have a high recognition rate.
In facial recognition, disc space is often an issue, especially
when dealing with a large population. Wavelets will not only
represent faces as primary and secondary features, but also
compress data dramatically and thus save disc space. This
makes Wavelets an ideal tool in recognizing facial features.
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II. THE PROPOSED WAVELET METHOD

For the purpose of this research, we will not introduce 2-
Band wavelets. A thorough discussion about these wavelets
can be found in [1] and [2].

It is known that 2−Band wavelets suffer from severe
constraint conditions, such as linear-phase 2−Band wavelets
do not exist [3]. M−Band Wavelets were designed as an
alternative with more freedom and flexibility. This family of
wavelets allows for better decomposition of a signal into its
components, far superior to the 2−Band wavelets.

To construct an M−Band wavelet (M ≥ 3), first one must
generate a set of M vectors, h0, h1, · · · , hM−1, each with
components hm,n, 0 ≤ m ≤M−1, 0 ≤ n ≤ML−1, where
m,n, L ∈ Z

+. Researchers in the field of Signal Processing
refer to these vectors as filter banks. In this paper, we refer to a
set of M filters as an M−Band wavelet generator. The choice
of L, the regularity, dictates the smoothness of the wavelet
transformation: the larger L, the smoother the transformation.
These wavelet generators are subject to the following:

Definition 1. A set of M vectors, {hm}M−1
m=0 , where hm =

{hm,n | m,n, L ∈ Z
+, 0 ≤ n ≤ML− 1}, is said to be an

M−Band Wavelet generator if it meets the following:

• Low-Pass and High Pass Condition:

LM−1∑
n=0

hm,n =
√
Mδ, δ =

⎧⎨
⎩1 m = 0

0 otherwise
.

• Orthonormal Condition:

hi · hj =
⎧⎨
⎩1 i = j

0 i �= j
.

• Perfect Reconstruction Condition:

s = s̃,

where s is the original signal and s̃ is the wavelet-based
reconstructed signal[3].

Below is a 4−Band wavelet generator for the case of L = 2

[3]:
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h0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.067371764

0.094195111

0.40580489

0.56737176

0.56737176

0.40580489

0.094195111

−0.067371764

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, h1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.094195111

0.067371764

0.56737176

0.40580489

−0.40580489

−0.56737176

−0.067371764

0.094195111

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

h2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.094195111

−0.067371764

0.56737176

−0.40580489

−0.40580489

0.56737176

−0.067371764

−0.094195111

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, h3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.067371764

−0.094195111

0.40580489

−0.56737176

0.56737176

−0.40580489

0.094195111

0.067371764

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

An excellent outline of this construction process can be
found in [3].

Once a wavelet generator has been created, we assemble the
transformation matrix W . First, one chooses the size, N ×N ,
of the matrix to use, where N = M j for some j ∈ N. We
divide the N×N matrix into M horizontal sub-matrices, each
of size M j−1 ×M j . Next, we create the ith sub-matrix by
cyclically shifting the hi to the right, M places at a time.

Figure 1. 16× 16, 4−Band, Regularity 2 Wavelet Matrix

Figure 1 displays the structure of a 16 × 16, 4−Band,
Regularity 2 (L = 2) Wavelet matrix, while Figure 2 shows a
sample face image with its 4−Band Transform.

The following terms and theorems will be used throughout
the rest of this paper.

Definition 2. The M−Band wavelet transform f : R
N×N →

R
N×N is defined by f(X) = W · X ·WT , where W is the

M−Band wavelet matrix constructed above, and X ∈ R
N×N .

Figure 2 shows a sample face image with its 4−Band
transformation.

Figure 2. Example 4-Band Transformation

Definition 3. Let X ∈ R
N×N with entries {xi,j}Ni,j=1. We

define the function E : R
N×N → R by:

E(X) =

N∑
i=1

N∑
j=1

x2i,j .

E(X) is referred to as the energy of X .

Definition 4. Let A = [−→a1 −→a2 · · · −→aN ] be any N ×N matrix,
where −→ai is the ith column of A. Define a map g : R

N×N →

R
N2

by g (A) =

⎡
⎢⎢⎣

−→a1
...

−→aN

⎤
⎥⎥⎦.

Theorem 5. The map g : R
N×N → R

N2

is bijective.

Proof: Let A,B ∈ R
N×N , where

A = [−→a1 · · · −→aN ] , B =
[−→
b1 · · · −→bN

]
.

Suppose that g (A) = g (B). Then,⎡
⎢⎢⎣

−→a1
...

−→aN

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−→
b1
...−→
bN

⎤
⎥⎥⎦ .

It follows that −→ai =
−→
bi , i = 1, . . . , N . Hence, B =

[−→a1 · · · −→aN ] = A. Therefore, g is one-to-one.

Let V ∈ R
N2

, where V = [v1 . . . vN2 ]
T . Let −→ci =[

v(i−1)N+1, . . . , viN
]T
, i = 1, . . . , N . Then,

V =

⎡
⎢⎢⎣

−→c1
...
−→cN

⎤
⎥⎥⎦ .

If we let C = [−→c1 · · · −→cN ], then g (C) = V . Therefore, g is
onto.

From what precedes, g is a bijection.

Corollary 6. The map g is invertible.

Proof: By Theorem 5, the map g is a bijection. Therefore,
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g−1 : R
N2 → R

N×N exists.

Theorem 7. There exists a, b ∈ R
+ such that, for any X,Y ∈

R
N×N , we have

a‖f (X − Y ) ‖ ≤ ‖X − Y ‖ ≤ b‖f(X − Y )‖

where ‖ · ‖ is any norm of R
N×N .

Proof: First recall that f (X − Y ) = W (X − Y )WT .
Therefore,

‖f (X − Y ) ‖ = ‖W (X − Y )WT ‖
≤ ‖W‖‖ (X − Y ) ‖‖WT ‖
= ‖W‖‖WT ‖‖ (X − Y ) ‖

Now, dividing both sides of the inequality by ‖W‖‖WT ‖,
we obtain ‖f (X − Y ) ‖

‖W‖‖WT ‖ ≤ ‖ (X − Y ) ‖.

Notice also that

‖X − Y ‖ = ‖WT
(
W (X − Y )WT

)
W‖

= ‖WT f (X − Y )W‖
≤ ‖WT ‖‖f (X − Y ) ‖‖W‖
= ‖W‖‖WT ‖‖f (X − Y ) ‖.

Hence, a f (‖X − Y ‖) ≤ ‖X − Y ‖ ≤ b f (‖X − Y ‖)
for any X, Y ∈ R

N×N , where a = 1
‖W‖‖WT ‖ and b =

‖W‖ ∥∥WT
∥∥.

III. THE EIGENFACE PROCEDURE

Developed in 1987 by Sirovich and Kirby [4] and used by
Matthew Turk and Alex Pentland [5], Eigenface is considered
to be the first successful implementation of facial recognition
technology.

Based on Principal Component Analysis (PCA), the eigen-
face procedure is implemented as follows:

1) Prepare a training set of K face images. This training set
consists of p different individuals, each with q different
face pictures. Thus, K = p · q.

2) Let Γi be the matrix corresponding to the ith picture in
the database.

3) For each Γi, let Φi = g (Γi). This results in K column
vectors of N2 entries each.

4) Construct a matrix S = [Φ1 Φ2 · · · ΦK ] with dimension
N2 ×K.

5) Calculate the mean face image Ψ by averaging all K

Figure 3. Color Database

face images in the database:

Ψ =
1

K

K∑
i=1

Φi

Figure 4. The Mean Image

6) Calculate the mean μ and standard deviation σ of the
database. Note that 0 ≤ μ, σ ≤ 255.

7) Normalize each face picture as follows:

Φ′
i =

Φi − μi
σi

where μi and σi are the mean and standard deviation of
Φi, respectively, and Φ′

i is the vector representation of
the normalized face image Φi.

8) Construct a new matrix A = [Φ′
1 Φ

′
2 · · · Φ′

K ].
9) Construct a covariance matrix. Normally, one would cal-

culate the covariance matrix C as C = AAT . The eigen-
vectors vi of C are such that Cvi = AAT vi = λivi,

where λi is the eigenvalue of C corresponding to vi.
However, since A has dimension N2 ×K, AAT would
have dimension N2×N2. A tremendous computational
effort will be required to obtain all N2 eigenvectors
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Figure 5. The Normalized Database

vi and eigenvalues λi. To conquer this obstacle, [5]
proposes replacing the traditional AAT matrix with
ATA. If ui is an eigenvector of ATA corresponding
to the eigenvalue λi, then

ATAui = λiui and AATAui = λiAui

If we let vi = Aui, then vi is an eigenvector of C
corresponding to the same eigenvalue, λi. Note that
ATA now has dimension K × K, which means that
it will take less time and effort to obtain the principle
components of C.

10) For each eigenvector vi we can construct the matrix
g−1 (vi) ∈ R

N×N , called eigenface.

Figure 6. The Eigenface Database

Remark 8. Notice that ATA is a symmetric matrix. For each
eigenvalue λi of ATA with multiplicity mi, the eigenspace
corresponding to λi has dimension mi. By the Gram-Schmidt
Procedure, we can find mi orthonormal eigenvectors of ATA
corresponding to λi. Then, these orthonormal bases determine
an orthonormal set of K linearly independent eigenvectors of
ATA, which forms an orthonormal basis {wi}Ki=1 of R

K . A
detailed discussion of properties of symmetric matrices can be

found in [6].

Definition 9. We denote by G the set{
g−1 (vi) | vi’s correspond to different eigenvalues λi

}
.

Let K ′ ≤ K denote the cardinality of G.

Definition 10. We define the face space F ⊂ R
N×N as F =

Span {G}.

Theorem 11. The set G forms a basis for F .

Proof: It is enough to show that G is linearly independent.
To do so, let

c1g
−1 (v1) + · · ·+ cK′g−1 (vK′) = 0N×N .

We need to show that all ci’s are zero. Note that

K′∑
i=1

cig
−1 (vi) = g−1

⎛
⎝ K′∑
i=1

civi

⎞
⎠ .

Since vi’s are eigenvectors of the symmetric matrix AAT

corresponding to different eigenvalues, then they are orthogo-
nal to each other. Hence, vi’s are linearly independent. So,

g−1

⎛
⎝ K′∑
i=1

civi

⎞
⎠ = 0N×N ⇐⇒

K′∑
i=1

civi = 0N2×1

and since vi’s are linearly independent, all ci’s are zero,
proving the theorem.

Using this theorem, we can now express any face picture
as a linear combination of the elements of

{
g−1 (vi)

}K′

i=1
.

Remark 12. In the case of a large population, say a database
for a country or a state is being assembled, K could be
too large. However, further reduction in computation can be
achieved by selecting the K ′ eigenfaces corresponding to the
K ′ highest eigenvalues, as discussed in [5]. Determining K ′ is
a matter of experimentation. One way of doing this, is through
an RMS measure, that calculates the “percentage error” of a
reconstructed picture to its original form. For instance, we may
chose the maximal percentage error to be 2%.

IV. M−BAND WAVELETS-BASED RECOGNITION

Although computational time has been reduced by manip-
ulating the covariance matrix, further reduction is necessary
in the case of large databases (high values of K). M−band
wavelets preserve distances in such a way that if two images
are close in distance, then so are their corresponding M−band
wavelet transforms. This is outlined in Theorem 7.

As mentioned previously, the images are chosen so that their
dimension N is an integral power of M , say N = M j for
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some j ∈ N. Then, the low frequency sub-matrix of the ith

level M−band wavelet transform is of dimension M j−i ×
M j−i, for 0 < i < j. This sub-matrix is an approximation
of the original image. So, instead of working in the original
image domain, namely R

N×N , we work in the 1-level wavelet
approximation domain R

N
M × N

M .

Choosing M is experimental: if M = 3, the approximated
image is still relatively large; if M = 5, the approximated
image is so small that we lose significant features. M = 4,
which is used in this research, offers the ideal approximation
for a face image.

The implementation of 4−Band wavelet-based recognition
consists of replacing all original images Γi in the database with
the approximation components Ai, of their 4−band wavelet
transforms f (Γi). K ′ remains unchanged, while the dimension
of each picture has been reduced to N

4 × N
4 .

The eigenface procedure is applied as described previously,
only this time using the approximation component of f (Γi)
instead of Γi itself.

V. TESTING

A. Procedure

To recognize an input image X as an individual in the
database, proceed as follows:

1) Normalize X as described in the eigenface procedure.
2) Compute f (X) and extract its approximation sub-

matrix. Denote this latter by A.
3) We modify the method mentioned in [5], by creating

a vector Ω representing the contribution of each of
the eigenfaces to the reconstruction of g (A). The mth

component of Ω is calculated by:

ωm = vTm · (g (A)−Ψ)

where Ψ is the average of all g (Ai).
4) We create a face class Ω(i) for each g (Ai), by repeating

the previous step:

ω(i)
m = vTm · (g (Ai)−Ψ)

where ω(i)
m is the mth component of the face class Ω(i).

5) For each face class, calculate

ε(i) = ||Ω− Ω(i)||

where ‖ · ‖ is the euclidean norm of R
K′

.
6) Finally, the match is the face Γi corresponding to the

lowest ε(i) < ε, where ε = max
{||Ω− Ω(i)||}K′

i=1

and where Ω corresponds to an existing image in the
database.

Remark 13. Although we will always find the lowest ε(i), we
want this minimal value to be less than the threshold value ε
defined above. The reason for this is that the test picture might
belong to someone who is not in the database at all; in this
case, we should not get a match at all.

B. Results

We have built a database consisting of p = 11 individuals
with q = 5 pictures each, giving a total of K = 55 images.
A total of 44 images of individuals known to be in the
database were tested, along with 10 images of people not in
the database. Of the 44 images, 41 matched correctly, yielding
a recognition rate of 93.2%. As for the 10 other images, 8 were
correctly identified as not belonging to the database, while the
other two did incorrectly match to some individuals.

PCA PCA + Wavelets
Recognition Rate 88.6% 93.2%

Table I
RECOGNITION RATES VS. METHOD USED

VI. CONCLUSION

Based on the results of this research, we can conclude that
the implementation of M−band wavelets in the eigenface pro-
cedure can lead to higher accuracy and efficiency. By bringing
out the significant features of the face, wavelet transforms
make better candidates for recognition algorithms. Computa-
tional complexity is also reduced dramatically, allowing for
the analysis of larger databases in less time. Furthermore,
M−band wavelets have the potential of greatly reducing the
size of images by means of compression algorithms. Many
algorithms are outlined nicely in [1].

As in any research, the algorithm described in this paper
is not final. We conjecture that this process can be improved
by combining PCA, M−band wavelets, and Graph Matching
techniques. Apart from M−band wavelets, our method can be
implemented using curvelets and second generation wavelet
packages.

Finally, we express the possibility of performing this al-
gorithm on a quantum computer in the near future. The first
commercial version of these machines was sold in June 2011.
As time goes on, the true computational capabilities of these
machines will be unveiled, invoking faster and more powerful
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recognition algorithms. Multiple feature detection methods
will be performed in less time, thus allowing for unprecedented
accuracy. An interesting read on this subject can be found in
[7].
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