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1 Introduction

Define a LFS-group to be an infinite, locally finite, simple group. This paper
is a contribution to the general theory of LFS-groups. Recall that a group
G is finitary if there exist a field K and a faithful KG-module V such that
[V, g] is finite dimensional for all g in G. The infinite alternating groups and
all finitary classical groups defined over locally finite fields provide examples of
finitary LFS-groups and it is conjectured and almost proved by J.I. Hall that
every finitary non-linear LFS-groups is of that kind. On the contrast allthough
many examples exist not much is known about general non-finitary LFS-groups.
One purpose of this paper is to demonstrate that the division of LFS-group in
finitary and non-finitary groups is natural and allows to obtain a considered
amount of information about the non-finitary LFS-groups.

Fundamental to the study of locally finite groups is the concept of Kegel
covers. Let G be a locally finite group.

A set of pairs {(Hi,Mi)|i ∈ I} is called a Kegel cover for G if, for all i in I,
Hi is a finite subgroup of G and Mi is a maximal normal subgroup of Hi, and if
for each finite subgroup H of G there exists i ∈ I with H ≤ Hi and H ∩Mi = 1.
The groups Hi/Mi, i ∈ I, are called the factors of the Kegel cover.

It has been proven in [5, 4.3, p113] that every LFS-group has a Kegel cover.
Using Kegel covers many questions about LFS-groups can be transfered to
questions about finite simple groups, which in turn may be answered using the
classification of finite simple groups. Define a LFS-group to be of alternating
type if it is non-finitary and posseses a Kegel cover all of whose factors are
alternating groups. If p is a prime, define a LFS-group G to be of p-type if G
is non-finitary and every Kegel cover for G has a factor which is isomorphic to
a classical group defined over a field in characteristic p. In 3.3 we prove

Theorem A Let G be a LFS-group. Then one of the following holds:
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(a) G is finitary.
(b) G is of alternating type.
(c) There exists a prime p and a Kegel cover {(Hi,Mi)|i ∈ I} for G such

that G is of p-type, and for all i ∈ I, Hi/Op(Hi) is the central product of perfect
central extension of classical groups defined over a field in characteristic p and
Hi/Mi is a projective special linear group.

Using Theorem A many question about non-finitary LFS-groups can now be
transfered to questions about alternating and projective special linear groups.
As an example we prove in section 4:

Theorem B Let G be a countable, non-finitary LFS-group and H a finite
subgroup of G. Then H is contained in a maximal subgroup of G. In particular,
G has maximal subgroups.

In 5.5 we give an affirmative answer to questions 1 and 2 raised in J. Hall’s
and B. Hartley’s paper [1] on a characterization of finitary LFS-groups. In sec-
tion 6 we provided examples of countable LFS-groups which are not absolutely
simple. We remark that by [7] every Kegel cover for a countable LFS-group
which is not absolutely simple has fairly complicated structure. In particular,
no such group has a Kegel cover where each of the H ′is are a central product
of quasisimple groups and, using Theorem A, any such group is of alternating
type.

We hope that Theorem A will draw attention to LFS-groups of p-type. In
[1, Proposition 1] non-finitary LFS-groups G have been constructed which have
an element x of order q, q an odd prime, such that < xS > is abelian for every
q-subgroup S of G containing x. It follows from 5.5 that no such group is of
alternating type and thus provided examples of LFS-groups of p-type. It seems
plausible that the restricted structure of the Kegel covers for LFS-groups of
p-type provided by Theorem A might lead to a classification of LFS-groups of
p-type. It also seems worthwhile to examine the GF (p)-module arising from the
above Kegel cover via the ultrafilter construction in [5, 1L Appendix]. It might
be possible to characterize LFS-groups of p-type in terms of that module.

We remark that 3.4b has been proven independently and with different meth-
ods by C. Praeger and A.Zalesskii in [8, Theorem 1.7]

I would like to thank Jon Hall and Dick Phillips for many fruitful discussions
on the topics in this paper.

We finish the introduction with a list of some of the notations used through-
out. Let K be a field, V a vector space over K and q a symplectic, orthogonal or
unitary form on V . Then O(V, q) is the largest subgroup of GLK(V ) preserving
q, Ω(V, q) = O(V, q)′ and PΩ(V, q) = Ω(V, q)/Z(Ω(V, q)). A singular subspace of
V is K-subspace of V on which q vanishes. F is the class of finite simple groups
isomorphic to PΩ(V, q) for some finite field K, some finite dimensional vector
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space V overK and some non-degenerated symplectic, quadratic or unitary form
q on V . L is the class of finite simple groups isomorphic to PSLK(V ) for some
finite field K and some finite dimensional vector space V over K. C = L∪F . A
is the class of finite simple alternating groups. If p is a prime, then C(p), F(p)
and L(p) are defined similar to the above only that the defining fields are as-
sumed to be in characteristic p. If x is acting on V, then degV (x) = dimK [V, x],
pdegV (x) = min{degV (kx)|0 6= k ∈ K} and pdegV (Z(GLK(V ))x) = pdegV (x).
If Ω is a set and x acts on Ω, pdegΩ(x) and degΩ(x) both are the number of
elements in Ω not fixed by x. Also if G = PGLK(V ), PSLK(V ), PΩ(V, q) or
Alt(Ω) and x induces an inner automorphism y onG, then pdegG(x) = pdegV (y)
and pdegG(x) = pdegΩ(y), respectively.

Let G be a locally finite group. A set of pairs {(Hi,Mi)|i ∈ I} is called a
sectional cover for G if, for all i in I, Hi is a finite subgroup of G and Mi is a
normal subgroup of Hi, and if, for each finite subgroup H of G, there exists i
in I with H ≤ Hi and H ∩Mi = 1.

The groups Hi/Mi, i ∈ I, are called the factors of the sectional cover.
A set of subgroups {Hi|i ∈ I} of G is called a sectional cover for G if each

finite subgroup of G is contained in one of the H ′is, i.e. if {(Hi, 1)|i ∈ I} is a
sectional cover for G. A Kegel sequence for G is a Kegel cover {(Hi,Mi)|i ≥ 1}
for G such that for all i, Hi ≤ Hi+1 and Hi ∩Mi+1 = 1.

For a finite groupH let w∗(H) be the number isomorphism types of transitive
permutation representations for H or equally w∗(H) the number of conjugacy
classes of subgroups of H. Let w(H) = max{w∗(T ) | T ≤ H}.

Let G be a group acting on a set Ω. Let I be a subset of Ω. Then NG(I) =
{g ∈ G|ig ∈ I for all i ∈ I} and CG(I) = {g ∈ G|ig = i for all i ∈ I}.

Let ∆ be a set of subsets of Ω. Then NG(∆) = {g ∈ G|Dg ∈ ∆ for all
D ∈ ∆} and CG(∆) = {g ∈ G|Dg = D for all D ∈ ∆}.

A system of imprimitivity ∆ for G on Ω is a set of proper subsets of Ω such
that Dg ∈ ∆, for all D ∈ ∆ and g ∈ G, and Ω is the disjoint union of the
members of ∆. For |Ω| > 1, {{ω} | ω ∈ Ω} is a system of imprimitivity. All
others systems of imprimitivity are called proper. We say the G acts primitively
on I if G acts transitively on I and G has no proper system of imprimitivity on
I.

If G is a group acting on a vector space V , then a system of imprimitivity
∆ for G on V is a set of proper subspaces of V such that Dg ∈ ∆, for all D ∈ ∆
and g ∈ G, and V is the direct sum of the members of ∆. We say the G acts
primitively on V if G acts irreducibly on V and G has no system of imprimitivity
on V .

If ∆1 and ∆2 are systems of imprimitivity for G on I or V we say that
∆1 ≺ ∆2, if for each D1 ∈ ∆1 there exists D2 in ∆2 with D1 ⊆ D2. Note that
if ∆ is a maximal system of imprimitivity for G then either G acts primitively
on the set ∆ or |∆| = 2 and G acts trivially on ∆.
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Suppose that G/M ∼= Alt(Σ) for some set Σ and some normal subgroup
M of G. Let t be a positive integer with t ≤ |Σ|/2. Then G acts t-pseudo
natural on Ω with respect to M if G acts transitively on Ω and if there exists a
G-invariant partion ∆ for G on Ω such that CG(∆) = M and the action of G
on ∆ is isomorphic to the action of G on subsets of size t of Σ. G acts pseudo
naturally on Ω with respect to M , if G acts 1-pseudo natural on Ω. G acts
essentially on Ω with respect to M if CG(Ω) ≤M . We remark that if G/M is
perfect (that is |Σ| ≥ 5) and R is the minimal normal supplement to M in G
(see 2.8), then Ω is essential if and only if R acts non-trivally on Ω. The reader
should notice that in the case M = 1 a pseudo natural action does not have
to be natural. In fact it is easy to see that even the right regular permutation
action is pseudo natural.

If p is a prime, then d(p) = 1, if p 6= 2, and d(p) = 2, if p = 2.

For a real number x, let [x] be the largest integer less or equal to x.

For a group G let G(0) = G and inductively, G(i+1) = (G(i))′. Put G∞ =⋂∞
i=1G

(i) and note that if G is finite, G∞ is the largest perfect subgroup of G.
If G is solvable, let der(G) be the smallest non-negative integer i with G(i) = 1.

2 Preliminaries

Throughout this chapter K is a finite field, V a finite dimensional vector space
over K and Q = GLK(V ).

Lemma 2.1 Let σ be a field automorphism of K of order 1 or 2 and s a σ-
sesquilinear form on V .

(a) There exists a subspace U of V such that dimU ≥ (dimV − 4)/4 and
s|U×U = 0.

(b) Let G ≤ Q such that for all g ∈ G there exists λg ∈ K with s(ug, vg) =
λgs(u, v) for all u, v in V . Let Z = Z(Q)∩G, m = |G/Z| and W a subspace of
V . Then there exists a subspace X of W with

dimX ≥ (dimW − 4
4m − 1

3
)/4m

such that s|U×U = 0, where U = 〈XG〉.

Proof: (a) Define t : V × V → K by t(u, v) = s(u, v) + s(v, u)σ. Then t is a
symmetric or unitary form on V . Therefore there exists a subspace W of V with
dimW ≥ (dimV −2)/2 such that t|W×W = 0. Indeed, the worst possible case is
when V has dimension 2k and t has Witt index k−1. If σ 6= 1, pick λ in K with
λσ = −λ, otherwise let λ = 1. Then restricted to W , λs is a skew symmetric or
unitary form and there exists a subspace U of W with dim U ≥ (dim W − 1)/2
such that λs|U×U = 0. Here the worst possible cases occur if s restricted to W
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is unitary and W is odd dimensional, or if char K = 2 and s restricted to W is
symmetric but not alternating. This proves (a).

(b) Let g ∈ G and Y a subspace of V . Define a σ-sesquilinear form sg on Y
by sg(u, v) = s(u, vg). By (a) there exists a subspace R of Y with sg|R×R = 0
and dimR ≥ (dimY − 4)/4. Let T = {g1, ..., gm} be a transversal to Z in G.
Then by an easy induction proof there exists a subspace X in V with dimX ≥
(dimW − 4 4m−1

3 )/4m and sgi |X×X = 0 for all 1 ≤ i ≤ m. Put U = 〈XG〉
and note that U = 〈XT 〉. Let u, v ∈ X. Then s(u, vgi) = sgi(u, v) = 0. Thus
s(u,w) = 0 for all u ∈ X and w ∈ U . Since s is G-invariant, s(u, v) = 0 for all
u, v ∈ U .

Lemma 2.2 There exists an increasing function f defined on the positive in-
tegers and independent from K and V with the following property: Let G ≤ Q,
Z = G ∩ Z(Q) and q is a quadratic, symplectic or unitary form on V such that
for all g ∈ G, qg = λgq for some λg ∈ K. If X is a subspace of V of dimension
at least f(|G/Z|), then there exists 0 6= x ∈ X such that K〈xG〉 is singular with
respect to q.

Proof: Let f(m) = 2 · 4m + 4 4m−1
3 ). If q is symplectic or unitary, the

assertion follows directly from 2.1b. The same is true if q is quadratic and char
K is odd. So suppose q is quadratic and char K = 2. Let s be the symplectic
form associate to q. Then 2.1b provides a subspace Y in X of dimension at
least two such that s vanishes on 〈Y G〉. Pick 0 6= x ∈ Y with q(x) = 0. Then q
vanishes on 〈xG〉.

Lemma 2.3 Let f,G,Z, V, and q be as in 2.2. Put m = |G/Z| and let S be the
set of G-invariant singular subspaces of V .

(a) Let M be a maximal element in S. Then dimM > (dimV − f(m))/2.
(b) If dimV ≥ 2m + f(m) and x ∈ G with pdegV (x) ≥ f(m), then there

exists M ∈ S such that x does not act as a scalar on M .
(c) Let t be a positive integer and H a subset of G such that for all x ∈ H

pdegV (x) ≥ 2m(|H|t− 1) + f(m). If dimV ≥ 2tm|H|+ f(m), then there exists
M ∈ S with dimM ≤ t|H|m and pdegM (x) ≥ t for all x ∈ H.

(d) Put g(m) = 2m2 − 2m + f(m). If pdegV (x) ≥ g(m) for all x ∈ G \ Z,
then there exists U ∈ S, such that no element of G \ Z acts as a scalar on U .

Proof: (a) Let M be a maximal element in S. Then G normalizes no non-
trivial singular subspace of M⊥/M . By 2.2, dimM⊥/M < f(m) and so

dimV = dimV/M⊥ + dimM⊥/M + dimM < dimM + f(m) + dimM.

Thus (a) holds.
(b) Suppose that x acts as a scalar on every element of S and let M and

N be maximal elements of S. Let 0 6= u ∈ N and put U = K〈uG〉. Then
clearly dimU ≤ m. By (a) and since dimV ≥ 2m+ f(m), dimM > m. Hence
M ∩ U⊥ 6= 0. Since (M ∩ U⊥) + U is singular, we conclude that x acts as the
same scalar on M, (M ∩ U⊥) + U and N . Since this is true for all such M and
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N , x acts as a scalar on 〈S〉. By 2.2 applied with X being a complement to 〈S〉
in V , dim V/〈S〉 < f(m) and thus pdeg(x) < f(m), a contradiction.

(c) Suppose first that |H| = 1 and let H = {x}. By induction on t, there
exists N in S with dim N ≤ (t−1)m such that pdegN (x) ≥ t−1 (choose N = 0
if t = 1). Let W = N⊥/N . Then dimW ≥ dimV − 2 dimN > 2m+ f(m) and
pdegW (x) ≥ pdegV (x)− 2 dimN > f(m). So by (b) there exists a G-invariant
singular subspace X in W such that x does not act as scalar on X. Replacing
X by K〈uG〉, where u ∈ X with ux 6∈ Ku we may assume that dim X < m. Let
M be the inverse image of X in V . Then pdegM (x) ≥ pdegN (x) + pdegX(x) ≥
(t− 1) + 1 = t.

Suppose now that |H| > 1. Let x ∈ H and put H∗ = H \ {x}. Then by
induction on |H| where exists N ∈ S with dimN ≤ t|H∗|m and pdegN (h) ≥ t
for all h ∈ H∗. Let W = N⊥/N . Then dimW ≥ 2m + f(m) and pdegW (x) ≥
2m(t − 1) + f(m). Thus (c) follows by applying the |H| = 1 case to W and x
and take inverse images in N⊥.

(d) Let H be a set of representatives of the non-trivial cosets of Z in G.
Note that pdegV (x) > g(m) implies dim V > g(m). Apply (c) with t = 1.

Lemma 2.4 Let H = PGLK(V ) or a finite symmetric group. Then there exist
increasing functions h, k defined on the positive integers and independent from
H such that each of the following two statements hold.

(a) If x ∈ S ≤ H with S solvable, then der(〈xS〉) ≤ h(pdegH(x)).
(b) Let x ∈ H ′ with |x| = p, p a prime, and, if H = PGLK(V ), |x| = 2.

If pdegH′(x) ≥ k(t), then there exists a p-subgroup S of H ′ with x ∈ S and
der(〈xS〉) ≥ t.

Proof: For (a) see [6, Proposition 1] and for (b) see [1, 2.1,2.4].

Lemma 2.5 Let H = Q or a finite symmetric group. There exists an increasing
function l defined on the positive integers and independent from H with the
following property:

Let G ≤ H and N � G with G/N ∈ A ∪ L. Let x ∈ G with |x| = p, p a
prime, and if G/N ∈ L, |x| = 2 . If pdegG/N (x) ≥ l(m) then pdegH(x) > m.

Proof: Let k, h be the functions given by 2.4 and define l(m) = k(h(m) + 2).
If pdegG/N (x) ≥ l(m) + 1, then by 2.4b there exists a p-group S in G with

x ∈ S and der(〈xS〉N/N) ≥ h(m) + 2. So der(〈xS〉) > h(m) + 1 and by 2.4a,
pdegH(x) > m.

Lemma 2.6 Let G ≤ Q and ∆ a system of imprimitivity for G on V . Let U ∈
∆ and E a subgroup of GLK(U) with NG(U)/CG(U) ≤ E. Suppose that G acts
transitively on ∆. Then there exists H ≤ NQ(∆) with G ≤ H, NH(U)/CH(U) =
E and H ∼= EoSym(∆).

Proof: Let I be a transversal to NG(U) in G with 1 ∈ I. Define F ≤ Q by
F normalizes U , F/CF (U) = E and [W,F ] = 0 for all W ∈ ∆ \ {U}. Define an
action of Sym(I) on V as follows. For π ∈ Sym(I) and ui ∈ U , i ∈ I, let
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(
∑
i∈I

uii)
π =

∑
i∈I

ui
π

i .

Let H = 〈F, Sym(I)〉, where we view Sym(I) as a subgroup of Q by the
above action. Then clearly H normalizes ∆, NH(U)/CH(U) = E, Sym(I) ∼=
Sym(∆) and H ∼= EoSym(∆). It remains to prove that G ≤ H. Let g ∈ G and
define π ∈ Sym(I) and ni ∈ NG(U), i ∈ I, by ig = nii

π. Let h = gπ−1. Then

(
∑
i∈I

uii)
h = (

∑
i∈I

uigi )π
−1

= (
∑
i∈I

unii
π

i )π
−1

=
∑
i∈I

uniii .

Pick fi in F such that fin
−1
i centralizes U and πi ∈ Sym(I) with 1πi = i. Then

since u
iπ−1
i

i = ui
π
−1
i

i = u1
i = ui,

u
i(π−1

i fiπi)
i = ufiπii = uniπii = uniii .

It follows that h =
∏
i∈I π

−1
i fiπi . So h ∈ H and G ≤ H.

Lemma 2.7 Let M ≤ Q, ∆ be the set of components of M and H = NQ(M).
Assume that M = 〈∆〉, that H acts irreducibly and primitively on V and that
H acts transitively on ∆. Then there exist a cyclic group S and m ≥ 1 such
that H/CH(∆) ∼= Sym(m)oS, where the wreath product is build via the regular
permutation representation of S.

Proof: Let U be an irreducible KM -submodule in V . Since H is primi-
tive on V , V is a direct sum of KM -submodules isomorphic to U . Put D =
HomKM (V, V ), h = dimK V/ dimK(U) and E =HomKM (U,U). Then E is a
field and D ∼=HomE(Eh, Eh) as rings. Put F = HomDM (V, V ). Then F is a fi-
nite field isomorphic to E, and H/CH(F ) acts as a group of field automorphisms
on F . Hence H/CH(F ) is cyclic. Pick L in ∆ and define S = H/CH(F )NH(L)
and m = |∆|/|S|. Since H/CH(F ) is cyclic and H acts transitively on ∆, S is
cyclic and independent from the choice of L. Moreover, |S| is the number of
orbits of CH(F ) on ∆, CH(F ) and CH(F )NH(L) have the same orbits on ∆
and m is the length of each of those orbits. Note that V is a vector space over
F , the elements of H act semilinear with respect to F and every irreducible
FM -submodule in V is isomorphic to U as FM -module. Let Γ be an orbit for
CH(F ) on ∆. We will prove next that :

(*) Let π ∈ Sym(∆) such that π fixes all elements in ∆ \ Γ. Then π is
induced by some element g ∈ CH(F ).

Note that as FM -modules U ∼=
⊗

x∈∆ Yx, where Yx is an irreducible Fx
submodule in U and the tensor product is build over F . Fix L ∈ Γ and for each
x ∈ Γ pick h(x) in CH(F ) with x = Lh(x). Put Y = YL and Z =

⊗
x∈Γ Yx.

Then Yx and Y h(x) are both irreducible Fx-submodules of U and so isomorphic
as Fx-modules. Put W =

⊗
x∈Γ Y

h(x). Then Z and W are isomorphic as
F 〈Γ〉-modules. Define a map α by
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α :
∏
x∈Γ

Y h(x) → W

{yh(x)
x }x∈Γ → ⊗x∈Γ y

h(x)

xπ−1

where yx ∈ Y for each x ∈ Γ. Then it is readily verified that α is F -linear
in each of the coordinates and so induces a F -linear map β from W to W .
Let T =

⊗
x∈∆\Γ Yx. Define γ : T

⊗
W → T

⊗
W by (t ⊗ w)g = t ⊗ wβ .

It is easily checked that β normalizes 〈Γ〉 in GLF (W ) and so γ normalizes M
in GLF (T

⊗
W ) and acts as π on ∆. Since U and T

⊗
W are isomorphic as

FM -modules and V is the direct sum of FM -modules isomorphic to U , there
exists g in GLF (V ) such that g normalizes M and acts as π on ∆. Since
NGLF (V )(M) = CH(F ), (*) is proved.

By (*), CH(F ) induces all possible permutations of ∆ which normalize the
orbits of CH(F ) on ∆. Hence the same is true for CH(F )NH(L) in place of
CH(F ), CH(F )NH(L)/CH(∆) ∼= Sym(m)|S| and H/CH(∆) ∼= Sym(m)oS.

Lemma 2.8 Let G be a finite group and N a normal subgroup G such that
G/N is perfect. Then there exists a unique subnormal subgroup R of G which
is minimal with respect to G = RN .

Proof: Let R1 and R2 be minimal subnormal supplements to N in G. Let Ki

be proper normal subgroups of G with Ri ≤ Ki for i = 1, 2. Then G = K1N =
K2N . Since G/N is perfect, G = [K1,K2]N . Let R be a minimal subnormal
supplement to [K1,K2] ∩ N in [K1,K2]. By induction on |G|, R and Ri are
both the unique minimal subnormal supplement to N ∩Ki in Ki for i = 1, 2.
Thus R1 = R = R2.

Lemma 2.9 Let G1, G, N1 and N be subgroups of Q such that N1�G1, N�G,
G1/N1 and G/N are perfect and simple, G/N ∈ L, G1 ≤ G and G1 ∩N ≤ N1.
Let R1 be a minimal subnormal supplement to N1 in G1. Suppose that each of
the following two statements hold:

(i) there exists x in R1 with |xZ(Q)| = 2 and pdegG/N (x) ≥ l(2m+ f(m)),
where m = |G1/G1 ∩ Z(Q)| and f and l are as in 2.2 and 2.5, respectively.

(ii) CG(N/Op(G)) ≤ N , where p is the characteristic of K.
Then there exists G2 ≤ Q and N2 � G2 such that G1 ≤ G2, G1 ∩N2 ≤ N1

and all non-abelian composition factors of G2/N2 are alternating groups.

Proof: The proof is by induction on |V |. Let R be a minimal subnormal
supplement to N in G. We assume without loss that G = G1R. By 2.8, R is
unique and so normal in G. Since G/N is simple, we conclude R is contained
in every subnormal subgroup H of G with H 6≤ N . Moreover, since G/N is
perfect, R′N = G and so R = R′. Hence the three subgroup lemma implies:

(*) If M is a normal subgroup of G with [M,R] 6= 1, then [[M,R], R] 6= 1.
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Assume first that G acts reducibly on V . By (ii), [R,N ] 6≤ Op(G) and so
[R,N ] does not act unipotently on V . Hence there exists a chief factor W for
G on V with [W, [R,N ]] 6= 0. Let Ḡ = G/CG(W ). Then Op(Ḡ) = 1. Suppose
that CG(W ) 6≤ N , then R ≤ CG(W ), a contradiction. Hence CG(W ) ≤ N
and Ḡ/N̄ ∼= G/N . If Ḡ1 = N̄1, G1 ≤ CG1

(W )N1 ≤ (G1 ∩ N)N1 = N1, a
contradiction. Hence Ḡ1/N̄1

∼= G1/N1. By choice of W , R̄ 6≤ CḠ(N̄) and
so CḠ(N̄) ≤ N̄ . It is now easy to verify that (Ḡ1, N̄1, Ḡ, N̄ , R̄1, x̄,W ) fulfills
the assumptions of the lemma. So by induction there exists a subgroup Ḡ2 of
GLK(W ) and N̄2 � Ḡ2 such that Ḡ1 ≤ Ḡ2, Ḡ1 ∩ N̄2 ≤ N̄1 and all non-abelian
composition factors of Ḡ2/N̄2 are alternating groups. Let W = X/Y for some
KG-submodules X,Y in V . Let G2 and N2 be the largest subgroups of Q which
normalize X and Y and such that G2/CG2(W ) = Ḡ2 and N2/CN2(W ) = N̄2.
Then (G2, N2) fulfills the conclusion of the lemma.

Assume next that G acts irreducibly but imprimitively on V . Let ∆ be a
system of imprimitivity for G on V .

Suppose thatR1 6≤ CG(∆). Then CG1
(∆) ≤ N1. Note thatNQ(∆)/CQ(∆) ∼=

Sym(∆). Put G2 = NQ(∆) and N2 = CQ(∆). Then (G2, N2) fulfills the con-
clusion of the lemma.

So we may assume that R1 ≤ CG(∆). Since G1 ∩ N ≤ N1, R1 6≤ N and
we get CG(∆) 6≤ N and R ≤ CG(∆). Pick U in ∆ and for any X ⊆ G put
X̄ = NX(U)CG(U)/CG(U). Let S be the minimal subnormal supplement to
NN (U) in NG(U). Since RNN (U) = NG(U), S ≤ R. In particular, S is normal
in R and so subnormal in G. Since S 6≤ N , we get S = R by minimality of R.

Suppose that CḠ(N̄) 6≤ N̄ . Then since R = S, R̄ ≤ CḠ(N̄). So [N,R,R]
centralizes U and since G acts irreducibly on V and [N,R,R] is normal in G,
[N,R,R] = 1, a contradiction to (*). Thus CḠ(N̄) ≤ N̄ . If Ḡ = N̄ , NG(U) ≤
CG(U)NN (U) and so R = S ≤ CG(U), a contradiction. Thus Ḡ/N̄ ∼= G/N .
If Ḡ1 = N̄1, then R1 ≤ NG1(U) ≤ CG1(U)NN1(U) ≤ CG(U)NN (U). Hence
CG(U) 6≤ N and Ḡ = N̄ , contradiction. Thus Ḡ1/N̄1

∼= G1/N1. It is now easily
verified that (Ḡ1, N̄1, Ḡ, N̄ , R̄1, x̄, U) fulfills the assumptions of the lemma. So
by induction there exists a subgroup Ḡ2 of GLK(U) and N̄2 � Ḡ2 such that
Ḡ1 ≤ Ḡ2, Ḡ1 ∩ N̄2 ≤ N̄1 and all non-abelian composition factors of Ḡ2/N̄2

are alternating groups. Apply 2.6 to G1 in place of G and with E = Ḡ2. Put
G2 = H and H2 = CG2(∆) and let N2 be the largest normal subgroup of G2

contained in H2 with N2CG2(U)/CG2(U) = N̄2. Then H2/N2
∼= (Ḡ2/N̄2)|∆|

and so every non abelian composition factor of G2/N2 is an alternating group.
Note that Ḡ1 ∩ N̄2 ≤ N̄1. Since CG1

(U) ≤ CG(U) ∩ G1 ≤ N ∩ G1 ≤ N1, we
conclude that G1 ∩ N2 ≤ N1. Therefore (G2, N2) fulfills the conclusion of the
lemma.

Assume last that G acts irreducibly and primitively on V . Let X be any
normal subgroup of G. If X has more than one Wedderburn component on V ,
these Wedderburn components would form a system of imprimitivity for G on
V . Thus V is a direct sum of isomorphic irreducible KX-submodules in V . In
particular, Z(X) is cyclic. Let M be a normal subgroup of G in N minimal with
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respect [M,R] 6= 1. By (*) [M,R,R] 6= 1 and so M = [M,R] ≤ R. It follows
that CM (R) ≤ Z(M). Since Z(M) is cyclic and R is perfect, [Z(M), R] = 1 and
so CM (R) = Z(M). Put M̄ = M/Z(M). Then M̄ is a minimal normal subgroup
of G/Z(M) and so M̄ is the direct product of isomorphic simple groups.

Suppose first M̄ is perfect. Then M = E(M). Let ∆ be the set of compo-
nents of M and note that G acts transitively on ∆. Assume that R ≤ CG(∆).
Since R is perfect and the outer automorphism group of any finite simple group
is solvable we conclude that R induces inner automorphisms on M̄ . Thus
R ≤MCG(M̄), CG(M̄) 6≤ N , R ≤ CG(M̄) and [M,R,R] = 1, a contradicton to
M = [M,R]. Therefore R 6≤ CG(∆) and so CG(∆) ≤ N . Put G2 = NQ(M) and
N2 = CG2

(∆). Then G1 ∩N2 ≤ CG(∆) ≤ N and so G1 ∩N2 ≤ G1 ∩N ≤ N1.
By 2.7, every non-abelian composition factor of G2/N2 is an alternating group
and so (G2, N2) fulfills the conclusion of the lemma.

Suppose next that M̄ is an elementary abelian q-group for some prime q.
Since M ′ ≤ Z(M), M ′ is elementary abelian and cyclic. Thus |M ′| = q. Define
a symplectic form on M̄ by s(a, b) = [a, b]. By 2.5 applied to H = GLGF (q)(M̄)
we have that pdegM̄ (x) > 2m + f(m). Now m ≥ |G1/CG1

(M̄)| and so by
2.3b there exists a G1-invariant subspace Ā in M̄ such that [Ā, x] 6= 1 and s
vanishes on Ā. Let A be the inverse image of Ā in M . Then A is abelian. Let
∆ = {CV (B)|B ≤ A,A/B cyclic and CV (B) 6= 0} and note that V is the direct
sum of the elements of ∆. Let G2 = NQ(∆) and N2 = CQ(∆). Then G2/N2 is
the direct product of symmetric groups and G1M ≤ G2.

Suppose that G1 ∩ N2 6≤ N1. Then R1 ≤ N2 and [R1,M ] ≤ N2. Pick
D ∈ ∆. Then [R1,M ] normalizes CA(D) and so [[R1,M ], CA(D)] ≤ CM (D) ∩
M ′ = 1. Since also [CA(D),M,R1] = 1 the three subgroup lemma yields,
[CA(D), R1,M ] = 1. Thus [CA(D), R1] ≤ CM (D) ∩ Z(M) = 1. Furthermore,
R1 is perfect and A/CA(D) is cyclic. Thus R1 centralizes A, a contradiction to
[Ā, x] 6= 1.

Hence G1 ∩N2 ≤ N1, (G2, N2) fulfills the conclusion of the lemma and the
proof of 2.9 is completed.

Corollary 2.10 2.9 remains true if Q is replaced by PSLK(V ).

Proof: Apply 2.9 to the inverse images in GLK(V ), intersect the resulting
G2 and N2 with SLK(V ) and then look at the images in PSLK(V ).

Lemma 2.11 Let I be a finite set, for i ∈ I let Li be a perfect simple group
and let M ≤

∏
i∈I Li. For J ⊆ I, let LJ =

∏
j∈J Lj, MJ = M ∩LJ and let MJ

be the projection of M onto LJ .
(a) If M i = Li for all i ∈I, then there exists a partition Π of I such that

M =
∏
π∈ΠMπ and for all π ∈ Π and i ∈ π, the projection of Mπ onto Li is an

isomorphism.
(b) Put J = {i ∈ I|M i = Li} and K = I \ J . If Li is finite and Li ∼= Lj for

all i, j ∈ I, then M = MJ ×MK .

Proof: (a) Let Π = {J ⊆ I|MJ 6= 1 and MK = 1 for all K ⊂ J}. Let i ∈
π ∈ Π and let φ be the projection map from Mπ to Li. Then kerφ ≤Mπ\{i} = 1
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and φ is one to one. Moreover, M and so Li normalizes the image of φ. Since
Li is simple, we conclude that φ is onto and so φ is an isomorphism. If π′ ∈ Π
with π ∩ π′ 6=Ø, then 1 6= [Mπ,Mπ′ ] ≤Mπ∩π′ and so π = π ∩ π′ = π′.

It remains to show that M = M∗, where M∗ =
∏
π∈ΠMπ. For m in LI let

S(m) = {i ∈ I|mi 6= 1}. We will prove by induction on |S(m)| that m ∈ M∗.
Without loss m 6= 1. Then MS(m) 6= 1 and so there exists π ∈ Π with π ⊆ S(m).
Pick i ∈ π and n ∈ Mπ with ni = mi. Then S(mn−1) ⊆ S(m) \ {i} and so by
induction mn−1 ∈M∗. Clearly n ∈M∗ and so m ∈M∗.

(b) By (a) M/MK is a direct product of simple groups isomorphic to Li.
Note that M/MJ is a subdirect product of proper subgroups of Li and so has
no composition factor isomorphic to Li. So no non-trivial factor group of M/MK

is isomorphic to a factorgroup of M/MJ . Thus M/MKMJ = 1, M = MKMJ

and M = MJ ×MK .

Lemma 2.12 Let L be a perfect, finite, simple group, n a positive integer,
T = Ln, h an automorphism of T of order q, q a prime, I the set of components
of T , t the number of non-trivial orbits for h on I, M an h-invariant subgroup
of T and K = {g ∈ T |[g, h] ∈M}. Then one of the following holds:

(i) M contains a component of T .
(ii) |K| ≤ ( 3

4 )t|T |.

Proof: We assume without loss that M does not contain a component of T
and t > 0. We use the notation introduced in 2.11 with LD = D for all D ∈ I.

We may assume that

(*) If J is an h-invariant subset of I such that MJ does not contain a
component of T and either M I\J does not contain a component of T or h acts
trivally on I \ J , then J =Ø or J = I.

Indeed suppose that (*) is false. Then by induction on n, |KJ | ≤ ( 3
4 )s|LJ |

and |KI\J | ≤ ( 3
4 )t−s|LI\J |, where s is the number of non-trivial orbits for h on

J . Hence (ii) holds in this case.
Using 2.11 we will prove next that one of the following holds:

(1) The projection of M to L is not onto and h acts transitively on I.
(2) The projection of M to L is an isomorphism and h acts transitively on

I.
(3) There exists an h-invariant partition Π of I such that Π 6= {I}, h acts

transitively on Π, M =
∏
π∈ΠMπ and if D ∈ π ∈ Π, the projection of Mπ to D

is an isomorphism.

Indeed, put J = {D ∈ I|MD = D}. Then by 2.11b, M = MJ ×MI\J . So

M I\J = MI\J and neither MJ nor M I\J contains a component of T . Thus by
(*) I = J or J =Ø. If J =Ø, let J∗ be any h-orbit on I. Then by (*) J∗ = I
and (1) holds. So we may assume I = J and thus MD = D for all D ∈ I. Let
Π be the partion of I given by 2.11. Then Π is clearly h-invariant. Let ∆ be
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an h-orbit on Π and put J ′ =
⋃

∆. Similarly as above neither MJ′ nor M I\J′

does contain a component of T and so by (*), J ′ = I. If Π 6= {I}, (3) holds.
So assume Π = {I} and let J∗ be any non trivial h-orbit on I. If |I \ J∗| ≥ 2,
M I\J∗ does not contain a component of T and if |I \ J∗| ≤ 1, h acts trivally on
I \ J∗. Thus in any case I = J∗ by (*), and (2) holds.

Suppose first that (1) or (3) holds. In case (1) put Π = I. Pick π ∈ Π and

let g ∈ T . Then g = g1g
h
2 ...g

hq−1

q for some gi ∈ Lπ. So

[g, h] = (g−1
1 gq)(g

−1
2 g1)h . . . (g−1

q gq−1)h
q−1

.

Thus if g ∈ K we conclude from M =
∏
ρ∈ΠM

ρ that

g1M
π = g2M

π = . . . = gqM
π.

Hence |K| ≤ |Mπ|q|Lπ/Mπ| = |T |/|Lπ/Mπ|q−1. It remains to show that
|Lπ/Mπ|q−1 ≥ (4/3)t. If (1) holds, t = 1 and this is obvious. If (3) holds,
t = |π|. Since M contains no components of T , |π| > 1 and so t > 1. Moreover,
|Mπ| = |L| and so |Lπ/Mπ|q−1 = |L|(t−1)(q−1) ≥ |L|t−1 ≥ 4t−1 = (4/3)t3t/4 ≥
(4/3)t.

Suppose next that (2) holds. Then M ∼= L, t = 1 and CT (h) ∼= L. Put Y =
{[k, h]|k ∈ K}. Then Y ⊆ M and |Y | ≤ |L|. Let k, l ∈ T . Then [k, h] = [l, h]
if and only if lk−1 ∈ CT (h). Thus |K| = |Y ||CT (h)| = |Y ||L| ≤ |L|2. If q > 2
we conclude that |K| ≤ |L|2 ≤ 3/4|L||L|2 ≤ 3/4|L|q. If q = 2, h inverts all
elements of Y . So since M is not abelian it follows from a well-known exercise
[3, 2.9 #12, p71], that |Y | ≤ 3/4|M | and so |K| ≤ 3/4|L|2 = 3/4|T |, completing
the proof of the lemma.

Lemma 2.13 Let Ω be a finite set, H ≤ Sym(Ω), H∗ ⊆ H \ {1} and h, k
positive integers. If degΩ(x) ≥ hkw∗(H)|H||H∗| for all x ∈ H∗, then there
exists a subset Γ of Ω and a partition ∆ of Γ in subsets of size h such that H
normalizes ∆ and deg∆(x) ≥ k for all x ∈ H∗.

Proof: Let W be a set of representatives for the isomorphism classes of
transitive permutation representations for H. We note that |O| ≤ |H| for all
O ∈ W. For O ∈ W, let r(O) be the number of H-orbits on Ω isomorphic to O.

Let x ∈ H∗. We claim that there exists Ox ∈ W with x 6∈ CH(Ox) and
r(Ox) ≥ hk|H∗|. Indeed, let Wx = {O ∈ W|x 6∈ CH(O)}. Then degΩ(x) =∑
O∈Wx

r(O) degO(x). Since degO(x) ≤ |O| ≤ |H|, |Wx| ≤ |W| = w∗(H) and
degΩ(x) ≥ hkw∗(H)|H||H∗|, we conclude that r(Ox) ≥ hk|H∗| for at least one
Ox in Wx.

Let Y be subset of H∗ maximal such that there exist pairwise distinct H-
orbits O(y, i, j), y ∈ Y , 1 ≤ i ≤ h, 1 ≤ j ≤ k, in Ω such that O(y, i, j) is
isomorphic to Oy. Suppose that Y 6= H∗ and pick u in H∗ \ Y . Since r(Ou) ≥
hk|H∗| ≥ hk|Y |+ hk there are at least hk H-orbits on Ω which are isomorphic
to Ou and distinct from the O(y, i, j)′s, a contradiction to the maximal choice
of Y .
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Thus Y = H∗. Let φ(x, i, j) be an H-isomorphism from Ox to O(x, i, j). For
d ∈ Ox, x ∈ H∗ and 1 ≤ j ≤ k put D(x, j, d) = {φ(x, i, j)(d)|1 ≤ i ≤ h}. Put
∆ = {D(x, j, d)|x ∈ H∗, 1 ≤ j ≤ k, d ∈ Ox}. Note that D(x, j, d)g = D(x, j, dg)
for all g ∈ H and so H normalizes ∆. For x ∈ H∗ pick d in Ox with dx 6= d.
Then D(x, j, d)x 6= D(x, j, d) for all 1 ≤ j ≤ k and so deg∆(x) ≥ k.

Lemma 2.14 Let Ω be a finite set, G ≤ Sym(Ω), N�G with G/N ∼= Alt(n), n ≥
5, H ≤ G with H ∩N = 1, u a positive integer with u ≥ (|H| log4/3 |H|)+2 and

k = max(l(u), 5uw(H)|H|2, 9|H|2), where l is as in 2.5. If pdegG/N (x) ≥ k for
all 1 6= x ∈ H then one of the following holds:

(a) H has a regular orbit on Ω.
(b) G has a t-pseudo natural orbit on Ω with respect to N , where t is a

positive integer with t ≤ |H| − 2.

Proof: Consider a counter example with |Ω| minimal. Let R be the minimal
subnormal supplement to N in G provided by 2.8. Let O be a G-orbit on Ω with
R 6≤ CG(O). Then (G/CG(O), NCG(O)/CG(O), HCG(O)/CG(O), O) fulfill the
assumption of the lemma. We conclude that Ω = O and so G acts transitively
on Ω.

Suppose that G acts imprimitively on Ω and let ∆ be a maximal system of
imprimitivity for G on Ω. If N is not transitive on Ω, the orbits of N on Ω form
a system of imprimitivity for G on Ω and we can and do choose ∆ such that
N ≤ CG(∆).

If CG(∆) ≤ N , then (G/CG(∆), NCG(∆)/CG(∆), HCG(∆)/CG(∆),∆) ful-
fills the assumption of the lemma. But then (a) or (b) holds for ∆ and so also
for Ω.

Hence CG(∆) 6≤ N , R ≤ CG(∆), N 6≤ CG(∆), N is transitive on Ω and R is
not transitive on Ω. Let O be an orbit for R on Ω. For X ≤ G put X0 = NX(O).
Let R∗ be the minimal subnormal supplement to N0 in G0. Then R∗ � R, R∗

is a subnormal supplement to N in G and thus R = R∗. If CG0
(O) 6≤ N0,

R = R∗ ≤ CG0
(O). Since R is normal in G and G is transitive we conclude that

R = 1, a contradiction. Thus CG0(O) ≤ N0. If H0 has a regular orbit on O, H
has a regular orbit on Ω. Hence, by minimality of |Ω|, there exists G-invariant
partition Γ0 for G0 on O such that N0 = CG0

(Γ0). It follows that N0 is not
transitive on O and so N is not transitive on Ω, a contradiction.

We proved that G acts primitively on Ω. Let M be the stabilizer in G of some
point in Ω. Since H has no regular orbit on Ω, H ∩Mg 6= 1 for all g ∈ G. Let T
be a minimal normal subgroup of G with T ≤ R. Then H∩M t 6= 1 for all t ∈ T .
By the pigeon hole principal there exists 1 6= h ∈ H with |S| ≥ |T |/(|H| − 1),

where S = {s ∈ T |h ∈ Ms−1}. Without loss |h| = p, p a prime. Pick s0 ∈ S.

Replacing M by Ms−1
0 and S by Ss−1

0 we may assume that 1 ∈ S and so h ∈M .

Let s ∈ S. Then h ∈Ms−1

and so hs ∈M . It follows that [s, h] = h−sh ∈M∩T
for all s ∈ S.
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Suppose that T is an elementary abelian q-group for some prime q. Then T
acts regularly on Ω and so CG(T ) ≤ T and T ∩M = 1. In particular, S ≤ CT (h)
and since |S| ≥ |T |/(|H| − 1), |T/CT (h)| ≤ |T/S| ≤ |H|. Thus

pdegT (h) ≤ degT (h) = logq |T/CT (h)| ≤ logq |H| ≤ log4/3 |H|.

On the otherhand by assumption pdegG/N (h) ≥ l(u) and so by 2.5 applied to
”H = GLGF (q)(T )” and ”x = h”, pdegT (x) ≥ u > log4/3(|H|), a contradiction.

Hence T is the direct product of perfect simple groups. Let I be the set of
components of T . Note that T acts transitively on Ω and so G = MT and M
acts transitively on I. In particular, M contains no component of T .

Suppose that CG(I) ≤ N . Let t be the number of non trivial orbits of
h on I. Then by 2.12, |S| ≤ (3/4)t|T |. Since |S| ≥ |T |/|H| we conclude
t ≤ log4/3(|T |/|S|) ≤ log4/3 |H|. Since t = 1

ppdegI(h) ≥ 1
|H|pdegI(h) we

conclude that pdegI(h) ≤ |H| log4/3 |H|, a contradiction to pdegG/N (h) ≥
l(|H| log4/3 |H|+ 2) and 2.5.

Thus CG(I) 6≤ N and so R ≤ CG(I), i.e R normalizes all components of T .
Since the outer automorphism group of every finite simple group is solvable and
since R is perfect we conclude that R induces inner automorphism on T . Thus
R ≤ TCG(T ) and TCG(T ) 6≤ N . Recall that T ≤ R. If CG(T ) 6≤ N we get
T ≤ R ≤ CG(T ), a contradiction. Hence CG(T ) ≤ N , T 6≤ N and R ≤ T . It
follows that R = T , R ∩N = 1, R ∼= Alt(n) and G = R×N .

Suppose that N 6= 1. Then, since G is primitive, N is transitive and R is
regular. So R ∩M = 1 and S ⊆ CR(h). Since |T |/|S| ≤ |H| − 1, |R/CR(h)| ≤
|H| − 1. Since R ∼= Alt(n), n ≥ 5, R has no subgroup of index less than n. So
|H| − 1 ≥ n ≥ pdegG/N (h) ≥ |H|, a contradiction.

Therefore N = 1 and G ∼= Alt(n). Let Λ = {1, 2, . . . , n} with G acting
naturally on Λ. Let 1 6= x ∈ H. Then degΛ(x) = pdegG/N (x) ≥ 5uw(H)|H|2
and so by 2.13 applied to (H,H \ {1}, 5, u,Λ) in place of (H,H∗, h, k,Ω) there
exists a subset Γ of Λ and a partition ∆ of Γ in subsets of size five such that
H normalizes ∆ and deg∆(x) ≥ u for all 1 6= x ∈ H. Let T ∗ = (CAlt(Λ)(∆) ∩
CAlt(Λ)(Λ \ Γ))′ and M∗ = M ∩ T ∗,( where M now is some conjugate of the
M above). Note that T ∗ is the direct product of alternating groups of degree
five and the action of H on the components of T ∗ is isomorphic to the action
on ∆. If M∗ does not contain a component of T ∗, then using 2.12 we get the
same contradiction as in the case CG(I) ≤ N with T replaced by T ∗. Hence M
contains a component of T ∗ and in particular an element acting as a three cycle
on Λ. If M acts primitively on Λ, we conclude from [4, II 4.5(c)], that M = G,
a contradiction.

Thus M does not act primitively on Λ. Note that degΛ(x) > 8|H| for
all 1 6= x ∈ H. It follows that there exist 4|H| pairwise distinct elements
ax, bx, cx, dx, x ∈ H \ {1}, in Λ such that axx = cx and bxx = dx.

Assume that M acts transitively and imprimitively on Λ, and let Θ be a
system of imprimitivity for M on Λ. Put k = |Λ|/|Θ| . If |Θ| ≥ 3|H|, we can
can choose disjoint sets αx, γx, δx, x ∈ H \ {1}, of size k in Λ with ax, bx ∈ αx,
cx ∈ γx and dx ∈ δx. Choose g ∈ G such that Θg contains αx, γx and δx, for all
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x ∈ H \{1}. Since H∩Mg 6= 1, there exists 1 6= x ∈ H with x ∈Mg ≤ NG(Θg).
Since axx = cx, αxx = γx and since bxx = dx, αxx = δx, a contradiction to γx 6= δx.
Thus |Θ| ≤ 3|H| and since |Λ| ≥ degΛ(x) ≥ 9|H|2, k ≥ 3|H|. It follows that we
can choose disjoint sets α and δ of size k in Λ with ax, bx, cx ∈ α and dx ∈ δ, for
all x ∈ H \ {1}. As above, choose g ∈ G with α, δ ∈ Θg, pick 1 6= x ∈ H with
x ∈Mg ≤ NG(Θg) and conclude that α = αx = δ, contradiction.

Thus M does not act transitively on Λ, so M = NG(Θ) for some Θ ⊆ Λ
with |Θ| ≤ |Λ \ Θ|. Suppose that |Θ| ≥ |H| − 1. Then there exists g ∈ G with
ax ∈ Θg and cx ∈ Λ \ Θg for all x ∈ H \ {1}. It follows that H ∩Mg = 1, a
contradiction.

The following example shows that there is no absolute bound for t in case
(b) of the preceeding Lemma. Let G = Alt(n) with n = pmk and put I =
{1, 2, . . . , n}. Also let H ≤ G with H = 〈xi | 1 ≤ i ≤ k〉 ∼= Ckp such that the
supports of the xi, 1 ≤ i ≤ k, form a partion of I into subsets of size pm. Let
Ω be the set of subsets of size k − 1 in I. Then for each J ∈ Ω there exists
1 ≤ i ≤ k with J ≤ CI(xi) and so H has no regular orbit on Ω. For fixed
k and p we can choose m large enough such that the assumption of 2.14 are
fullfilled. Also 2.14(b) holds with t = k− 1. But note that k− 1 = logp |H| − 1,
so probably our bound t ≤ |H| − 2 can be improved.

Lemma 2.15 Let G be a LFS-group and {(Gi, Ni)|i ∈ I} a sectional cover for
G.

(a) There exists a Kegel cover {(Hj ,Mj)|j ∈ J} such that for all j ∈ J there
exists i ∈ I with Ni ≤Mj �Hj �Gi.

(b) For i ∈ I let Mi be a normal subgroup of Gi. Then at least one of
{(Gi,Mi)|i ∈ I} and {(Mi,Mi ∩Ni)|i ∈ I} is a sectional cover for G.

(c) {(G∞i , G∞i ∩Ni)|i ∈ I} is a sectional cover for G.
(d) Let E be a class of groups such that K ∈ E for each i ∈ I and each non

abelian composition-factor K of Gi/Ni, then there exists a Kegel cover for G all
of whose factors are in E.

Proof: (a) Let E be a non trivial finite subgroup of G and 1 6= e ∈ E. Since
G is simple, E ≤ 〈eG〉 and since G is locally finite, E ≤ 〈eF 〉 for some finite
subgroup F of G. Similarly F ≤ 〈eTe〉 for some finite subgroup Te of G. Then

E ≤ 〈e〈eTe 〉〉. Let T be the finite subgroup of G generated by E and all the Te,
1 6= e ∈ E. Pick i ∈ I with T ≤ Gi and T ∩ Ni = 1. Put HE = 〈EGi〉Ni.
Clearly ENi does not lie in any normal subgroup of Gi properly contained in
HE and, in particular, not in the intersection of the maximal normal subgroup
of HE containing Ni. Thus there exists a maximal normal subgroup ME of HE

with E 6≤ ME and Ni ≤ ME . Suppose that 1 6= e ∈ E with e ∈ ME . Then

〈eGi〉 ≤ HE and E ≤ 〈e〈eTe 〉〉 ≤ 〈e〈eGi 〉〉 ≤ 〈eHe〉 ≤ ME , a contradiction. Thus
E ∩ME = 1. It follows that {(HE ,ME)|E a non trivial finite subgroup of G}
is a Kegel cover that fulfills (a).

(b) Assume that {(Gi,Mi)|i ∈ I} is not a sectional cover for G. Then there
exists a finite subgroup H of G such that H ∩Mi 6= 1 for all i ∈ I with H ≤ Gi.
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Without loss H ≤ Gi for all i ∈ I. For 1 6= h ∈ H let Ih = {i ∈ I|h ∈ Mi}.
Then I is the finite union of these Ih and so there exists 1 6= h ∈ H such that
{(Gi, Ni)|i ∈ Ih} is a sectional cover for G. We may assume that I = Ih. Let E
be any finite subgroup of G. Since G is LFS, there exists a finite subgroup T
in G with h ∈ T and E ≤ 〈hT 〉. Pick i ∈ I with T ≤ Gi and T ∩Ni = 1. Then
E ≤ 〈hT 〉 ≤ Mi and E ∩ (Ni ∩Mi) ≤ T ∩Ni = 1. Thus {(Mi,Mi ∩Ni)|i ∈ I}
is a sectional cover for G.

(c) Otherwise we conclude from (b) that {(Gi, G∞i )|i ∈ I} is a sectional
cover for G. Hence by (a) G has a Kegel cover all of whose factor are of prime
order. Thus G is of prime order, a contradiction since G is infinite.

(d) By (a) there exists a Kegel cover all of whose factors are abelian or lie
in E . Since G is not abelian, (d) holds.

3 Kegel covers

Throughout this chapter G is a non-finitary LFS-group and K is a Kegel cover
for G. For K ∈ K let HK and MK be defined by K = (HK ,MK) and put
K̄ = HK/MK . If E is a class of groups, KE = {K ∈ K|K̄ ∈ E}. For K ∈ KF
pick a finite field FK , a finite dimensional vector space VK over FK and a non-
degenerated symplectic, quadratic or unitary form qK on VK such that K̄ ∼=
PΩFK (VK). For K ∈ KL, pick a finite field FK and a finite dimensional vector
space VK over FK such that K̄ ∼= PSLFK (VK). We view VK as a projective
module for HK . For K ∈ KA pick a set ΩK with K̄ ∼= Alt(ΩK). For a finite
subset T of G let K(T ) = {(H,M) ∈ K|T ⊆ H and T ∩M ⊆ {1}}.

Lemma 3.1 Let k be a positive integer and X ⊆ G \ {1} with |X| finite. Put

J = {K ∈ KC∪A(X)|pdegK̄(x) ≥ k for all x ∈ X}.
Then J is a Kegel cover for G. In particular, at least one of KA,KL and

KF is a Kegel cover for G.

Proof: Without loss K = K(X). By induction on |X| we may assume that
|X| = 1. Let x ∈ X and suppose that J is not a Kegel cover for G. Then K\J
is a Kegel cover for G. By the classification of finite simple groups there exists a
natural number t such that every finite simple group not contained in C ∪A has
a faithful projectice representation of dimension at most t. Let s = max{k, t}.
Then pdegK̄(x) ≤ s for all K ∈ K \ J . Thus by [2, (3.1)], G has a faithful
projectice representation U with pdegU (x) ≤ s. Since G = 〈xG〉, G is finitary,
a contradiction.

Proposition 3.2 (a) Suppose K = KF . Let J = {(K,U)|K ∈ K and U is a
singular subspace of VK}, and for j = (K,U) ∈ J put Hj = NHK (U) and Mj =
{x ∈ Hj |x acts as a scalar on U}. Then PSLFK (U) ≤ Hj/Mj ≤ PGLFK (U),
{(Hj ,Mj)|j ∈ J} is a sectional cover for G and {(H∞j , H∞j ∩Mj)|j ∈ J} is a
Kegel cover for G with all factors in L.

(b) G has a Kegel cover J with J = JA or J = JL.
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Proof: (a) Let T be a finite subgroup of G and k = g(|T |), where the function
g is defined in 2.3d. By 3.1 there exists K ∈ K with T ≤ HK and pdegVK (t) ≥ k
for all 1 6= t ∈ T . By 2.3d there exists a T -invariant singular subspace U in VK
such that no element of T \ {1} acts as a scalar on U . Thus T ≤ H(K,U) and
T ∩M(K,U) = 1. So {(Hj ,Mj)|j ∈ J} is a sectional cover for G.

Using Witt’s theorem we get PSLFK (U) ≤ Hj/Mj ≤ PGLFK (U) for all
j ∈ J . The last claim in (a) follows from 2.15c and since PGLFK (U)∞ ∈ L∪{1}.

(b) By 3.1 we may assume that KF is a Kegel cover. Then (a) provides a
Kegel cover all of whose factors are in L.

Theorem 3.3 Let G be an LFS-group, which is neither finitary nor of alter-
nating type. Then G is of p-type for some prime p and there exists a Kegel cover
K for G such that K = KL(p) and for all K ∈ K, HK/Op(HK) is the central
product of perfect central extension of groups in C(p).

Proof: Put P = {(H,M)|H ≤ G,M � H,H is finite and H/M is perfect
and simple} and note that P is a Kegel cover for G. By assumption G is not of
alternating type and so PA is not a Kegel cover.

(1) {(H,M)|H ≤ G,M � H,H finite and every non-abelian composition
factor of H/M is in A} is not a sectional cover for G.

Otherwise 2.15 provides a Kegel cover with alternating factors.

(2) If T is a Kegel cover for G, then TC is a Kegel cover as well.

By 3.1 TA or TC is a Kegel cover. By assumption TA is not a Kegel cover.

Let J be the set of all pairs (H,M) ∈ PL such that there exists a prime p
with CH(M/Op(H)) ≤M and PL(p)(H) 6=Ø.

(3) J is not a Kegel cover.

Suppose that J is a Kegel cover. Using 2.9 and its Corollary 2.10 we will
derive a contradiction to (1). Let T be any finite subgroup of G and pick
(G1, N1) ∈ J (T ). Let R1 be the minimal normal supplement to N1 in G1.
Since R1 is of even order there exists x ∈ R1 with |x| = 2. Let k = l(2|G1| +
f(|G1|)), where l and f are as in 2.5 and 2.2. By 3.1 there exists (G0, N0)
in J (G1) with pdegG0/N0

(x) ≥ k. By definition of J there exists a prime
p with CG0

(N0/Op(G0)) ≤ N0 and K ∈ PL(p)(G0) Hence by 2.10 applied to
PSLFK (VK) ∼= K̄ and the images of G0, N0, G1, N1 in PSLFK (VK) in place of
G,N,G1, N1 there exists G2 ≤ HK and N2 �G2 such that G1 ≤ G2, G1 ∩N2 ≤
N1 and every non- abelian composition-factor of G2/N2 is in A. Note that
T ≤ G1 ≤ G2 and T ∩ N2 ≤ T ∩ N1 = 1. Since T was an arbitrary finite
subgroup of G, we get a contradiction to (1).
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(4) There exists a prime p such that G is of p-type. In particular, PL(p) is a
Kegel cover.

Note that G is of p-type if and only if P \ PC(p) is a not Kegel cover. Suppose

that for all primes p, P \ PC(p) is a Kegel cover. Then by (2) and 3.2, PL\L(p)

is a Kegel cover for all primes p. Let T0 be a finite subgroup of G and note
that by 2.15c there exists perfect finite subgroup T of G with T0 ≤ T . By 3.1a,
there exists K ∈ PL(T ) with dimFK VK > |T |2. For 1 6= t ∈ T , pick vt ∈ VK
with vtt 6∈ FKvt. Put U = FK〈vTt |t ∈ T \ {1}〉. Then dimFK U ≤ |T |2 and U
is a proper T -invariant subspace of VK such that no non-trivial element of T
acts as a scalar on U . Let H = NHK (U)∞ and let M be all the elements in H
which act as a scalar on U . Since T is perfect, T ≤ H and so (H,M) ∈ PL(T ).
Let q = char FK . Since PL\L(q) is a Kegel cover for G, there exists a p a prime
distinct from q such that PL(p)(H) 6=Ø. Note that Op(H/H ∩MK) = 1 and
CH(M/H ∩ MK) ≤ M . Thus CH(M/Op(H)) ≤ M and (H,M) ∈ J (T ) ⊆
J (T0). It follows that J is a Kegel cover, a contradiction to (3).

Hence there exists a prime p such that P \ PC(p) is a not a Kegel cover. This
implies that PC(p) is a Kegel cover and so by 3.2a, PL(p) is a Kegel cover.

For a finite group H and a prime p let F ∗p (H) be defined by F ∗(H/Op(H)) =
F ∗p (H)/Op(H).

(5) {(H,F ∗p (H))|H ≤ G,H finite} is not a sectional cover for G.

Suppose {(H,F ∗p (H))|H ≤ G,H finite} is a sectional cover for G. Note
that CH(F ∗p (H)/Op(H)) ≤ F ∗p (H). Hence we conclude from 2.15a that I =
{(H,N) ∈ P|CH(N/Op(H)) ≤ N} is a Kegel-cover for G. If IF is a Kegel
cover, then the Kegel cover provided by 3.2a is contained in IL. Thus in any
case IL is a Kegel cover and so by (4), IL(p) is a Kegel cover. In particular,
PL(p)(H) 6=Ø for all finite subgroups H of G and IL(p) ⊆ J , a contradiction to
(3)

(6) {F ∗p (H)|H ≤ G,H finite} is a sectional cover for G.

This follows immediately from 2.15b and (5).

Put M = {H ≤ G|H finite and perfect, H = F ∗p (H)}. By (6) and 2.15c,
M is a sectional cover for G. For H ∈ M, let Sol(H) be the largest solvable
normal subgroup of H. Then H/Sol(H) is the direct product of non abelian
simple groups. Let Hp/Sol(H) be the product of the components of H/Sol(H)
contained in C(p).

(7) {Hp|H ∈ M} is a sectional cover for G and {(H,Hp)|H ∈ M} is not a
sectional cover.
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Otherwise we conclude from (6) and 2.15b that {(H,Hp)|H ∈ M} is a
sectional cover for G. Hence by 2.15a there exists a Kegel cover for G none of
whose factors are in C(p), a contradiction to (4).

Applying 2.15a to the sectional cover {Hp|H ∈ M} we get a Kegel cover K
for G such that H/Op(H) is the central product of perfect central extensions of
elements in C(p) for all (H,N) ∈ K. Using 3.2a we can choose K such that in
addition K = KL(p). Thus (b) holds.

Theorem 3.4 Let G be of alternating type and K a Kegel cover for G with
K = KA.

(a) One of the following holds:
(a1) There exists a Kegel cover J ⊆ K such that for all J,K ∈ J with

HJ ≤ HK every essential orbit of HJ on ΩK is pseudo natural with respect to
MJ .

(a2) For all finite subgroups T in G, KR(T ) = {K ∈ K(T )|T has a regular
orbit on ΩK} is a Kegel cover for G.

(b) If G is countable, there exists a Kegel sequence {Kn|n ≥ 1} ⊆ K for G
such that one of the following holds:

(b1) For all n < m all essential orbits of HKn on ΩKm are pseudo natural
with respect to MKn

(b2) For all n < m HKn has a regular orbit on ΩKm .

Proof: Suppose (a) is false. Then there exists a finite subgroup H of G such
that KR(H) is not a Kegel cover. Hence K\KR(H) is a Kegel cover and we may
assume that KR(H) =Ø. Let k be defined as in 2.14. By 3.1 we may assume
that K = K(H) and degΩK (h) ≥ k for all h ∈ H \ {1} and all K ∈ K. Let J be
the set of all K ∈ K such that for all L ∈ K with HK ≤ HL all essential orbits
of HK on ΩL are pseudo natural with respect to MK

Since (a1) does not hold, J is not a Kegel cover and so there exists a finite
subgroup T of G with J (T ) =Ø. Then K(T ) ∩ J =Ø and so for all K ∈ K(T )
there exists X(K) ∈ K such that HK ≤ HX(K) and not all essential orbits of
HK on ΩX(K) are pseudo natural. Since H has no regular orbit on ΩX(K), we
conclude from 2.14 that all essential orbits forHK on ΩX(K) are t-pseudo natural
for some t. Hence HK has a t-pseudo natural orbit on ΩX(K) with t > 1. Pick
K0 ∈ K(T ) and inductively define Kn = X(Kn−1) for n ≥ 1. Put Ωn = ΩKn
and Hn = HKn . Pick n ≥ 1 and ω ∈ Ωn with |CH(ω)| minimal. Since H has no
regular orbit on Ωn, there exists 1 6= h ∈ CH(ω). Let O be a t-pseudo natural
orbit for Hn on Ωn+1 with t > 1 and ∆ an Hn-invariant partition on O such
that the action of Hn on ∆ is isomorphic to the action of Hn on subsets of size
t in Ωn, where 2 ≤ t ≤ |Ωn|/2. Note that degΩn(h) ≥ k ≥ 2|H| and thus there
exists a ∈ Ωn \ ωH with ah 6= a. Moreover, |Ωn| − t ≥ |H| and there exists
a subset U of size t in Ωn with a ∈ U , ah 6∈ U and ωH ∩ U = {ω}. Then
NH(U) ≤ CH(ω) and h 6∈ NH(U). Let D be the element of ∆ corresponding to
U and pick σ ∈ D. Then CH(σ) ≤ NH(D) = NH(U) < CH(ω), a contradiction
to the minimality of |CH(ω)|. This completes the proof of (a).
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(b) Note that every Kegel cover for a countable group contains a Kegel
sequence. Hence (a1) implies (b1) and we may assume that (a2) holds. Let
G = {gn|n ≥ 1}. Pick K1 ∈ KR(〈g1〉), and inductively Kn ∈ KR(〈HKn−1

, gn〉),
n ≥ 2. Then {Kn|n ≥ 1} is a Kegel sequence for G which fulfills (b2).

Remark 3.5 Let H be a group and N � H with H/N ∼= Alt(n). Then every
regular orbit for H is pseudo natural with respect to N . It follows that under the
assumption of 3.4b, (b2) is always true if regular is replaced by pseudo natural.

4 Maximal Subgroups

Theorem 4.1 Let G be a countable, non-finitary LFS-group and H a finite
subgroup of G. Then H is contained in a maximal subgroup of G. In particular,
G has maximal subgroups.

Proof: The idea is to find a Kegel sequence {(Hn,Mn)|n ≥ 1} of G and
maximal subgroups Tn of Hn such that H ≤ T1, Tn ≤ Tn+1 and Hn 6≤ Tn+1.
Given such a sequence put T =

⋃∞
n=1 Tn. Then T is a maximal subgroup of

G. Indeed, since Tn is maximal in Hn and Hn 6≤ Tn+1, Hn ∩ Tn+1 = Tn. Thus
Hn ∩ T = Tn and in particular, T 6= G. Let x ∈ G \ T . Then for all n with
x ∈ Hn, Hn = 〈x, Tn〉 ≤ 〈x, T 〉 and so G = 〈x, T 〉.

By 3.3 and 3.5 we can find a Kegel sequence K = {Kn|n ≥ 1} of G such that
one of the following holds (with Xn = XKn for X = H,M, V, F and Ω).

(1) There exists a prime p such that K = KL(p) and for all n ≥ 1, Hn/Op(Hn)
is the central product of perfect central extension of groups in C(p).

(2) For all n < m, Hn has a pseudo natural orbit on Ωm with respect to Mn.

Suppose first that (1) holds. By 3.1 we can find n such that dimFn Vn > |H|.
Without loss n = 1. Then H does not act irreducible on V1 and so there exists
a proper H-submodule U in V1. Put T1 = NH1(U). Then T1 is a maximal
subgroup of H1 containing H. Moreover, by the structure of H1, Op(T1) 6=
Op(H1). Inductively, we will find a maximal subgroup Tn+1 of Hn+1 such that
Tn ≤ Tn+1, Hn 6≤ Tn+1 and Op(Tn+1) 6= Op(Hn+1). Since Op(Tn) 6= Op(Hn),
there exists a chief factor for Hn on Vn+1 not centralized by Op(Tn), so Tn is
not irreducible on this chief factor and there exists a Tn-submodule Un in Vn+1

wich is not normalized by Hn. Put Tn+1 = NHn+1(Un). Then Tn+1 has all the
desired properties and

⋃∞
n=1 Tn is a maximal subgroup of G containing H.

Suppose next that (2) holds. By 3.1 we may assume that for all n, |Ωn+1| >
2|Hn| and |Ω1| > 2|H|. Thus H normalizes a proper subset Γ0 in Ω1 with
|Γ0| < |Ω1|/2. Let T1 = NH1(Γ0). Then T1 is a maximal subgroup of H1

which contains H and does not act transitively on Ω1. Inductively we will find
a maximal subgroup Tn+1 of Hn+1 such that Tn ≤ Tn+1, Hn 6≤ Tn+1 and Tn+1

does not act transitively on Ωn+1. Let O be a pseudo natural orbit for Hn

on Ωn+1 with respect to Mn. Since Tn does not act transitively on Ωn, Tn
does not act transitively on O. Hence there exists a Tn-orbit Γn of O such
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that Hn does not normalize Γn. Then |Γn| ≤ |Tn| ≤ |Hn| < |Ωn+1|/2. Put
Tn+1 = NHn+1(Γn). Then Tn+1 has all the desired properties and

⋃∞
n=1 Tn is a

maximal subgroup of G containing H.

5 An abstract characterization of finitary, lo-
cally finite, simple

Lemma 5.1 Let p be a prime, G a group and S a Sylow p-subgroup of G.
(a) If G = PSLn(pk), then der(S) = [log2 n].
(b) If G = Sym(n), then der(S) = [logp n].
(c) If G = Alt(n) and p = 2 then der(S) = [log2 n], if n ≥ 6, and der(S) =

[log2 n]− 1, if n ≤ 5.

Proof: For (a) and (b) see [4, III 16.3, 15.3] while the proof for (c) is similar
to the one for (b) in [4].

Lemma 5.2 Let p be a prime, F a finite field with char F = p, V a finite
dimensional vector space over F , P a p-subgroup of GLF (V ), k ≥ 1 and x ∈ P
with degV (x) ≥ |P |2k. Then there exists a p-subgroup P ∗ of GLF (V ) containing
P with der(〈xP∗〉) ≥ k.

Proof: Pick a chain 0 = V0 ≤ V1 ≤ V2 ≤ . . . ≤ Vl of FP -submodules in V of
maximal length with respect to dimVi/Vi−1 ≤ |P | and [Vi/Vi−1, x] 6= 0 for all
1 ≤ i ≤ l. Supppose that l < 2k. Then dimVl ≤ l|P | < 2k|P | ≤ degV (x) and
so [V, x] 6≤ Vl. Pick v ∈ V with [v, x] 6∈ Vl and put Vl+1 = F 〈vP 〉 + Vl. Then
dimVl+1/Vl ≤ |P | and [Vl+1/Vl, x] 6= 0, a contradiction to the maximal length
of the chain.

Thus l ≥ 2k. Pick xi ∈ Vi\Vi−1 with [xi, x] 6∈ Vi−1 and put yi = [xi, x]. Then
there exists a basis v1, v2, . . . of V such that P normalizes the corresponding
flag and such that there exists indices i1 < i2 < . . . < i2l with vi2j−1

= yj and
vi2j = xj . Let P ∗ be the full stabilizer of this flag and let S be the largest
subgroup of GLF (V ) with the following properties:

S centralizes all vi with i 6∈ {i1, . . . , i2l},
S centralises xj + yj for all j and
S stabilizes the flag 0 ≤ Fx1 ≤ F 〈x1, x2〉 ≤ . . . ≤ F 〈x1, . . . , xl〉.

Put X = F 〈x1, . . . , xl〉. Then S normalizes X, S is isomorphic to a Sylow p-
subgroup ofGLF (X) and [yj , S] = [xj , S] ≤ F 〈x1, . . . , xj−1〉 ≤ F 〈v1, . . . , vi2(j−1)

〉.
It follows that S ≤ P ∗. Since xxj = xj + yj , S centralizes Xx . Thus 〈S, Sx〉
normalizes Xx, [S, x]CP∗(X

x) = SxCP∗(X
x) and [S, x] acts as a full Sylow p-

subgroup of GLF (X) on Xx. By 5.1, der([S, x]) ≥ [log2 l]. Since l ≥ 2k, we
conclude that der(〈xP∗〉) ≥ der([S, x]) ≥ k.

Lemma 5.3 Let p be a prime, Ω a finite set, G = Alt(Ω) or Sym(Ω), P a
p-subgroup of G, k ≥ 1 and x ∈ P with degΩ(x) ≥ 2w(P )|P |pk. Then there
exists a p-subgroup P ∗ of G containing P with der(〈xP∗〉) ≥ k.
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Proof: By 2.13 there exists a subset Γ of Ω and a partition ∆ of Γ in subset
of size 2pk such that P normalizes ∆ and x acts non-trivially on ∆. Let D ∈ ∆
with Dx 6= D. Pick S ≤ G such that S centralizes Ω \ D, S acts as a full
Sylow p-subgroup of Alt(D) on D and NP (D) normalizes S. Put P ∗ = 〈S, P 〉.
Then P ∗ is a p-group and [S, x] acts as a full Sylow p-subgroup of Alt(Dx)
on Dx. Since |D| = 2pk we conclude from 5.1b,c that der([S, x]) ≥ k. Thus
der(〈xP∗〉) ≥ k.

Lemma 5.4 Let G = SLF (V ), F a finite field and V a finite dimensional
vector space over F . Let p be a prime with char F 6= p and put d = d(p). If P is
p-subgroup of G, x ∈ P , k ≥ 1, and y ∈ 〈xP 〉(d) with degV (y) ≥ 2w(P )|P |2pk+1,
then there exists a p-subgroup P ∗ of G with P ≤ P ∗ and der(〈xP∗〉) ≥ k.

Proof: Let T be a Sylow p-subgroup of GLF (V ) with P ≤ T and e ≥ 1
minimal with pd dividing |F |e − 1. Then there exists an FT -submodule U in
V with dimV/U < e and a system of imprimivity ∆ for T on U such that
dimD = e for all D ∈ ∆. Note that e ≤ p. Let D ∈ ∆ with 〈xP 〉 ≤ NT (D).
Since NT (D)/CT (D) has derived length at most d and y ∈ 〈xP 〉(d) we conclude
that [D, y] = 0. Hence

2w(P )|P |2pk+1 ≤ degV (y) ≤ e|∆ \ C∆(〈xP 〉)| ≤ p|∆ \ C∆(〈xP 〉)|.

On the other hand, |∆ \ C∆(〈xP 〉)| ≤ |P |deg∆(x) and therefore deg∆(x) ≥
2w(P )|P |pk. Let H = NG(∆) and H̄ = H/CG(∆). Then H̄ ∼= Sym(∆)
or Alt(∆) and by 5.3 there exists a p-subgroup P̄ ∗ of H̄ with P̄ ≤ P̄ ∗ and
der(〈x̄P̄∗〉 ≥ k. Let P ∗ be a Sylow p-subgroup of the inverse image of P̄ ∗ in H
with P ≤ P ∗. Then der(〈xP∗〉) ≥ k and 5.4 is proved.

Theorem 5.5 Let G be a LFS-group, p a prime, and x ∈ G with |x| a power
of p. If G has no Kegel cover with all of its factors in A ∪ L(p), put d = d(p)
and assume that 〈xS〉(d) 6= 1 for some p-subgroup S of G with x ∈ S. Then G
is finitary if and only if 〈xT 〉 is solvable for all p-subgroups T of G with x ∈ T .

Proof: If G is finitary, then by [6, Prop 1], 〈xT 〉 is solvable for all p-subgroups
T of G with x ∈ T . So suppose that G is not finitary. If G has a Kegel cover
with all of its factors in A ∪ L(p), put S = 〈x〉 and d = 0. By 3.2 there exists a
Kegel cover K for G with K = A∪L and, if d = 0, K = A ∪ L(p). We will first
prove :

(*) If P is a finite p-subgroup of G with S ≤ P , then there exists a finite
p-subgroup P ∗ of G with P ≤ P ∗ and der(〈xP >) < der(〈xP∗〉).

Let k = der(〈xP 〉)+1 and pick 1 6= y ∈ 〈xP 〉(d). By 3.1 there existsK ∈ K(P )
with pdegK̄(y) ≥ 2w(P )|P |2pk+1. Thus 5.2, 5.3 and 5.4 provide a p-subgroup
P̄ ∗ of K̄ with P̄ ≤ P̄ ∗ and der(〈x̄P̄∗〉 ≥ k. Let P ∗ be a Sylow p-subgroup of
the inverse image of P̄ ∗ in HK with P ≤ P ∗. Then der(〈xP∗〉) ≥ k and (*) is
proved.
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Let P0 = S and inductively define Pi+1 = P ∗i . Put T =
⋃∞
i=1 Pi. Then T is

a p-subgroup of G such that 〈xT 〉 is not solvable.

6 Countable LFS- groups which are not abso-
lutely simple

In this chaper we will construct countable LFS-groups G which possess a as-
cending series

M1 � M2 �M3 � ...

of proper subgroups in G such that G =
⋃∞
i=1Mi. The main step in the con-

struction is the following lemma:

Lemma 6.1 Let H be a perfect finite group. Then there exists a perfect finite
group H∗ containing H and function X which associates to each subgroup A of
H a subgroup X(A) of H∗ such that

(a) H ≤ 〈hH∗〉 for all 1 6= h ∈ H.
(b) X(A) ∩H = A for all A ≤ H.
(c) If A ≤ B ≤ H, then A�B if and only if X(A) �X(B).
(d) X(H) � 〈X(H)H

∗〉.

Proof: Let S be any finite simple group such that there exists monomorphism
α : H → S and let T be any non trivial finite perfect group. Furthermore, let
S and T act transitively and non-trivally on the sets I and J , respectively. We
assume that 0 ∈ I and {0, 1} ⊆ J . Let K = HoIS. For i ∈ I let βi : H → K be
the canonical isomorphism between H and the i′th component of the base group
of K and let β be the canonical monomorphism from S to K. Let H∗ = KoJT
and for j ∈ J let γj : K → H∗ be the canonical isomorphism between K
and the j′th component of the base group of H∗. Define ρ : H → H∗ by
ρ(h) = γ0(β0(h))γ1(β(α(h))). Then ρ is clearly a monomorphism. For A ≤ H
let X(A) be the set of elements in the base group of H∗ such that the projection
onto the 0′th-component is contained in γ0(

∏
i∈I βi(A)). Identifying H with

ρ(H) we see immediately that (b) and (c) hold. Now 〈X(H)H
∗〉 is the base

group of H∗ and so (d) holds. Moreover, (a) is readily verified.

We are now able to construct locally finite simple groups which are not
absolutely simple. Let G1 be any nontrivial perfect finite group, and inductively
let Gi+1 = G∗i and Xi any function from the subgroups of Gi to the subgroups
of Gi+1 which fulfills 6.1. Let G =

⋃∞
i=1Gi. Then by (a) in 6.1, G is a locally

finite simple group.
Put M1,1 = 1, M1,2 = G1 and inductively, Mn+1,j = Xn(Mn,j), for 1 ≤ j ≤

2n, Mn+1,2n+1 = 〈Xn(Gn)Gn+1〉 and Mn+1,2n+2 = Gn+1. Then by induction
and 6.1, Mn,i �Mn,i+1 for all 1 ≤ i ≤ 2n + 1 and Mn+1,i ∩ Gn = Mn,i for all
1 ≤ i ≤ 2n. Put Mi =

⋃
n≥ i

2
Mn,i. Then Gn ≤ M2n, Gn ∩Mi = Mn,i for all

i ≤ 2n, Mi �Mi+1 and G =
⋃∞
i=1Mi.
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