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1 Introduction

Define a LF'S-group to be an infinite, locally finite, simple group. This paper
is a contribution to the general theory of LF'S-groups. Recall that a group
G is finitary if there exist a field K and a faithful KG-module V such that
[V,g] is finite dimensional for all g in G. The infinite alternating groups and
all finitary classical groups defined over locally finite fields provide examples of
finitary LF S-groups and it is conjectured and almost proved by J.I. Hall that
every finitary non-linear LF'S-groups is of that kind. On the contrast allthough
many examples exist not much is known about general non-finitary LF'S-groups.
One purpose of this paper is to demonstrate that the division of LFS-group in
finitary and non-finitary groups is natural and allows to obtain a considered
amount of information about the non-finitary LF'S-groups.

Fundamental to the study of locally finite groups is the concept of Kegel
covers. Let G be a locally finite group.

A set of pairs {(H;, M;)|i € I} is called a Kegel cover for G if, for all i in I,
H, is a finite subgroup of G and M; is a maximal normal subgroup of H;, and if
for each finite subgroup H of G there exists ¢ € I with H < H; and HNM,; = 1.
The groups H;/M;, i € I, are called the factors of the Kegel cover.

It has been proven in [5], 4.3, p113] that every LFS-group has a Kegel cover.
Using Kegel covers many questions about LF'S-groups can be transfered to
questions about finite simple groups, which in turn may be answered using the
classification of finite simple groups. Define a LF'S-group to be of alternating
type if it is non-finitary and posseses a Kegel cover all of whose factors are
alternating groups. If p is a prime, define a LF'S-group G to be of p-type if G
is non-finitary and every Kegel cover for G has a factor which is isomorphic to
a classical group defined over a field in characteristic p. In [3.3| we prove

Theorem A Let G be a LFS-group. Then one of the following holds:



(a) G is finitary.

(b) G is of alternating type.

(c) There exists a prime p and a Kegel cover {(H;, M;)|i € I} for G such
that G is of p-type, and for alli € I, H;/O,(H;) is the central product of perfect
central extension of classical groups defined over a field in characteristic p and
H;/M; is a projective special linear group.

Using Theorem A many question about non-finitary LF'S-groups can now be
transfered to questions about alternating and projective special linear groups.
As an example we prove in section

Theorem B Let G be a countable, non-finitary LFS-group and H a finite
subgroup of G. Then H is contained in a maximal subgroup of G. In particular,
G has mazimal subgroups.

In [5.5] we give an affirmative answer to questions 1 and 2 raised in J. Hall’s
and B. Hartley’s paper [I] on a characterization of finitary LFS-groups. In sec-
tion [] we provided examples of countable LF S-groups which are not absolutely
simple. We remark that by [7] every Kegel cover for a countable LFS-group
which is not absolutely simple has fairly complicated structure. In particular,
no such group has a Kegel cover where each of the H/s are a central product
of quasisimple groups and, using Theorem A, any such group is of alternating

type.

We hope that Theorem A will draw attention to LFS-groups of p-type. In
[1, Proposition 1] non-finitary LFS-groups G have been constructed which have
an element z of order ¢, ¢ an odd prime, such that < z° > is abelian for every
g-subgroup S of G containing z. It follows from that no such group is of
alternating type and thus provided examples of LF S-groups of p-type. It seems
plausible that the restricted structure of the Kegel covers for LF'S-groups of
p-type provided by Theorem A might lead to a classification of LFS-groups of
p-type. It also seems worthwhile to examine the GF'(p)-module arising from the
above Kegel cover via the ultrafilter construction in [5, 1L Appendix]. It might
be possible to characterize LF S-groups of p-type in terms of that module.

We remark that [3.4p has been proven independently and with different meth-
ods by C. Praeger and A.Zalesskii in [8, Theorem 1.7]

I would like to thank Jon Hall and Dick Phillips for many fruitful discussions
on the topics in this paper.

We finish the introduction with a list of some of the notations used through-
out. Let K be a field, V' a vector space over K and q a symplectic, orthogonal or
unitary form on V. Then O(V,q) is the largest subgroup of GLk (V') preserving
q, UV, q) = O(V,q) and PQ(V, q) = Q(V,q)/Z(Q(V, q)). A singular subspace of
V' is K-subspace of V on which ¢ vanishes. F is the class of finite simple groups
isomorphic to PQ(V, q) for some finite field K, some finite dimensional vector



space V over K and some non-degenerated symplectic, quadratic or unitary form
g on V. L is the class of finite simple groups isomorphic to PSLg (V) for some
finite field K and some finite dimensional vector space V over K. C = LUF. A
is the class of finite simple alternating groups. If p is a prime, then C(p), F(p)
and L(p) are defined similar to the above only that the defining fields are as-
sumed to be in characteristic p. If x is acting on V, then deg, (z) = dimg|[V, z],
pdegy (z) = min{degy (kz)|0 # k € K} and pdegy (Z(GLk(V))z) = pdegy (z).
If Q is a set and x acts on ), pdegg(x) and degg(x) both are the number of
elements in Q not fixed by x. Also if G = PGLk(V),PSLk(V), PQ(V,q) or
Alt(Q) and = induces an inner automorphism y on G, then pdeg. (x) = pdegy (y)
and pdegq,(z) = pdegq(y), respectively.

Let G be a locally finite group. A set of pairs {(H;, M;)|i € I} is called a
sectional cover for G if, for all ¢ in I, H; is a finite subgroup of G and M; is a
normal subgroup of H;, and if, for each finite subgroup H of G, there exists ¢
in I with H < H; and H N M; = 1.

The groups H;/M;, i € I, are called the factors of the sectional cover.

A set of subgroups {H;|i € I} of G is called a sectional cover for G if each
finite subgroup of G is contained in one of the Hs, i.e. if {(H;,1)|i € I} is a
sectional cover for G. A Kegel sequence for G is a Kegel cover {(H;, M;)|i > 1}
for G such that for all i, H; < H;y; and H; N M;,1 = 1.

For a finite group H let w*(H) be the number isomorphism types of transitive
permutation representations for H or equally w*(H) the number of conjugacy
classes of subgroups of H. Let w(H) = max{w*(T) | T < H}.

Let G be a group acting on a set 2. Let I be a subset of Q. Then Ng(I) =
{9eGlivelforalliel}and Ca(l)={ge€Gli¥=1iforalliel}.

Let A be a set of subsets of . Then Ng(A) = {g € G|DY € A for all
D e A} and Cg(A) ={g € G|IDY =D for all D € A}.

A system of imprimitivity A for G on 2 is a set of proper subsets of €2 such
that D9 € A, for all D € A and g € G, and € is the disjoint union of the
members of A. For | > 1, {{w} | w € Q} is a system of imprimitivity. All
others systems of imprimitivity are called proper. We say the G acts primitively
on [ if G acts transitively on I and G has no proper system of imprimitivity on
1.

If G is a group acting on a vector space V, then a system of imprimitivity
A for G on V is a set of proper subspaces of V' such that D9 € A, for all D € A
and g € G, and V is the direct sum of the members of A. We say the G acts
primitively on V if G acts irreducibly on V and G has no system of imprimitivity
on V.

If A; and Ay are systems of imprimitivity for G on I or V we say that
A1 < Ao, if for each Dy € Ay there exists Ds in Ay with D7 C Dy. Note that
if A is a maximal system of imprimitivity for G then either G acts primitively
on the set A or |A| =2 and G acts trivially on A.



Suppose that G/M = Alt(X) for some set ¥ and some normal subgroup
M of G. Let t be a positive integer with ¢ < |X|/2. Then G acts t-pseudo
natural on 2 with respect to M if G acts transitively on () and if there exists a
G-invariant partion A for G on Q such that Cg(A) = M and the action of G
on A is isomorphic to the action of G on subsets of size t of X. G acts pseudo
naturally on © with respect to M, if G acts 1-pseudo natural on Q. G acts
essentially on © with respect to M if Cq(Q) < M . We remark that if G/M is
perfect (that is |[X| > 5) and R is the minimal normal supplement to M in G
(see , then € is essential if and only if R acts non-trivally on Q2. The reader
should notice that in the case M = 1 a pseudo natural action does not have
to be natural. In fact it is easy to see that even the right regular permutation
action is pseudo natural.

If p is a prime, then d(p) =1, if p # 2, and d(p) =2, if p = 2.
For a real number z, let [x] be the largest integer less or equal to .

For a group G let G(®) = G and inductively, G+ = (GW). Put G* =
ﬂ?; G and note that if G is finite, G™ is the largest perfect subgroup of G.
If G is solvable, let der(G) be the smallest non-negative integer i with G(*) = 1.

2 Preliminaries

Throughout this chapter K is a finite field, V' a finite dimensional vector space
over K and Q@ = GLk (V).

Lemma 2.1 Let o be a field automorphism of K of order 1 or 2 and s a o-
sesquilinear form on V.

(a) There exists a subspace U of V' such that dimU > (dimV — 4)/4 and
sluxu = 0.

(b) Let G < Q such that for all g € G there exists Ay € K with s(u?,v9) =
Ags(u,v) for allu,v in'V. Let Z = Z(Q) NG, m = |G/Z| and W a subspace of
V. Then there exists a subspace X of W with

4m —1
3

dim X > (dimW — 4 )/4m

such that s|yxy =0, where U = (X%).

Proof: (a) Definet: V x V — K by t(u,v) = s(u,v) + s(v,u)?. Then t is a
symmetric or unitary form on V. Therefore there exists a subspace W of V' with
dim W > (dim V —2)/2 such that ¢|yyxw = 0. Indeed, the worst possible case is
when V' has dimension 2k and ¢ has Witt index k—1. If 0 # 1, pick A in K with
A7 = —\, otherwise let A = 1. Then restricted to W, As is a skew symmetric or
unitary form and there exists a subspace U of W with dim U > (dim W —1)/2
such that As|yxy = 0. Here the worst possible cases occur if s restricted to W



is unitary and W is odd dimensional, or if char K = 2 and s restricted to W is
symmetric but not alternating. This proves (a).

(b) Let g € G and Y a subspace of V. Define a o-sesquilinear form s, on Y’
by sq(u,v) = s(u,v9). By (a) there exists a subspace R of Y with sy|rxr =0
and dim R > (dimY —4)/4. Let T = {g1,...,gm ) be a transversal to Z in G.
Then by an easy induction proof there exists a subspace X in V with dim X >
(dim W — 424°=1) /4™ and sy, |xxx = 0 for all 1 < i < m. Put U = (X©)
and note that U = (X7T). Let u,v € X. Then s(u,v9) = s,,(u,v) = 0. Thus
s(u,w) =0 for all w € X and w € U. Since s is G-invariant, s(u,v) = 0 for all
u,v € U.

Lemma 2.2 There exists an increasing function f defined on the positive in-
tegers and independent from K and V' with the following property: Let G < @,
Z =GNZ(Q) and q is a quadratic, symplectic or unitary form on V' such that
forall g € G, ¢9 = A\gq for some Ay € K. If X is a subspace of V' of dimension
at least f(|G/Z|), then there exists 0 # x € X such that K(x%) is singular with
respect to q.

Proof: Let f(m) = 2-4™ + 44m3_1). If ¢ is symplectic or unitary, the
assertion follows directly from [2:Ip. The same is true if ¢ is quadratic and char
K is odd. So suppose g is quadratic and char K = 2. Let s be the symplectic
form associate to ¢. Then [2.Ipb provides a subspace Y in X of dimension at
least two such that s vanishes on (Y¢). Pick 0 # 2 € Y with ¢(z) = 0. Then ¢
vanishes on (z).

Lemma 2.3 Let f{,G,Z,V, and q be as in. Put m = |G/Z| and let S be the
set of G-invariant singular subspaces of V.

(a) Let M be a mazimal element in S. Then dim M > (dimV — f(m))/2.

(b) If dimV > 2m + f(m) and x € G with pdegy (z) > f(m), then there
exists M € S such that x does not act as a scalar on M.

(c) Let t be a positive integer and H a subset of G such that for all x € H
pdegy (z) > 2m(|H|t — 1)+ f(m). If dimV > 2tm|H| + f(m), then there exists
M € S with dim M < t|H|m and pdegy,;(z) >t for all z € H.

(d) Put g(m) = 2m? — 2m + f(m). If pdegy (z) > g(m) for allz € G\ Z,
then there exists U € S, such that no element of G\ Z acts as a scalar on U.

Proof: (a) Let M be a maximal element in §. Then G normalizes no non-
trivial singular subspace of M+ /M. By dim M+ /M < f(m) and so

dimV = dim V/M* + dim M+ /M + dim M < dim M + f(m) + dim M.

Thus (a) holds.

(b) Suppose that x acts as a scalar on every element of S and let M and
N be maximal elements of S. Let 0 # u € N and put U = K(u®). Then
clearly dimU < m. By (a) and since dimV > 2m + f(m), dim M > m. Hence
MNU* #0. Since (M NUL) + U is singular, we conclude that x acts as the
same scalar on M, (M NU+) + U and N. Since this is true for all such M and



N, x acts as a scalar on (S). By applied with X being a complement to (S)
in V, dim V/(S) < f(m) and thus pdeg(x) < f(m), a contradiction.

(c) Suppose first that |[H| = 1 and let H = {z}. By induction on ¢, there
exists N in § with dim N < (¢t —1)m such that pdegy(x) >t —1 (choose N =0
if t=1). Let W = Nt/N. Then dimW > dimV — 2dim N > 2m + f(m) and
pdegy () > pdegy () —2dim N > f(m). So by (b) there exists a G-invariant
singular subspace X in W such that x does not act as scalar on X. Replacing
X by K(u%), where u € X with u* ¢ Ku we may assume that dim X < m. Let
M be the inverse image of X in V. Then pdeg,,(z) > pdegy(z) + pdegy (z) >
(t—1)+1=t

Suppose now that |[H| > 1. Let « € H and put H* = H \ {z}. Then by
induction on |H| where exists N € § with dim N < ¢|H*|m and pdegy(h) >t
for all h € H*. Let W = N+ /N. Then dim W > 2m + f(m) and pdegy, (z) >
2m(t — 1) + f(m). Thus (c) follows by applying the |H| = 1 case to W and x
and take inverse images in N*.

(d) Let H be a set of representatives of the non-trivial cosets of Z in G.
Note that pdegy () > g(m) implies dim V' > g(m). Apply (c) with t = 1.

Lemma 2.4 Let H = PGLk(V) or a finite symmetric group. Then there exist
increasing functions h,k defined on the positive integers and independent from
H such that each of the following two statements hold.

(a) If x € S < H with S solvable, then der({x°)) < h(pdegy(x)).

(b) Let x € H' with || = p, p a prime, and, if H = PGLk(V), |z| = 2.
If pdegy () > k(t), then there exists a p-subgroup S of H' with x € S and
der({(z%)) > t.

Proof: For (a) see [0, Proposition 1] and for (b) see [I} 2.1,2.4].

Lemma 2.5 Let H = Q or a finite symmetric group. There exists an increasing
function | defined on the positive integers and independent from H with the
following property:

Let G < H and N < G with G/IN € AUL. Let ¢ € G with |x| =p, p a
prime, and if G/N € L, |z| =2 . If pdegg,n(x) > I(m) then pdegy () > m.

Proof: Let k, h be the functions given by [2.4] and define I(m) = k(h(m) +2).
If pdegg/y(x) > I(m) + 1, then by there exists a p-group S in G with
x € S and der((z°)N/N) > h(m) + 2. So der({z”®)) > h(m) + 1 and by ,
pdegg () > m.

Lemma 2.6 Let G < Q and A a system of imprimitivity for G on V. Let U €
A and E a subgroup of GLi (U) with Ng(U)/Cq(U) < E. Suppose that G acts
transitively on A. Then there exists H < No(A) withG < H, Ng(U)/Cr(U) =
E and H = EXSym(A).

Proof: Let I be a transversal to Ng(U) in G with 1 € I. Define F < Q by
F normalizes U, F/Cp(U) = E and [W, F] =0 for all W € A\ {U}. Define an
action of Sym(I) on V as follows. For m € Sym(I) and u; € U, i € I, let



Sy =S
icl icl
Let H = (F,Sym(I)), where we view Sym(I) as a subgroup of @ by the
above action. Then clearly H normalizes A, Ny(U)/Cuy(U) = E, Sym(I) =
Sym(A) and H = E1Sym(A). It remains to prove that G < H. Let g € G and
define 7 € Sym(I) and n; € Ng(U), i € I, by ig = n;i™. Let h = gn—!. Then

(Z uz)h _ (Z uzg)ﬂ*1 _ (Z u?iiﬂ)ﬁfl _ Zuzuz
el el el el

Pick f; in F' such that fmi_l centralizes U and m; € Sym(I) with 1™ = 4. Then
-1

—1

. T, i
since u; * =ul’ =ul =u,,
- -1
i(my fimi)  fimi  omgmi o ngé
u; =yl =T =l

It follows that h = [[,.; ;' fim; . Soh € H and G < H.

Lemma 2.7 Let M < Q, A be the set of components of M and H = Ng(M).
Assume that M = (A), that H acts irreducibly and primitively on V' and that
H acts transitively on A. Then there exist a cyclic group S and m > 1 such
that H/Cg(A) =2 Sym(m)S, where the wreath product is build via the regular
permutation representation of S.

Proof: Let U be an irreducible K M-submodule in V. Since H is primi-
tive on V', V is a direct sum of K M-submodules isomorphic to U. Put D =
Hompg (V. V), h = dimg V/dimg (U) and E =Homgp (U,U). Then E is a
field and D ~Homp(E", E) as rings. Put F = Hompy(V, V). Then F is a fi-
nite field isomorphic to E, and H/Cy (F') acts as a group of field automorphisms
on F. Hence H/Cy(F) is cyclic. Pick L in A and define S = H/Cy(F)Ng (L)
and m = |A|/|S]. Since H/Cy(F) is cyclic and H acts transitively on A, S is
cyclic and independent from the choice of L. Moreover, |S| is the number of
orbits of Cy(F) on A, Cy(F) and Cy(F)Ng (L) have the same orbits on A
and m is the length of each of those orbits. Note that V is a vector space over
F, the elements of H act semilinear with respect to F' and every irreducible
F M-submodule in V is isomorphic to U as FM-module. Let I' be an orbit for
Cpu(F) on A. We will prove next that :

(*) Let m € Sym(A) such that 7 fixes all elements in A\ . Then 7 is
induced by some element g € Cgr(F).

Note that as FM-modules U = @), Yz, where Y, is an irreducible Fx
submodule in U and the tensor product is build over F'. Fix L € I" and for each
z € T pick h(z) in Cy(F) with 2 = L"®. Put Y =Y}, and Z = @, Va.
Then Y, and Y@ are both irreducible Fz-submodules of U and so isomorphic
as F'z-modules. Put W = @, - Y™M#) . Then Z and W are isomorphic as
F(T')-modules. Define a map « by



a: H yh@ 5w
zel’

{ya}cl(m)}zel“ — Qger y:,(i)l
where y, € Y for each x € I'. Then it is readily verified that « is F-linear
in each of the coordinates and so induces a F-linear map S from W to W.
Let T = @, ca\r Yoo Define v : TQW — T'QW by (t ® w)? = t @ ws.
It is easily checked that S normalizes (I') in GLr(W) and so 7 normalizes M
in GLp(T @ W) and acts as m on A. Since U and T @ W are isomorphic as
FM-modules and V is the direct sum of F'M-modules isomorphic to U, there
exists g in GLp(V) such that g normalizes M and acts as m on A. Since
Nerpv)(M) = Cu(F), (*) is proved.

By (*), Cu(F) induces all possible permutations of A which normalize the
orbits of Cy(F') on A. Hence the same is true for Cy(F)Ng(L) in place of
Cu(F), Cy(F)Ny(L)/Cr(A) = Sym(m)!Sl and H/Cy(A) = Sym(m)S.

Lemma 2.8 Let G be a finite group and N a normal subgroup G such that
G/N s perfect. Then there exists a unique subnormal subgroup R of G which
is minimal with respect to G = RN.

Proof: Let R; and Ry be minimal subnormal supplements to N in G. Let K;
be proper normal subgroups of G with R; < K; for i = 1,2. Then G = K1N =
K3N. Since G/N is perfect, G = [K1, K3]N. Let R be a minimal subnormal
supplement to [Kj, K] N N in [K;, K3]. By induction on |G|, R and R; are
both the unique minimal subnormal supplement to N N K; in K; for i = 1,2.
Thus R = R = R».

Lemma 2.9 Let Gy, G, N1 and N be subgroups of Q such that Ny <G1, N <G,
G1/Ny and G/N are perfect and simple, G/N € L, G1 <G and GiyN N < Nj.
Let Ry be a minimal subnormal supplement to Ny in G1. Suppose that each of
the following two statements hold:

(i) there exists x in Ry with |xZ(Q)| = 2 and pdegg/y(x) > 1(2m + f(m)),
where m = |G1/G1 N Z(Q)| and f and | are as in[2.9 and [2.5, respectively.

(i) Ca(N/O,(G)) < N, where p is the characteristic of K.

Then there exists Go < Q and No < Ga such that G1 < Go, G1 N Ny < N
and all non-abelian composition factors of Go/Na are alternating groups.

Proof: The proof is by induction on |V|. Let R be a minimal subnormal
supplement to N in G. We assume without loss that G = G1R. By R is
unique and so normal in G. Since G/N is simple, we conclude R is contained
in every subnormal subgroup H of G with H £ N. Moreover, since G/N is
perfect, R*N = G and so R = R’. Hence the three subgroup lemma implies:

(*) If M is a normal subgroup of G with [M, R] # 1, then [[M, R}, R] # 1.



Assume first that G acts reducibly on V. By (ii), [R, N] £ O,(G) and so
[R, N] does not act unipotently on V. Hence there exists a chief factor W for
G on V with [W,[R,N]] # 0. Let G = G/Cg(W). Then O,(G) = 1. Suppose
that Co(W) £ N, then R < Cg(W), a contradiction. Hence Cg(W) < N
and G/N = G/N If él = Nl, G1 S Cgl(W)Nl S (Gl n N)Nl = ]\7'17 a
contradiction. Hence G1/N; = G1/N;. By choice of W, R £ Cs(N) and
so Cs(N) < N. It is now easy to verify that (Gy, Ny,G, N, Ry,z, W) fulfills
the assumptions of the lemma. So by induction there exists a subgroup Gy of
GLk(W) and Ny <1 Gy such that Gy < G, G1 N Ny < N and all non-abelian
composition factors of Go/N, are alternating groups. Let W = X/Y for some
KG-submodules X, Y in V. Let G5 and N be the largest subgroups of ) which
normalize X and Y and such that Gy/Cgq,(W) = G5 and No/Cyn,(W) = Ns.
Then (G2, No) fulfills the conclusion of the lemma.

Assume next that G acts irreducibly but imprimitively on V. Let A be a
system of imprimitivity for G on V.

Suppose that By £ Cg(A). Then Cg, (A) < Np. Note that Ng(A)/Co(A) =
Sym(A). Put Go = Ng(A) and Ny = Cg(A). Then (Gz, Na) fulfills the con-
clusion of the lemma.

So we may assume that Ry < Cg(A). Since Gy NN < Ny, Ry £ N and
we get Cg(A) € N and R < Cg(A). Pick U in A and for any X C G put
X = Nx(U)Cq(U)/Cq(U). Let S be the minimal subnormal supplement to
Ny(U) in Ng(U). Since RNy(U) = Ng(U), S < R. In particular, S is normal
in R and so subnormal in G. Since S £ N, we get S = R by minimality of R.

Suppose that C(N) £ N. Then since R = S, R < Cg(N). So [N, R, R]
centralizes U and since G acts irreducibly on V and [N, R, R] is normal in G,
[N, R, R] = 1, a contradiction to (*). Thus Cs(N) < N. If G = N, Ng(U) <
Ce(U)Ny(U) and so R = S < Cg(U), a contradiction. Thus G/N = G/N.
If G = Ny, then Ry < Ng,(U) < Cg,(U)Nn, (U) < Cg(U)Ny(U). Hence
Cq(U) £ N and G = N, contradiction. Thus G /N; = G1/N;. It is now easily
verified that (G, N1,G, N, Ry,Z,U) fulfills the assumptions of the lemma. So
by induction there exists a subgroup Ga of GLk(U) and Ny <1 G5 such that
G1 < G9, G1 NNy < N; and all non-abelian composition factors of 672/]\_72
are alternating groups. Apply to Gy in place of G' and with F = G5. Put
G2 = H and Hy = Cg,(A) and let Na be the largest normal subgroup of G,
contained in Hy with NoCg,(U)/Cq,(U) = Ny. Then Hy/Ny = (Ga/Ny)!A!
and so every non abelian composition factor of Go/Ns is an alternating group.
Note that Gi N Ny < Nj. Since Cg, (U) < Co(U)N Gy < NNGy < Ny, we
conclude that G1 N Ny < Nj. Therefore (G2, N2) fulfills the conclusion of the
lemma.

Assume last that G acts irreducibly and primitively on V. Let X be any
normal subgroup of G. If X has more than one Wedderburn component on V,
these Wedderburn components would form a system of imprimitivity for G on
V. Thus V is a direct sum of isomorphic irreducible K X-submodules in V. In
particular, Z(X) is cyclic. Let M be a normal subgroup of G in N minimal with



respect [M,R] # 1. By (*) [M,R,R] # 1 and so M = [M,R] < R. Tt follows
that C(R) < Z(M). Since Z(M) is cyclic and R is perfect, [Z(M), R] = 1 and
so Oy (R) = Z(M). Put M = M/Z(M). Then M is a minimal normal subgroup
of G/Z(M) and so M is the direct product of isomorphic simple groups.

Suppose first M is perfect. Then M = E(M). Let A be the set of compo-
nents of M and note that G acts transitively on A. Assume that R < Ce(A).
Since R is perfect and the outer automorphism group of any finite simple group
is solvable we conclude that R induces inner automorphisms on M. Thus
R<MCg(M),Ca(M) £ N, R< Cg(M) and [M, R, R] = 1, a contradicton to
M = [M, R]. Therefore R £ Cz(A) and so Cq(A) < N. Put G2 = No(M) and
N2 = CG2(A) Then G1 N N2 S CG(A) S N and so Gl ONQ S G1 NN S Nl.
By every non-abelian composition factor of G3/Nj is an alternating group
and so (G, N3) fulfills the conclusion of the lemma.

Suppose next that M is an elementary abelian g-group for some prime gq.
Since M" < Z(M), M’ is elementary abelian and cyclic. Thus |M’| = g. Define
a symplectic form on M by s(a,b) = [a, b]. By applied to H = GLGF(q)(]\Zf)
we have that pdegy;(z) > 2m + f(m). Now m > |G1/Cqg,(M)| and so by
there exists a Gy-invariant subspace A in M such that [A,x] # 1 and s
vanishes on A. Let A be the inverse image of A in M. Then A is abelian. Let
A ={Cy(B)|B < A, A/B cyclic and Cy(B) # 0} and note that V is the direct
sum of the elements of A. Let G2 = Ng(A) and Ny = Cg(A). Then Gy /N> is
the direct product of symmetric groups and G1 M < Gs.

Suppose that G; N Ny € Ny. Then Ry < Ny and [Ry, M] < N,. Pick
D € A. Then [Ry, M] normalizes C4(D) and so [[R1, M],Ca(D)] < Cp(D) N
M' = 1. Since also [Ca(D), M, Ry] = 1 the three subgroup lemma yields,
[Ca(D), Ry, M] = 1. Thus [Ca(D),R1] < Cy(D) N Z(M) = 1. Furthermore,
R; is perfect and A/C4(D) is cyclic. Thus R; centralizes A, a contradiction to
[A,x] # 1.

Hence G1 N Ny < Ny, (G, N») fulfills the conclusion of the lemma and the
proof of 2.9]is completed.

Corollary 2.10 remains true if Q is replaced by PSLk (V).

Proof: Apply to the inverse images in GLk (V'), intersect the resulting
G2 and Ny with SLk (V') and then look at the images in PSLg (V).

Lemma 2.11 Let I be a finite set, for i € I let L; be a perfect simple group
and let M < [[;c; Li. For J C 1, let Ly =]].c;Lj, My =MNL; and let M7
be the projection of M onto Lj.

(a) If M* = L; for all i €I, then there exists a partition 11 of I such that
M = [],cn Mx and for all m € I and i € 7, the projection of My onto L; is an
isomorphism.

(b) Put J={i € IIM*=L;} and K =1\ J. If L; is finite and L; = L; for
alli,j eI, then M = My x Mk.

JjeJ

Proof: (a) Let T = {J C I|M; # 1 and Mg = 1forall K C J}. Let i €
7 € Il and let ¢ be the projection map from M to L;. Then ker ¢ < M\ ;3 =1
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and ¢ is one to one. Moreover, M and so L; normalizes the image of ¢. Since
L, is simple, we conclude that ¢ is onto and so ¢ is an isomorphism. If 7’ € II
with 7 N7’ #0, then 1 # [My, M) < Myag and som =nNa’ =7,

It remains to show that M = M*, where M* = [[ .y M. For m in Ly let
S(m) = {i € Ilm; # 1}. We will prove by induction on |S(m)| that m € M*.
Without loss m # 1. Then Mg,y # 1 and so there exists 7 € Il with 7 C S(m).
Pick i € 7 and n € M, with n; = m;. Then S(mn~=1) C S(m)\ {i} and so by
induction mn~—! € M*. Clearly n € M* and so m € M*.

(b) By (a) M/Mk is a direct product of simple groups isomorphic to L;.
Note that M/M; is a subdirect product of proper subgroups of L; and so has
no composition factor isomorphic to L;. So no non-trivial factor group of M /M
is isomorphic to a factorgroup of M/M;. Thus M/MxgM; =1, M = MxM;
and M = MJ X MK

Lemma 2.12 Let L be a perfect, finite, simple group, n a positive integer,
T =L", h an automorphism of T of order q, q a prime, I the set of components
of T, t the number of non-trivial orbits for h on I, M an h-invariant subgroup
of T and K = {g € T|[g,h] € M}. Then one of the following holds:

(i) M contains a component of T.

(i) |K| < (3)"|T.

Proof: We assume without loss that M does not contain a component of T’
and t > 0. We use the notation introduced in with Lp = D for all D € I.
We may assume that

(*) If J is an h-invariant subset of I such that M7 does not contain a
component of T' and either M7\’ does not contain a component of T" or h acts
trivally on I\ J, then J =0 or J = 1.

Indeed suppose that (*) is false. Then by induction on n, |K7| < (23)%|L,|
and |KT\| < (2)!7%|Lp\ |, where s is the number of non-trivial orbits for h on
J. Hence (ii) holds in this case.

Using [2.11] we will prove next that one of the following holds:

(1) The projection of M to L is not onto and h acts transitively on 1.

(2) The projection of M to L is an isomorphism and h acts transitively on
1.

(3) There exists an h-invariant partition II of I such that II # {I}, h acts
transitively on IT, M =[] M, and if D € 7 € II, the projection of M, to D
is an isomorphism.

well

Indeed, put J = {D € I|MP = D}. Then by 2.11p, M = M, x Mp ;. So
M = M\ ; and neither M7 nor M\’ contains a component of 7. Thus by
() I=JorJ=0. If J =0, let J* be any h-orbit on I. Then by (*) J* =1
and (1) holds. So we may assume I = .J and thus M = D for all D € I. Let
II be the partion of I given by 2.11} Then II is clearly h-invariant. Let A be
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an h-orbit on IT and put J’ = |JA. Similarly as above neither M?" nor M\’
does contain a component of T" and so by (*), J' = I. If IT # {I}, (3) holds.
So assume II = {I} and let J, be any non trivial h-orbit on I. If |I\ J.| > 2,
M- does not contain a component of T and if |\ J.| < 1, h acts trivally on
I\ J,. Thus in any case I = J, by (*), and (2) holds.

Suppose first that (1) or (3) holds. In case (1) put II = I. Pick 7 € IT and
let g€ T. Then g = glgg...g(?rl for some g; € L. So

[9.7) = (97 9) (92 )" - (9 L g-1)™"

Thus if g € K we conclude from M =[] .y M? that

GgM™ =g M™ = ... =g,M".

Hence |K| < |M™4|L,/M™| = |T|/|L./MT|?"t. Tt remains to show that
|L./M™9=1 > (4/3)t. If (1) holds, ¢t = 1 and this is obvious. If (3) holds,
t = |m|. Since M contains no components of T', |w| > 1 and so ¢ > 1. Moreover,
|M,| = |L| and so |L,/M.|?"" = |L|¢~D@=1) > |L|t=1 > 441 = (4/3)!3t /4 >
(4/3)t.

Suppose next that (2) holds. Then M 2 L, ¢t =1 and Cr(h) 2 L. Put Y =
{[k,h]|lk € K}. Then Y C M and |Y| < |L|. Let k,l € T. Then [k,h] = [I, h]
if and only if k=1 € Cr(h). Thus |K| = |Y||Cr(h)| = |Y]||L| < |L]?. If ¢ > 2
we conclude that |K| < |L|? < 3/4|L||L|*> < 3/4|L|9. If ¢ = 2, h inverts all
elements of Y. So since M is not abelian it follows from a well-known exercise
[3l 2.9 #12, p71], that |Y| < 3/4|M| and so |K| < 3/4|L|?> = 3/4|T|, completing
the proof of the lemma.

Lemma 2.13 Let Q be a finite set, H < Sym(QY), H* C H\ {1} and h,k
positive integers. If degg(x) > hkw*(H)|H||H*| for all x € H*, then there
exists a subset I' of Q and a partition A of T in subsets of size h such that H
normalizes A and dega (z) > k for all x € H*.

Proof: Let W be a set of representatives for the isomorphism classes of
transitive permutation representations for H. We note that |O] < |H| for all
O € W. For O € W, let r(O) be the number of H-orbits on 2 isomorphic to O.

Let z € H*. We claim that there exists O, € W with z ¢ Cy(O,) and
r(Ogz) > hk|H*|. Indeed, let W, = {O € W|z & Cy(0)}. Then degg(x) =
> oew, T(0)degp(z). Since degp(z) < [O| < [H|, Wy| < W] = w*(H) and
degq(x) > hkw*(H)|H||H*|, we conclude that r(O,) > hk|H*| for at least one
O, in W,.

Let Y be subset of H* maximal such that there exist pairwise distinct H-
orbits O(y,4,7), y € Y, 1 < i < h,1 < j <k, in Q such that O(y,i,5) is
isomorphic to O,. Suppose that ¥ # H* and pick uin H*\ Y. Since 7(O,,) >
hk|H*| > hk|Y| + hk there are at least hk H-orbits on 2 which are isomorphic
to O, and distinct from the O(y,1,j)’s, a contradiction to the maximal choice
of Y.

12



Thus Y = H*. Let ¢(x,1,j) be an H-isomorphism from O, to O(z,1,j). For
d€ Oy, xe H and 1 < j <k put D(z,j,d) = {¢(z,4,5)(d)|1 <i < h}. Put
A ={D(z,j,d)|lx € H*,1 < j < k,d € O,}. Note that D(x,j,d)? = D(x, j,d9)
for all ¢ € H and so H normalizes A. For x € H* pick d in O, with d* # d.
Then D(z, j,d)* # D(z,j,d) for all 1 < j < k and so degn (z) > k.

Lemma 2.14 Let Q) be a finite set, G < Sym(Q), NG with G/N = Alt(n),n >
5 H < G with HNN =1, u a positive integer with u > (|H|log, 3 |H|)+2 and
k = max(l(u), 5uw(H)|H|?,9|H|?), where [ is as in . If pdegg N () > K for
all 1 # x € H then one of the following holds:

(a) H has a regular orbit on (.

(b) G has a t-pseudo natural orbit on Q with respect to N, where t is a
positive integer with t < |H| — 2.

Proof: Consider a counter example with |2| minimal. Let R be the minimal
subnormal supplement to N in G provided by 2.8 Let O be a G-orbit on 2 with
R £ C(0). Then (G/Cq(0),NCs(0)/Cq(0O), HCs(0)/Cx(0),0) fulfill the
assumption of the lemma. We conclude that Q2 = O and so G acts transitively
on (.

Suppose that G acts imprimitively on Q and let A be a maximal system of
imprimitivity for G on €. If NV is not transitive on §2, the orbits of N on 2 form
a system of imprimitivity for G on €2 and we can and do choose A such that
N < Ca(A).

If Co(A) < N, then (G/Cg(A), NCq(A)/Ca(A), HCc(A)/Cg(A), A) ful-
fills the assumption of the lemma. But then (a) or (b) holds for A and so also
for Q.

Hence C(A) £ N, R< Cg(A),N £ Cg(A), N is transitive on Q and R is
not transitive on Q. Let O be an orbit for R on Q. For X < G put Xy = Nx(O).
Let R* be the minimal subnormal supplement to Ny in Gg. Then R* < R, R*
is a subnormal supplement to N in G and thus R = R*. If Cg,(0) £ Ny,
R = R* < Cg,(0). Since R is normal in G and G is transitive we conclude that
R =1, a contradiction. Thus Cg,(O) < Ny. If Hy has a regular orbit on O, H
has a regular orbit on 2. Hence, by minimality of |{2|, there exists G-invariant
partition I'g for Gy on O such that Ny = Cg,(Tg). It follows that Ny is not
transitive on O and so N is not transitive on €, a contradiction.

We proved that G acts primitively on €2. Let M be the stabilizer in G of some
point in €. Since H has no regular orbit on Q, HNMY # 1forall g € G. Let T
be a minimal normal subgroup of G with T' < R. Then HNM® # 1 forallt € T.
By the pigeon hole principal there exists 1 # h € H with |S| > |T|/(|H| — 1),
where S = {s € T|h € M* '}. Without loss |h| = p, p a prime. Pick sy € S.
Replacing M by M5 and S by 5551 we may assume that 1 € S andsoh € M.
Let s € S. Then h € M* " and so h® € M. It follows that [s, h] = h=*h € MNT
for all s € S.
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Suppose that T is an elementary abelian g-group for some prime ¢. Then T
acts regularly on Q and so Cq(T) < T and TNM = 1. In particular, S < Cr(h)
and since |S] > [T|/(|H| - 1), [T/Cr(h)| < [T/S| < |H|. Thus

pdegr(h) < degr(h) = log, |T/Cr(h)| < log, [H| < log, /3 |H|.

On the otherhand by assumption pdeg¢ (k) > I(u) and so by applied to
"H = GLgrg)(T)” and "z = h”, pdegp(x) > u > logy3(|H|), a contradiction.

Hence T is the direct product of perfect simple groups. Let I be the set of
components of T. Note that T acts transitively on 2 and so G = MT and M
acts transitively on I. In particular, M contains no component of 7.

Suppose that Cs(I) < N. Let ¢t be the number of non trivial orbits of
h on I. Then by |S| < (3/4)Y|T|. Since |S| > |T|/|H| we conclude
t < logys3(|T/|S]) < logyss|H|. Since t = %pdegj(h) > ﬁpdeg,(h) we
conclude that pdeg;(h) < |H|log,s|H|, a contradiction to pdegg, y(h) >
I[(|H[logy/s |[H| + 2) and

Thus Cg(I) £ N and so R < Cg(I), i.e R normalizes all components of T'.
Since the outer automorphism group of every finite simple group is solvable and
since R is perfect we conclude that R induces inner automorphism on 7". Thus
R < TCqg(T) and TCq(T) £ N. Recall that T < R. If Cg(T) £ N we get
T < R < Cqg(T), a contradiction. Hence Cq(T) < N, T £ N and R <T. It
follows that R=T, RNN =1, R= Alt(n) and G = R x N.

Suppose that N # 1. Then, since G is primitive, IV is transitive and R is
regular. So RN M =1 and S C Cg(h). Since |T|/|S| < |H| -1, |R/Cr(h)| <
|H| — 1. Since R = Alt(n), n > 5, R has no subgroup of index less than n. So
|H| —1>n > pdegg,n(h) > |H|, a contradiction.

Therefore N = 1 and G = Alt(n). Let A = {1,2,...,n} with G acting
naturally on A. Let 1 # z € H. Then degy(z) = pdegq,n(z) > Suw(H)|H |?
and so by applied to (H, H \ {1},5,u, A) in place of (H, H*, h, k,Q) there
exists a subset I" of A and a partition A of ' in subsets of size five such that
H normalizes A and deg (x) > u for all 1 # x € H. Let T* = (Capa)(A) N
Canay(A\T))" and M* = M NT*,( where M now is some conjugate of the
M above). Note that 7™ is the direct product of alternating groups of degree
five and the action of H on the components of T* is isomorphic to the action
on A. If M* does not contain a component of T*, then using we get the
same contradiction as in the case Cg(I) < N with T replaced by T*. Hence M
contains a component of 7 and in particular an element acting as a three cycle
on A. If M acts primitively on A, we conclude from [4, II 4.5(c)], that M = G,
a contradiction.

Thus M does not act primitively on A. Note that deg,(x) > 8|H| for
all 1 # z € H. Tt follows that there exist 4|H| pairwise distinct elements
Ay by, Cpydyy © € H\ {1}, in A such that af = ¢, and b2 = d,.

Assume that M acts transitively and imprimitively on A, and let © be a
system of imprimitivity for M on A. Put k = |A|/|©] . If |©] > 3|H]|, we can
can choose disjoint sets o, Yz, 0z, x € H \ {1}, of size k in A with a,, b, € oy,
¢y € vp and d, € §,. Choose g € G such that ©9 contains «,y, and d,, for all
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x € H\{1}. Since HNM?Y # 1, there exists 1 # x € H with x € M9 < Ng(09).
Since a? = ¢z, o = v, and since b% = dy, af =, a contradiction to v, # ;.
Thus |©] < 3|H| and since |A| > deg, () > 9|H|?, k > 3|H|. It follows that we
can choose disjoint sets « and ¢ of size k in A with a,, b, c, € a and d,, € §, for
all z € H\ {1}. As above, choose g € G with «,¢ € ©9, pick 1 # z € H with
x € M9 < Ng(09) and conclude that o = o = J, contradiction.

Thus M does not act transitively on A, so M = Ng(©) for some © C A
with |©] < |A\ ©|. Suppose that |©| > |H| — 1. Then there exists g € G with
a; € 09 and ¢, € A\ ©9 for all z € H \ {1}. Tt follows that H N M9 =1, a
contradiction.

The following example shows that there is no absolute bound for ¢ in case
(b) of the preceeding Lemma. Let G = Alt(n) with n = pmk and put I =
{1,2,...,n}. Alsolet H < G with H = (z; | 1 < i < k) = C} such that the
supports of the x;, 1 < i < k, form a partion of I into subsets of size pm. Let
Q be the set of subsets of size k — 1 in I. Then for each J € Q there exists
1 <4 < k with J < Cy(z;) and so H has no regular orbit on Q. For fixed
k and p we can choose m large enough such that the assumption of are
fullfilled. Also b) holds with ¢t = k — 1. But note that k —1 = log, |[H| — 1,
so probably our bound ¢ < |H| — 2 can be improved.

Lemma 2.15 Let G be a LFS-group and {(G;, N;)|i € I} a sectional cover for
G.

(a) There exists a Kegel cover {(H;, M;)|j € J} such that for all j € J there
exists 1 € I with N; < M; < H; QG;.

(b) For i € I let M; be a normal subgroup of G;. Then at least one of
{(Gi, My)|i € T} and {(M;, M; N N;)|i € I} is a sectional cover for G.

(c) {(G*, G N N;)|i € I} is a sectional cover for G.

(d) Let € be a class of groups such that K € € for each i € I and each non
abelian composition-factor K of G;/N;, then there exists a Kegel cover for G all
of whose factors are in .

Proof: (a) Let E be a non trivial finite subgroup of G and 1 # e € E. Since
G is simple, E < (e%) and since G is locally finite, E < (ef") for some finite
subgroup F of G. Similarly F < (eT¢) for some finite subgroup 7. of G. Then
E< (e<eTe>>. Let T be the finite subgroup of G generated by E and all the T,
l1#e€E. Pickie€lwithT <G;and TNN; =1. Put Hg = (E“)N;.
Clearly EN; does not lie in any normal subgroup of G; properly contained in
Hpg and, in particular, not in the intersection of the maximal normal subgroup
of Hp containing N;. Thus there exists a maximal normal subgroup Mg of Hg
with E £ Mg and N; < Mg. Suppose that 1 # ¢ € F with e € Mg. Then
(eGi) < Hi and E < (el¢™)) < (e(e®)) < (eHe) < Mp, a contradiction. Thus
EnMg =1. It follows that {(Hg, Mg)|E a non trivial finite subgroup of G}
is a Kegel cover that fulfills (a).

(b) Assume that {(G;, M;)|i € I} is not a sectional cover for G. Then there
exists a finite subgroup H of G such that HNM; # 1 for all i € I with H < G;.

15



Without loss H < G; for alli € I. For 1 # h € H let I}, = {i € I|h € M;}.
Then I is the finite union of these I, and so there exists 1 # h € H such that
{(G;, N;)|i € I} is a sectional cover for G. We may assume that I = Ij,. Let E
be any finite subgroup of G. Since G is LF'S, there exists a finite subgroup T'
in G with h € T and E < (hT). Pick i € I with T < G; and TN N; = 1. Then
is a sectional cover for G.

(c) Otherwise we conclude from (b) that {(G;, G$°)|i € I} is a sectional
cover for G. Hence by (a) G has a Kegel cover all of whose factor are of prime
order. Thus G is of prime order, a contradiction since G is infinite.

(d) By (a) there exists a Kegel cover all of whose factors are abelian or lie
in €. Since G is not abelian, (d) holds.

3 Kegel covers

Throughout this chapter G is a non-finitary LF S-group and K is a Kegel cover
for G. For K € K let Hx and Mk be defined by K = (Hg, Mk) and put
K = Hg/Mg. If € is a class of groups, Kg = {K € K|K € £}. For K € K»
pick a finite field F, a finite dimensional vector space Vi over Fg and a non-
degenerated symplectic, quadratic or unitary form qx on Vi such that K =2
PQp, (Vk). For K € K, pick a finite field Fx and a finite dimensional vector
space Vi over Fi such that K = PSLp,(Vik). We view Vi as a projective
module for Hyx. For K € K4 pick a set Qp with K = Alt(Qg). For a finite
subset T of G let K(T) ={(H,M) e KT CHand TNM C {1}}.

Lemma 3.1 Let k be a positive integer and X C G\ {1} with |X| finite. Put

J ={K € Keua(X)|pdegg (z) > k for all z € X}.

Then J is a Kegel cover for G. In particular, at least one of K4, K,z and
Kr is a Kegel cover for G.

Proof: Without loss K = K(X). By induction on |X| we may assume that
|X| =1. Let 2 € X and suppose that 7 is not a Kegel cover for G. Then K\ J
is a Kegel cover for G. By the classification of finite simple groups there exists a
natural number ¢ such that every finite simple group not contained in C U.A has
a faithful projectice representation of dimension at most ¢. Let s = max{k,t}.
Then pdegg(z) < s for all K € K\ J. Thus by [2, (3.1)], G has a faithful
projectice representation U with pdegy (z) < s. Since G = (x%), G is finitary,
a contradiction.

Proposition 3.2 (a) Suppose K = Kx. Let J = {(K,U)|K € K and U is a
singular subspace of Vic}, and for j = (K,U) € J put Hj = Ny, (U) and M; =
{z € Hj|x acts as a scalar on U}. Then PSLp, (U) < Hj/M; < PGLp, (U),
{(Hj, M;)|j € J} is a sectional cover for G and {(H®, H° N M;)|j € J} is a
Kegel cover for G with all factors in L.

(b) G has a Kegel cover J with J = T4 or J = J¢.
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Proof: (a) Let T be a ﬁnlte subgroup of G and k = ¢g(|T'|), where the function
g is deﬁned mE there exists K € K with T < Hg and pdegy, (t) > k
forall 14t eT. By mo there exists a T-invariant singular subspace U in Vg
such that no element of 7"\ {1} acts as a scalar on U. Thus T' < H g ¢y and
TN Mgy =1. So {(Hj, M;)|j € J} is a sectional cover for G.

Using Witt’s theorem we get PSLp, (U) < H;j/M; < PGLp,(U) for all
j € J. The last claim in (a) follows from [2.15f and since PGLp, (U)>® € LU{1}.

b) By we may assume that Kr is a Kegel cover. Then (a) provides a
Kegel cover all of whose factors are in L.

Theorem 3.3 Let G be an LEFS-group, which is neither finitary nor of alter-
nating type. Then G is of p-type for some prime p and there exists a Kegel cover
K for G such that K = K,y and for all K € K, Hy/O,(Hg) is the central
product of perfect central extension of groups in C(p).

Proof: Put P = {(H,M)|H < G,M < H,H is finite and H/M is perfect
and simple} and note that P is a Kegel cover for G. By assumption G is not of
alternating type and so P4 is not a Kegel cover.

(1) {(H,M)|H < G,M < H,H finite and every non-abelian composition
factor of H/M is in A} is not a sectional cover for G.

Otherwise [2.15] provides a Kegel cover with alternating factors.
(2) If T is a Kegel cover for G, then T¢ is a Kegel cover as well.
By B3] 74 or 7¢ is a Kegel cover. By assumption T4 is not a Kegel cover.

Let J be the set of all pairs (H, M) € P, such that there exists a prime p

(3) J is not a Kegel cover.

Suppose that J is a Kegel cover. Using and its Corollary we will
derive a contradiction to (1). Let T be any finite subgroup of G and pick
(G1,N1) € J(T). Let R; be the minimal normal supplement to Ny in Gj.
Since R; is of even order there exists © € Ry with |z| = 2. Let k = I(2|G4| +
f(IG1])), where I and f are as in and By there exists (Go, Nop)
in J(G1) with pdegg,/n,(z) > k. By definition of J there exists a prime
p with Cg,(No/Op(Go)) < No and K € Pr(p)(Go) Hence by applied to
PSLp,. (Vk) = K and the images of Gy, No, G1, N1 in PSLp, (Vi) in place of
G, N, G4, Ny there exists Go < Hg and Ny <t G5 such that Gy < Gg, G1 NNy <
N; and every non- abelian composition-factor of Go/Ns is in A. Note that
T <Gy <Gy and TN Ny <TnNN; = 1. Since T was an arbitrary finite
subgroup of G, we get a contradiction to (1).
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(4) There exists a prime p such that G is of p-type. In particular, P, () is a
Kegel cover.

Note that G is of p-type if and only if P\ Pc(p) is a not Kegel cover. Suppose
that for all primes p, P\ Pep) is a Kegel cover. Then by (2) and , Prvcip)
is a Kegel cover for all primes p. Let Ty be a finite subgroup of G and note
that by there exists perfect finite subgroup 7' of G with Ty < T. By [B.1h,
there exists K € P, (T) with dimg, Vi > |T|?. For 1 #t € T, pick v, € Vi
with v! & Frv,. Put U = Fr (vl |t € T\ {1}). Then dimp, U < |T|?> and U
is a proper T-invariant subspace of Vi such that no non-trivial element of T’
acts as a scalar on U. Let H = Ny, (U)* and let M be all the elements in H
which act as a scalar on U. Since T is perfect, T' < H and so (H, M) € P.(T).
Let g = char Fy. Since Pr\ £, is a Kegel cover for G, there exists a p a prime
distinct from ¢ such that P, (H) #@. Note that O,(H/H N M) = 1 and
Cu(M/HNMg) < M. Thus Cyg(M/O,(H)) < M and (H,M) € J(T) C
J(Tp). It follows that J is a Kegel cover, a contradiction to (3).

Hence there exists a prime p such that P\ P, p) Isamnot a Kegel cover. This
implies that P¢(p,) is a Kegel cover and so by , Pr(p) is a Kegel cover.

For a finite group H and a prime p let F}y(H) be defined by F*(H/O,(H)) =
F(H)/Op(H).

(5) {(H,F;(H))|H < G, H finite} is not a sectional cover for G.

Suppose {(H, F,;(H))|H < G,H finite} is a sectional cover for G. Note
that Cp (F;(H)/Op(H)) < F(H). Hence we conclude from that 7 =
{(H,N) € P|Cu(N/Op(H)) < N} is a Kegel-cover for G. If Tr is a Kegel
cover, then the Kegel cover provided by is contained in Zy. Thus in any
case I is a Kegel cover and so by (4), Z,(,) is a Kegel cover. In particular,
Prpy(H) #O for all finite subgroups H of G and Z,(,) € J, a contradiction to
3

(6) {F,(H)|H < G, H finite} is a sectional cover for G.
This follows immediately from [2.15p and (5).

Put M = {H < G|H finite and perfect, H = F;(H)}. By (6) and [2.15F,
M is a sectional cover for G. For H € M, let Sol(H) be the largest solvable
normal subgroup of H. Then H/Sol(H) is the direct product of non abelian
simple groups. Let H,/Sol(H) be the product of the components of H/Sol(H)
contained in C(p).

(7) {Hp|H € M} is a sectional cover for G and {(H, Hp)|H € M} is not a
sectional cover.
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Otherwise we conclude from (6) and [2.15b that {(H, H,)|H € M} is a
sectional cover for G. Hence by [2.15h there exists a Kegel cover for G none of
whose factors are in C(p), a contradiction to (4).

Applying to the sectional cover {Hp,|H € M} we get a Kegel cover K
for G such that H/O,(H) is the central product of perfect central extensions of
elements in C(p) for all (H,N) € K. Using we can choose K such that in
addition I = K, (). Thus (b) holds.

Theorem 3.4 Let G be of alternating type and K a Kegel cover for G with
K=Ky4.

(a) One of the following holds:

(al) There exists a Kegel cover J C K such that for all JJ K € J with
Hj; < Hy every essential orbit of Hy on Qg is pseudo natural with respect to
Mj.

(a2) For all finite subgroups T in G, Kr(T) = {K € K(T)|T has a regular
orbit on Qi } is a Kegel cover for G.

(b) If G is countable, there exists a Kegel sequence {K,|n > 1} C K for G
such that one of the following holds:

(b1) For all n < m all essential orbits of Hg, on Q,, are pseudo natural
with respect to My,

(b2) For alln < m Hg, has a regular orbit on Qf,, .

Proof: Suppose (a) is false. Then there exists a finite subgroup H of G such
that Kr(H) is not a Kegel cover. Hence K\ Kr(H) is a Kegel cover and we may
assume that Kr(H) =0. Let k be defined as in By Wwe may assume
that K = IC(H) and degg, (h) > k for all h € H\ {1} and all K € K. Let J be
the set of all K € K such that for all L € K with Hg < H, all essential orbits
of Hi on j, are pseudo natural with respect to Mg

Since (al) does not hold, J is not a Kegel cover and so there exists a finite
subgroup T of G with J(T') =0. Then K(T)NJ =0 and so for all K € K(T)
there exists X(K) € K such that Hx < Hx(x) and not all essential orbits of
Hpy on Qx () are pseudo natural. Since H has no regular orbit on Qx (g, we
conclude fromthat all essential orbits for Hx on Qx () are t-pseudo natural
for some t. Hence Hy has a t-pseudo natural orbit on Qx gy with ¢ > 1. Pick
Ky € K(T') and inductively define K,, = X (K,,_1) for n > 1. Put Q, = Qg
and H, = Hg,. Pickn > 1 and w € Q,, with |Cy(w)| minimal. Since H has no
regular orbit on €2, there exists 1 # h € Cy(w). Let O be a t-pseudo natural
orbit for H, on Q,,1 with ¢ > 1 and A an H,-invariant partition on O such
that the action of H,, on A is isomorphic to the action of H,, on subsets of size
t in Q,, where 2 <t < |Q,|/2. Note that deg (h) > k > 2|H| and thus there
exists a € Q, \ w? with a" # a. Moreover, |Q,| —t > |H| and there exists
a subset U of size t in Q, with a € U, a" ¢ U and w® NU = {w}. Then
Ny(U) < Cgx(w) and h & Ng(U). Let D be the element of A corresponding to
U and pick 0 € D. Then Cy(0) < Ng(D) = Ng(U) < Cg(w), a contradiction
to the minimality of |C'ir(w)|. This completes the proof of (a).
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(b) Note that every Kegel cover for a countable group contains a Kegel
sequence. Hence (al) implies (b1l) and we may assume that (a2) holds. Let
G = {gn|n > 1}. Pick K; € Kr({g1)), and inductively K, € KCr((Hgk,,_,,gn)),
n > 2. Then {K,|n > 1} is a Kegel sequence for G which fulfills (b2).

Remark 3.5 Let H be a group and N < H with H/N = Alt(n). Then every
regular orbit for H is pseudo natural with respect to N. It follows that under the
assumption ofb, (b2) is always true if regular is replaced by pseudo natural.

4 Maximal Subgroups

Theorem 4.1 Let G be a countable, non-finitary LFS-group and H a finite
subgroup of G. Then H is contained in a maximal subgroup of G. In particular,
G has mazimal subgroups.

Proof: The idea is to find a Kegel sequence {(H,, M,)|n > 1} of G and
maximal subgroups T, of H,, such that H < Ty, T;, < Ty,41 and H,, £ Tpy1.
Given such a sequence put 7' = (J;2; T},. Then T is a maximal subgroup of
G. Indeed, since T;, is maximal in H,, and H,, £ T;,4+1, H, N Ty41 = T5,. Thus
H,NT =T, and in particular, T # G. Let x € G\ T. Then for all n with
x € Hy, H, = (z,T,,) < {z,T) and so G = (z,T).

By [3.3|and [3.5] we can find a Kegel sequence K = {K,|n > 1} of G such that
one of the following holds (with X,, = Xk, for X = H, M, V, F and Q).

(1) There exists a prime p such that K = K, and for alln > 1, H,, /O, (H,)
is the central product of perfect central extension of groups in C(p).
(2) For all n < m, H, has a pseudo natural orbit on Q,, with respect to M,,.

Suppose first that (1) holds. By [3.1]we can find n such that dimp, V;, > |H|.
Without loss n = 1. Then H does not act irreducible on V; and so there exists
a proper H-submodule U in Vi. Put T3 = Ny, (U). Then T; is a maximal
subgroup of H; containing H. Moreover, by the structure of Hyi, Op(T1) #
O,(H1). Inductively, we will find a maximal subgroup 7,41 of H,41 such that
Tn < Tn+1,Hn g Tn+1 and Op(TnJrl) # Op(HnJrl). Since Op(Tn) 7& Op(Hn),
there exists a chief factor for H,, on V,11 not centralized by O,(T},), so T, is
not irreducible on this chief factor and there exists a T),-submodule U,, in V,,41
wich is not normalized by H,. Put T),;1 = Npg,,(Uy,). Then T4 has all the
desired properties and |, T}, is a maximal subgroup of G containing H.

Suppose next that (2) holds. By [3.1] we may assume that for all n, [, 41| >
2|H,| and |Q] > 2|H|. Thus H normalizes a proper subset I'g in €y with
ITo| < |921]/2. Let Ty = Ng,(To). Then T; is a maximal subgroup of H;
which contains H and does not act transitively on ;. Inductively we will find
a maximal subgroup T}, 41 of H, 1 such that T,, < T, 11, H, £ Thy1 and Th41
does not act transitively on €,41. Let O be a pseudo natural orbit for H,
on Q,4+1 with respect to M,. Since T}, does not act transitively on ,, T,
does not act transitively on O. Hence there exists a T,-orbit I',, of O such
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that H,, does not normalize I',,. Then |I',| < |T,,| < |Hyp| < |[Qn41]/2. Put
Tot1 = Np,,,(In). Then T, q has all the desired properties and |J;”; T, is a
maximal subgroup of G containing H.

5 An abstract characterization of finitary, lo-
cally finite, simple

Lemma 5.1 Let p be a prime, G a group and S a Sylow p-subgroup of G.

(a) If G = PSL,(p*), then der(S) = [log, n].

(b) If G = Sym(n), then der(S) = [log, n].

(c) If G = Alt(n) and p = 2 then der(S) = [logy n], if n > 6, and der(S) =
[logon] — 1, if n < 5.

Proof: For (a) and (b) see 4], IIT 16.3, 15.3] while the proof for (c) is similar
to the one for (b) in [4].

Lemma 5.2 Let p be a prime, F a finite field with char F = p, V a finite
dimensional vector space over F, P a p-subgroup of GLrp(V), k> 1 and x € P
with degy, (z) > |P|2%. Then there exists a p-subgroup P* of GLr (V') containing
P with der((z"")) > k.

Proof: Pick a chain 0 =V <V} <V, < ... <V, of FFP-submodules in V of
maximal length with respect to dimV;/V;_1 < |P| and [V;/Vi_1,2] # 0 for all
1 < i < 1. Supppose that [ < 2. Then dimV; < I|P| < 2¥|P| < degy (z) and
so [V,x] £ Vi. Pick v € V with [v,z] € V; and put Vj1; = F(vF) + Vj. Then
dim Vi41/V; < |P| and [Vj41/V}, 2] # 0, a contradiction to the maximal length
of the chain.

Thus | > 2F. Pick z; € V;\V;_1 with [2;, 2] € V;_; and put y; = [z;,z]. Then
there exists a basis v1,v9,... of V such that P normalizes the corresponding
flag and such that there exists indices i; < iz < ... <y with v;,, , = y; and
vi,; = ;. Let P* be the full stabilizer of this flag and let S be the largest
subgroup of GLg(V') with the following properties:

S centralizes all v; with @ & {i1,... 19},
S centralises x; + y; for all j and
S stabilizes the flag 0 < Fay < F(xy,29) < ... < Flay,...,2).

Put X = F(x1,...,2;). Then S normalizes X, S is isomorphic to a Sylow p-
subgroup of GLp(X) and [y;, S| = [2;, 5] < F(z1,...,2j-1) < F(v1,.. ., Viy,_,))-
It follows that S < P*. Since 2§ = z; + y;, S centralizes X* . Thus (S, S%)
normalizes X7, [S, z]Cp«(X7®) = STCp~(X7) and [S, z] acts as a full Sylow p-
subgroup of GLp(X) on X*. By der([S, x]) > [logy1]. Since I > 2%, we
conclude that der((z")) > der([S, z]) > k.

Lemma 5.3 Let p be a prime, Q a finite set, G = Alt(Q) or Sym(QY), P a
p-subgroup of G, k > 1 and v € P with degg(x) > 2w(P)|P|p*. Then there
exists a p-subgroup P* of G containing P with der((z¥")) > k.
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Proof: By there exists a subset I' of Q and a partition A of I' in subset
of size 2p* such that P normalizes A and x acts non-trivially on A. Let D € A
with D* # D. Pick S < G such that S centralizes Q \ D, S acts as a full
Sylow p-subgroup of Alt(D) on D and Np(D) normalizes S. Put P* = (S, P).
Then P* is a p-group and [S,z] acts as a full Sylow p-subgroup of Alt(D¥)
on DfE Since |D| = 2p* we conclude from [5 . c that der([S,z]) > k. Thus
der((zF")) > k.

Lemma 5.4 Let G = SLp(V), F a finite field and V a finite dimensional
vector space over F. Let p be a prime with char F # p and put d = d(p). If P is
p-subgroup of G, x € P, k > 1, andy € {(x¥)D with degy (y) > 2w(P)|P|*p*+1,
then there exists a p-subgroup P* of G with P < P* and der((z”")) > k.

Proof: Let T be a Sylow p-subgroup of GLp(V) with P < T and e > 1
minimal with pd dividing |F|® — 1. Then there exists an FT-submodule U in
V with dimV/U < e and a system of imprimivity A for T on U such that
dim D = e for all D € A. Note that e < p. Let D € A with (2¥) < Np(D).
Since Nz (D)/Cr(D) has derived length at most d and y € ()@ we conclude
that [D,y] = 0. Hence

2w (P)| PP < degy (y) < el A\ Ca((a”)] < plA\ Ca((z”))].

On the other hand, |A\ Ca({z))| < |P|dega(z) and therefore dega (z) >

w(P)|Plp*. Let H = Ng(A) and H = H/Cg(A). Then H = Sym(A)

or Alt(A) and by there exists a p-subgroup P* of H with P < P* and

der((zF") > k. Let P* be a Sylow p—subup of the inverse image of P* in H
4

with P < P*. Then der((z¥")) > k and [5.4] is proved.

Theorem 5.5 Let G be a LFS-group, p a prime, and x € G with |z| a power
of p. If G has no Kegel cover with all of its factors in AU L(p), put d = d(p)
and assume that (x5)(@ £ 1 for some p-subgroup S of G with x € S. Then G
is finitary if and only if (xT) is solvable for all p-subgroups T of G with x € T.

Proof: If G is finitary, then by [6, Prop 1], (27 is solvable for all p-subgroups
T of G with z € T. So suppose that G is not finitary. If G has a Kegel cover
with all of its factors in AU L(p), put S = (x) and d = 0. By [3.2] there exists a
Kegel cover K for G with K = AU L and, if d =0, K =AU L(p). We will first
prove :

(*) If P is a finite p-subgroup of G with S < P, then there exists a finite
p-subgroup P* of G with P < P* and der((z" >) < der({z"")).

Let k = der({(x"))+1 and pick 1 # y € 3.1|there exists K € KC(P)
with pdegg (y) > 2w(P)|P*p ktl, Thus ﬁ h and [5 - provide a p-subgroup
P* of K with P < P* and der((z") > k. Let P* be a Sylow p-subgroup of
the inverse image of P* in Hy Wlth P < P*. Then der((zf >) >k and (*) is

proved.
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Let Py = S and inductively define Py = P. Put T' = Ufil P;. Then T is
a p-subgroup of G such that (z) is not solvable.

6 Countable LFS- groups which are not abso-
lutely simple

In this chaper we will construct countable LF'S-groups G which possess a as-
cending series

My < My Mz <.

of proper subgroups in G such that G = U;’il M;. The main step in the con-
struction is the following lemma:

Lemma 6.1 Let H be a perfect finite group. Then there exists a perfect finite
group H* containing H and function X which associates to each subgroup A of
H a subgroup X (A) of H* such that

(a) H< (") for all1 # h e H.

(b) X(A)NH = A for all A< H.

(¢) If A< B < H, then A< B if and only if X(A) < X(B).

(d) X(H) < (X(H)").

Proof: Let S be any finite simple group such that there exists monomorphism
«a: H — S and let T be any non trivial finite perfect group. Furthermore, let
S and T act transitively and non-trivally on the sets I and J, respectively. We
assume that 0 € I and {0,1} C J. Let K = H);S. Fori € I let 8; : H— K be
the canonical isomorphism between H and the i’th component of the base group
of K and let 8 be the canonical monomorphism from S to K. Let H* = K{;T
and for j € J let 7; : K — H* be the canonical isomorphism between K
and the j'th component of the base group of H*. Define p : H — H* by
p(h) = v0(Bo(h))y1(B(a(h))). Then p is clearly a monomorphism. For A < H
let X (A) be the set of elements in the base group of H* such that the projection
onto the 0'th-component is contained in vo([];c; Bi(A)). Identifying H with
p(H) we see immediately that (b) and (c) hold. Now (X(H)™") is the base
group of H* and so (d) holds. Moreover, (a) is readily verified.

We are now able to construct locally finite simple groups which are not
absolutely simple. Let G; be any nontrivial perfect finite group, and inductively
let Gi+1 = G} and X; any function from the subgroups of G; to the subgroups
of G;41 which fulfills Let G = |J;2, Gi. Then by (a) in G is a locally
finite simple group.

Put M1 =1, My 2 = Gy and inductively, My41,; = X,,(M,, ), for 1 < j <
2n, Myi1oni1 = (Xn(Gp)9+1) and My 412012 = Gpi1. Then by induction
and M, i <My ;1 foralll <i<2n+1and My4q,; NG, = M, for all
1 < 1 < 2n. Put Mi = U’I’LZ% Mn,i~ Then Gn < Mgn, Gn N Mi = Mn,’i for all
1< 2n, M; < Mi+1 and G = U(;il M;.
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