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1 Introduction

Let K be a skew field, R a ring, G a ”classical” group defined over K, Z a ”long root”
group contained in G and N a ”natural” KG-module, where N is allowed to be finite or
infinite dimensional over K. Further, put L = CG([N,Z]) and let V be an RG-module such
that [V, Z, L] = 0 and V = [V,G]. The main goal of this paper is to prove that any such V
has to be of the form M ⊗K N , for some (R,K)-module M with G acting trivally on M .
This is achieved in Theorems A and B. We became interested in this problem through the
work of J.I.Hall and R.E.Phillips [Ha1], [Ha2], [Ph] on groups of finitary transformations.
They classified certain classes of such groups. In Theorem C we are able to classify the
corresponding modules. Theorems A,B and C partially generalize similar results found in
[Cu],[LP], [Ha3], and [Tf].

In order to state exactly what we mean with ”classical” groups, ”natural ”module” and
”long root” groups we now introduce some notations and definitions which will be used
throughout the paper:

K is a skew field.
R is a ring.
G is a group.
An (R,K)-module M is an abelian group , which is a left R-module and a right vector

space over K such that (rm)k = r(mk) for all r ∈ R, k ∈ K and m ∈ M . M is called
unitary if R has a unit 1 and 1m = m for all minM .

An RG-module M is an abelian group , which is a left R-module and a right ZG-module
such that (rm)k = r(mk) for all r ∈ R, k ∈ K and m ∈M .

N is a left vector space over K. Ñ is a subspace of the dual space N∗ of N with
CN (Ñ) = 0, i.e for every 0 6= n ∈ N there exists ñ ∈ Ñ such that nñ 6= 0. (Note that Ñ is
a right vector space over K and so a left vector space over Kop, the opposite skew field of
K.)
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For n ∈ N and n∗ ∈ N∗ define t(ñ, n) ∈EndK(N) by

v.t(n∗, n) = v + vn∗ · n

For a subspace X of N and a subspace X̃ of Ñ the following subgroup of GLK(N) was
introduced in [CH]

T (X̃,X) = 〈t(x̃, x)|x ∈ X, x̃ ∈ X̃, xx̃ = 0〉.

For the convenience of the reader we will recall the definition of a pseudo quadratic
space (see [Ti] and [Gr] for basic properties of pseudo quadratic spaces).

(N, q, f) is a (σ, s)-pseudo quadratic space provided that

(PQ1) σ is an anti-automorphism of K and 0 6= s ∈ K such that for all x ∈ K

xσ
2

= xs = s−1xs and sσ = s−1.

(PQ2) f is a trace-valued (σ, s)-hermitian form on N , i.e

f : N ×N → K is biadditive,

f(µv, λw) = µf(v, w)λσ,

f(v, w) = sf(w, v)σ,

f(v, v) ∈ K+,

for all µ, λ ∈ K and v, w ∈ N . Here K+ is the additive subgroup of K defined by
K+ = {k + skσ|k ∈ K}.

(PQ3) q is a map from N to K = K/K− so that

q(v, w) = q(v) + q(w) + f(v, w),

q(λv) = λ ∗ q(v).

Here K− = {k − skσ|k ∈ K} and k ∗ λ = kλkσ.

(N, q, f) is called a quadratic space if σ = idK and s = 1, that is if K− = 0. Note that
in this case K is necessarily commutative.

We mention some other special cases of pseudo-quadratic spaces. If σ = idK , s = −1 and
char K 6= 2, then K = K− and so q = 0. Hence q is redundant and (N, f) is a symplectic
space. The symplectic spaces over fields of even characteristic are also included, since they
can be written as N/N⊥, where N is an appropriate quadratic space. More generally, any
vector space with a trace-valued (σ, s)-hermitian form can be written as N/N⊥, where N is
an appropriate pseudo-quadratic space (see [Ti]). Finally, the case |σ| = 2 and s = 1 covers
the unitary spaces over fields.
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O = O(N, q, f) is the group of invertible K-linear transformations g of N such that
f(v, w) = f(vg, wg) and q(v) = q(vg) for all v, w ∈ N .

If U is a subset of N , then U⊥ = {v ∈ N |f(v, u) = 0 for all u ∈ U} . A subspace U of
N is called singular provided that the restrictions of q and f to U vanish.

rad N = {n ∈ N⊥|q(n) = 0.
N is called degenerate if rad N 6= 0 and defective if N⊥ 6= 0.
S(i) is the set of i-dimensional singular subspaces of N .

The Witt index of (N, q, f) is the maximal dimension of a singular subspace in N . Note
that the Witt index can be zero, any positive integer or infinite.

For U ∈ S(i) let PU = NO(U), QU = CO(U⊥/U) ∩ CO(U), TU = CO(U⊥) and ZU =
CO(N/U). LetΣ be a set of subgroups of G. We will consider the following hypotheses:

Hypothesis (A) 1. Σ is the set of all {T (X̃,X) where X and X̃ are 1-dimensional
subspaces of N and Ñ , respectively, with XX̃ = 0; and G = 〈Σ〉 = T (Ñ ,N)

2. N is at least 3-dimensional over K.

Hypothesis (B) 1. Σ = {TU |U ∈ S(1)} and G = 〈Σ〉 where (N, q, f) is a non-
degenerate pseudo-quadratic space with Witt index at least two.

2. If (N, q, f) is quadratic, then (N, q, f) defective.

Hypothesis (C) Σ = {ZU |U ∈ S(2)} and G = 〈Σ〉, where (N, q, f) is a nondegenerate
quadratic space with Witt index at least two and dimN ≥ 5.

Hypothesis (C*) Hypothesis (C) holds and if char K = 2, then dimN/N⊥ ≥ 6, and if
|K| = 2 and dimN = 6, then (N, q, f) has Witt index 2.

We define the following graph on Σ. Let Z1, Z2 ∈ Σ. Then Z1 and Z2 are adjacent if,
in case (A), 〈Z1, Z2〉 ∼= SL2(K), or if, in case (B) or (C), [N,Z1] ∩ [N,Z2]⊥ = 0.

For convenience we view N under Hypothesis (A) as a singular pseudo quadratic space.
In particular, O = GLK(N) and QX = CGLK(N)(X) ∩ CGLK(N)(N/X).

We are now able to state our main results:

Theorem A Suppose that (G,Σ) fulfills Hypothesis (A),(B) or (C*) from above. Let Z ∈ Σ
and put L = CG([N,Z]). Let V be an RG-module with [V, Z, L] = 0. Then there exist an
(R,K)-module M and an R-submodule C of M ⊗K N with [C,G] = 0 such that one of the
following holds:

1. [V,G] and (M ⊗K N)/C are isomorphic as RG-modules.

2. G fulfills (B), |K| = 4, σ 6= id, dimN = 4 and [V,G]/CV (G) and M ⊗K N are
isomorphic as RG-modules.
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Theorem B Assume that (G,Σ) fulfills Hypothesis (A). Put L0 = CG([N,Z])∩CG([Ñ , Z])
and let V0 be an RG-module with [V0, Z, L0] = 0. Then there exists an (R,K)-module M
and an (R,Kop)-module M̃ such that

[V0, G] is isomorphic to M ⊗K N ⊕ M̃ ⊗Kop Ñ as RG-modules.

Theorem C Remark: Need Witt index assumption ? Suppose that (G,Σ) fulfills
Hypthesis (A), (B) or (C) and that N/N⊥ is infinite dimensional over K. Let R be a divison
ring and V be a non-trivial irreducible finitary RG-module. Then one of the following holds:

1. There exists an irreducible (R,K)-module M , which is finitely generated over R so
that V is isomorphic to M ⊗K N as RG-module.

2. Hypothesis (B) holds and there exists an irreducible (R,Kop)-module M̃ , which is
finitely generated over R, so that V is isomorphic to M̃ ⊗Kop Ñ as RG-module.

Some remarks on Hypothesis’ (B) and (C). In case (B) the quadratic space are assumed
to be defective to ensure that TU 6= 1 for U ∈ S(1) (see 3.2). Note that Hypothesis (C) can
be used to characterize the natural module of G for non-defective quadratic spaces. The
assumption that N contains 2-dimensional singular subspaces is needed in the proof of 4.8.
We do not know whether Theorem A holds also in the case where the maximal singular
subspaces are 1-dimensional.

Under hypothesis (C) the assumption that (N, q, f) is quadratic rather then pseudo-
quadratic is redundant. Indeed, if N is pseudo-quadratic but not quadratic, it is easy
to see that (G,V ) fulfills the hypothesis (B). (C*) is needed since, if char K = 2 and
dimN/N⊥ < 6, or if |K| = 2, dimN = 6 and N has Witt index three, the half-spin module
for G fullfills Hypothesis (C) but not the conclusion of Theorem A.

We conclude this introduction with some remarks on the structure of M ⊗K N , where
N = N/N⊥. Since M is a right vector space over K, we can decompose M into a direct
sum of 1-dimensional K-subspaces. This leads to a ZG-decomposition of M ⊗K N into
a direct sum of copies of N . But as an RG-module M ⊗K N might still be irreducible
or indecomposable. For example, if R = M = K, φ is an embedding of K into itself
and M is regarded as an R-module by multiplication from the left and as a K-module by
multiplication from the right by φ(k), then M ⊗K N is an irreducible RG-module. Now if
φ is not onto, then M ⊗K N is not irreducible as a ZG-module. In particular, M ⊗K N is
not isomorphic to N . For another example, let K be a field with a non-trivial derivation δ,
( that is a map δ : K → K with δ(kl) = δ(k)l + kδ(l)), R = K and M = R2, viewed as left

vector space over R. Embed K into HomR(M) by mapping k to
(

k 0
δ(k) k

)
. Since δ is

a derivation this map is indeed a homomorphism. Via this homomorphism M becomes an
(R,K)-module and M ⊗K N is as an RG-module a non-split extension of N by N .

On the otherhand, if R = K and K is an algebraic Galois extension of its ground field,
M ⊗K N is as an RG-module the direct sum of modules algebraically conjugate to N .
Indeed, this follows easily from 2.1 below.
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2 Preliminaries
Preliminaries
KMLLemma 2.1 Let K,L be such that L is isomorphic to a subfield of K and M an inde-

composable unitary (K,L)-module.If L is algebraic and Galois over its ground field, then
there exist a Z-isomorphims α : M → K and a field monomorphism σ : L → K such that
α(kml) = kα(m)lσ for all k ∈ K,m ∈M, l ∈ L.

Proof: Let Q be the ground field of L and σ the isomorphism from Q to the ground
field of K. View M as a left vector space over K. Since M is unitary, each q ∈ Q acts as
scalar multiplication by qσ on M . Let l ∈ L and f the minimal polynomial of l over Q.
Then fσ(l) = 0 as an element of EndK(M). Since L : Q is Galois, f splits over L and has
no double roots. Since K contains a subfield isomorphic to L, fσ splits over K and has no
double roots. Thus as a left vector space over K, M decomposes into the direct sum of the
eigenspaces for l on M . Since L is commutative, L normalizes each of the eigenspaces. But
M is indecomposable as a (K,L)-module and so l acts as a scalar lσ ∈ K on M . Since this
is true for each l ∈ L, L normalizes all K-subspaces in M and M is 1-dimensional over K.
The lemma is now readily verified.

BwB
Lemma 2.2 Let S be a group, T a subgroup of S, B = NS(T ), ω ∈ S\B, W an RS-module
and Y an RB-submodule of CW (T ). Suppose that each of the following holds:

(i) S = B ∪BωT and S = 〈TS〉,

(ii) [W,T, T ] = 0,

(iii) W = 〈Y S〉.

Then each of the following is true:

1. W = [W,S] + CW (S) = Y + Y ω + CW (S),

2. CW (T ) = Y + CW (S) = Y + [W,T ] = [W,T ] + CW (S),

3. Put W = W/CW (S). Then C
W

(S) = 0.

4. If T = [T,H] and [Y,H] = 0, for some H ≤ B with H = Hω, then [W,S] = 0 and
W = Y .

Proof: Put Y0 = Y + [W,T ]. By the assumptions T centralizes Y0. By (a)

TS = TB ∪ TBωT = T ∪ TωT

and hence

S = 〈TS〉 = 〈T, Tω〉.

This implies
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W = 〈Y S〉 = Y + [W,S] = Y + [W,T ] + [W,Tω] = Y0 + [W,T ]ω.

Similarly W = 〈(Y ω)S〉 = Y0ω + [W,T ]. Form the last two statements and the modular
laws

Y0 + C[W,T ]ω(T ) = CW (T ) = CY0ω(T ) + [W,T ].

Moreover, CY0ω(T ) ≤ CW (〈T, Tω〉) = CW (S) and CY0ω(T ) ≤ CW (S) ∩ Y0ω ≤ Y0. So

CW (T ) = Y0 = [W,T ] + CW (S).

Since W = 〈Y S〉 we conclude from (a) that

W = Y + Y ωT = Y + Y ω + [Y ω, T ] = Y ω + CW (T ).

Therefore
CW (Tω) = Y ω + (CW (T ) ∩ CW (Tω)) = Y ω + CW (S)

and

W = Y + CW (Tω) = CW (Tω) + CW (T ) = Y ω + CW (S) + Y =

= [W,T ] + [W,T ]ω + CW (S) = [W,S] + CW (S).

This completes the proof of (1) and(2).
Let U be the inverse image of C

W
(S) in W . By (2) applied to W we have U ≤ Y [W,T ].

Thus U ≤ Y [W,T ]CW (S) ≤ CW (T ) and [U, T ] = 0. Since S = 〈TS〉 we get U ≤ CW (S)
and U = 0, proving (3).

To prove (4) note that H centralizes W = Y + Y w+CW (S) and hence H ≤ CS(W ). It
follows that

T = [T,H] ≤ CS(W ) and S = 〈TS〉 ≤ CS(W ).

So [W,S] = 0 and the lemma is proved.
SL2K

Lemma 2.3 Suppose that (G,Σ) fulfills (A)(1) with dimN = 2. Let Z ∈ Σ, L = CG[N,Z]
and V an RG modules with [V, Z, L] = 0, V = [V,G] and CV (G) = 0, then there exists an
(R,K)-module M such that V ∼= M ⊗K N .

Proof: We start with defining some elements of G = SL2(K). Let

a(k) =
(

1 0
k 1

)
, k ∈ K; h(λ) =

(
λ 0
0 λ−1

)
, 0 6= λ ∈ K; ω =

(
0 1
−1 0

)
,

Z = {a(k)|k ∈ K} and H = {
(

1 0
0 λ

)
|λ ∈ (K \ {0}′}.
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Note that Z as defined above is indeed an element of Σ. We reader might verify that
the following relation holds for all t ∈ K#. ( But the relation will follows from some
computation below)

(∗) ω−1a(−t)ω = a(t−1)h(t)ωa(t−1).

Since both a(t−1) and a(t)ω are in G, this implies h(t)ω ∈ G. Hence h(t)h(r−1) ∈ G for
all t, r ∈ K∗ and we conclude that all h(t) and ω ∈ G. Hence also h(t)h(r)h(r−1t−1 ∈ H
and so H ≤ G. In particular, ZH ≤ L (actually L=ZH, but we will not need that). Put
M = [V, Z]. Since G = 〈Z,Zω〉 we get

V = [V,G] = M +Mω and M ∩Mw ≤ CV (G) = 0.

Hence,

V = M ⊕Mω.

Let D = HomR(M,M) and M2(D) the ring of 2×2-matrices with coefficients in D. We

define a ring isomorphism from M2(D) to HomR(V, V ) by sending
(
a b
c d

)
to φ where

φ is defined by (u + v)φ = ua + vω−1c + ubω + vω−1dω for u ∈ M and v ∈ Mω. Direct
computations show that this indeed defines a ring isomorphism. Furthermore we see that:

ω ↔
(

0 1
ε 0

)
, ε2 = 1,

h(λ)↔
(
y(λ) 0

0 z(λ)

)
,

a(k)↔
(

1 0
x(a) 1

)
.

a(k)a(l) = a(k + l) implies

(1) x(k) + x(l) = x(k + l).

Since ω2 ∈ Z(G) we have εy(λ) = y(λ)ε. From ω−1h(λ)ω = h(λ−1) we get

(2) z(λ) = y(λ−1).

Since h(λ)h(κ) ≡ h(λκ) (mod H) and [M,H] = 0, we have h(λ)h(κ) ≡ h(λκ) (mod
CG(M)). Thus

(3) y(λ)y(κ) = y(λκ).
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Next we make another use of (*). a(t−1)h(t)ωa(t−1) corresponds to(
1 0

x(t−1) 1

)(
y(t) 0

0 y(t−1)

)(
0 1
ε 0

)(
1 0

x(t−1) 1

)
=
(

y(t) 0
x(t−1)y(t) y(t−1)

)(
x(t−1) 1
ε 0

)
=
(

y(t)x(t−1) y(t)
x(t−1)y(t)x(t−1) + y(t−1)ε x(t−1)y(t)

)
and ω−1a(−t)ω to(

0 ε
1 0

)(
1 0

x(t−1) 1

)(
0 1
ε 0

)
=
(
εx(−t) ε

1 0

)(
0 1
ε 0

)

=
(

1 εx(−t)
0 1

)
So y(t)x(t−1) = x(t−1)y(t) = 1, x(t−1) = y(t)−1 = y(t−1) and hence

(4) x(t) = y(t), for all 0 6= t ∈ K.

Moreover, y(t) = εx(−t) = −εx(t) = −εy(t) and since y(1) = 1,

(5) ε = −1.

By (1),(3) and (4) x : K → D is a ring homomorphism. In particular, M is an (R,K)-
module. Moreover,

ω ↔
(

0 1
−1 0

)
=
(

x(0) x(1)
x(−1) x(0)

)
,

a(k)↔
(

1 0
x(a) 1

)
=
(
x(1) x(0)
x(a) x(1)

)
.

Since G = 〈Z,Zω〉 = 〈Z, ω〉 we conclude(
a b
c d

)
↔
(
x(a) x(b)
x(c) x(d)

)
for all

(
a b
c d

)
∈ G.

On the other hand cleary M ⊗K K ∼= M as R-modules. Since N ∼= K ⊕ K as K-
modules, we conclude that M ⊗K N ∼= M ⊕M as R-modules. Let e1 = (1, 0) ∈ K ⊕K,
e2 = (0, 1) ∈ K ⊕Ka nd m1,m2 ∈M . Direct computations now show that

m1 +m2ω → m1 ⊗ e1 +m2 ⊗ e2

defines an RG isomorphism from V to M ⊗K N .
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CV G = 0
Lemma 2.4 Suppose that (G,Σ) fulfills part 1 of Hypothesis (A) with dimN = 2. Let
Z ∈ Σ, L = CG[N,Z] and V an RG modules with [V, Z, L] = 0 and V = [V,G]. If
charK 6= 2 or K is not commutative, then CV (G) = 0.

Proof: Put V = V/CV (G). Since V = [V,G], V = [V, Z]G and we can apply 2.2(c).
Thus C

V
(G) = 0 and by 2.3 V ∼= M ⊗K N , for some (R,K)-module M .

Assume first that char K 6= 2 amd let t = −id ∈ Z(G). Then V = [V , t] and C
V

(t) = 0.
It follows that V = [V, t]⊕ CV (G) and V = [V,G] = [V, t], and so CV (G) = 0.

Next assume that char K = 2 and K is not commutative. We claim that 2v = v+v = 0
for all v ∈ V . Indeed let X = {v ∈ V |2v = 0}. Since 2V = 0, [2V,G] = 0. Moreover,
V/X ∼= 2V and so V = [V,G] ≤ X, proving the claim.

Let a(t), ω and Z be as in 2.3. By 2.2b, CV (Z) = [V, Z] + CV (G). Pick λ ∈ (K \ 0)′

with λ 6= 1 and put h =
(
λ 0
0 1

)
. Note that h ∈ G. Then a(t)h = a(tλ) and since

[N,h] ≤ [N,Z], [V, h] ≤ CV (Z). So for v ∈ V and t ∈ K we get

[v, a(t)]h = [vh, a(t)h] = [v + [v, h], a(tλ)] = [v, a(tλ)].

Hence

[v, a(t(1 + λ))] = [v, a(t)a(tλ)] = [v, a(t)] + [v, a(tλ)] =

= [v, a(t)] + [v, a(t)]h = [v, a(t), h],

where we used 2V = 0 in the last equality. So [v, a(t(l + 1))] ∈ [V, Z, h]. Since every s ∈ K
is of the form t(λ + 1) for some t we conclude that [V, Z] ≤ [V, Z, h]. Now C[V̄ ,Z](h) = 0
and so [V, Z, h]∩CV (G) = 0. Thus [V, Z] ∩CV (G) = 0. On the other hand by 2.2b applied
to Y = [V, Z], CV (G) ≤ [V, Z] and so CV (G) = 0.

Remark: we should make some remark on the existence of universial central
extensions

defUE
Definition 2.5 Let X be an ZG-module. Then a ZG-module X̂ is called a universial central
ZG-extension of M provided that

(a) There exists a XG-homomorphism φ : X̂ → X with [kerφ,G] = 0.
(b) Whenever W is a ZG-module and ψ : W → X is a ZG-homomorphism with

[kerψ,G] = 0, then there exist a unique ZG-homomorphism α : X̂ →W with φ = ψα.
UE

Lemma 2.6 Let X be a KG-module and (X̂, φ) a universial central ZG-extension of X.
(a) X̂ is a KG-module and φ is KG-linear.
(b) Let M be an right vector space over K. Then M ⊗K X̂ is a universial central

ZG-extension of M ⊗K X.
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Proof: (a) Let 0 6= k ∈ K. Then by part (b) of 2.5 applied W = X̂ and ψ = k−1φ,
there exists a ZG-homomorphism αk : M̂ → M̂ with φ = k−1φαk, i.e such that kφ = φαk.
By the uniqueness of αk, α1 = id,αk+l = αk + αl and αkl = αkαl. Defining kx̂ = αk(x̂), X̂
becomes a vector space over K and (a) is proved.

(b) Let W be a ZG-module and ψ : W → M ⊗ X be any ZG-homomorphism with
[kerψ,G] = 0. For 0 6= m ∈ M , let Wm be the inverse image of m ⊗ X under ψ. The
map x → m ⊗ x is a ZG from X to m ⊗ X and we can define a ZG-homomorphism
ψm : Wm → X by ψ(w) = m⊗ ψm(w). By the universial property of X̂ (2.5b) there exists
a ZG homomorphism αm : X̂ → Wm with φ = ψmαm. Also put α0 = 0. We obtain a map
α : M×X̂ →W, (m,x)→ αm(x). Clearly, α is additive in the second coordinate and by the
uniqueness of αm it is easy to check that α is additive in the first coordinate and is balanced (
that is α(m, kx) = α(mk, x) for all m ∈M,x ∈ X, k ∈ K.) Thus by the universial property
of a tensor product α can be extended to a Z-homomorphism α : M⊗K X̂ →W . Moreover,
one readily verifies that α commmutes with G and φ = ψα.

rUE
Remark 2.7 Let C be a class of ZG-modules. For X in C define a universial central C
extension of X as in 2.5 except that X̂ and W are assumed to be in C. Then (with the same
proof) 2.6 is still true for universial central C-extensions provided that M ⊗K X̂ is in C.

3 Some properties of pseudo quadratic spaces
f(n, n)

Lemma 3.1 Let (N, q, f) be a pseudo quadratic space and put K+ = {k ∈ K|k+ skσ = 0}.
Then

(a) K− ≤ K+.

(b) For all a ∈ N and q ∈ q(a), f(a, a) = q + sqσ.

(c) Suppose that K− = K+. Then q(a) is uniquely determine by f(a, a). In particular,
f(a, a) = 0 implies q(a) = 0 and rad N = N⊥.

(d) Suppose that charK 6= 2 or that σ acts non trivially on Z(K). Then K− = K+.

Proof: (a) (k − skσ)σ = kσ − kσ2
sσ = kσ − s−1kss−1 = kσ − s−1k and so k − skσ =

−s(k − skσ)σ, k − skσ ∈ K+ and K− ≤ K+.
(b) Let k, l ∈ K. Then on the one hand

q(ka+ la) = q(ka) + q(la) + f(ka, la) = k ∗ q(a) + l ∗ q(a) + kf(a, a)lσ

= kqkσ + lqlbσ + kf(a, a)lσ

and on the other hand

q(ka+ la) = q((k + l)a) = (k + l) ∗ q(a) = kqkσ + kqlσ + lqkσ + lqlσ.
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Thus
kf(a, a)lσ = kqlσ + lqkσ.

But lqkσ − ksqσlσ = lqkσ − s(lqkσ)σ ∈ K− and so

kf(a, a)lσ = k(q + sqσ)lσ

for all k, l ∈ K. If K 6= 0 this cleary implies f(a, a) = q+ sqσ. If K = 0, then K = K− and
so by (a) K = K+. Thus K+ = 0 and q + sqσ = 0. Moreover, by (PQ1), f is trace valued
and so also f(a, a) = 0.

(c) By (b) q(a) is unique up to an element K+. Thus (c) holds
(d) If char K 6= 2, put λ = 1 and if char K = 2 and σ acts non trivially on Z(K) pick

λ ∈ Z(K) with λ 6= λσ. Then in any case, λ ∈ Z(K) and λ+λσ 6= 0. Put µ = λ(λ+λσ)−1.
Since λ ∈ Z(K), λσ

2
= λ. Thus µ + µσ = 1 and µσ ∈ Z(K). Let k ∈ K with k = −skσ.

Then

kµ− s(kµ)σ = kµ− sµσkσ = kµ− skσµσ = k(µ+ µσ) = k.

Hence k ∈ K−, K+ ≤ K− and (d) follows from (a).
transvection

Lemma 3.2 Let N be a left vector space over K, 0 6= n ∈ N and 0 6= φ ∈ N∗.

(a) t(φ, n) is invertible if and only if nφ 6= −1, in which case the inverse is given by
t(φ,−(1 + nφ)−1n).

(b) Let (q, f) be a (σ, s)-pseudo quadratic form on N . Then t(φ, n) ∈ O(V, q, f) if and
only if one of the following holds:

(b1) n ∈ rad N and nφ 6= −1.

(b2) n 6∈ N⊥ and there exists 0 6= k ∈ K with −k−1 ∈ q(n) and vφ = f(v, n)k for all
v ∈ N .

Proof: Put t = t(n∗, n).
(a) If nφ = −1 then n.t = 0 and t is not invertible. If nφ 6= −1 it is trivial to verify that

t(φ,−(1 + nφ)−1.n) is an inverse for t.
(b) Recall that t ∈ O(N, q, f) if and only if f(at, bt) = f(a, b) and q(at) = q(a) for all

a, b ∈ N . Since f(at, bt) = f(a+ aφ.n, b+ bφ.n) weget

(1) f(at, bt) = f(a, b) + aφ · f(n, b) + f(a, n).(bφ)σ + aφ · f(n, n) · (bφ)σ.

and since q(at) = q(aφ.n+ a)

(2) q(at) = aφ ∗ q(n) + aφ.f(n, a) + q(a).

In particular, if n ∈ radN and t is invertible, t ∈ O(N, q, f). Thus we may assume that
n 6∈ radN .
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Assume now that t ∈ O(V, q, f). Suppose that n ∈ N⊥. Since n 6∈ rad V , q(n) 6= 0.
Hence by (2) aφ = 0 for all a ∈ N , a contradiction.

Thus n 6∈ N⊥. Let b ∈ kerφ. Then by (1) aφ.f(n, b) = 0 for all a in N and so b ∈ N⊥
and kerφ ≤ n⊥. Since both kerφ and n⊥ are hyperplanes in N , kerφ = n⊥. Therefore
there exists k ∈ K with

(3) aφ = f(a, n)k for all a ∈ N.

Since f(n, a) = sf(a, n)σ, (2) now implies f(a, n)k ∗ q(n) + f(a, n)ksf(a, n)σ = 0. Thus

f(a, n) ∗ (k ∗ q(n)) + f(a, n) ∗ ks = 0

Hence k ∗ q(n) = −ks and q(n) = k−1 ∗ ks = −sk−σ. Now k−1 − sk−σ ∈ K− and so
k−1 = sk−σ. Thus q(n) = −k−1 and (b2) holds in this case.

Suppose next that t fulfils (b2). Reading the above calculations backwards we see that
q(a) = q(at) for all a ∈ N . Put q = −k−1. By assumption q ∈ q(n) and so by 3.1
f(n, n) = q+sqσ. Using (1) it is now readily verified that f(at, bt) = f(a, b) for all a, b ∈ N .
It remains to show that t is invertible. Otherwise by (a), −1 = nφ = f(n, n)k and so
q = k−1 = f(n, n). Thus q = f(n, n) = q + sqσ, sqσ = 0 and q = 0, a contradiction to the
definition of q.

We denote the element in O(V, q, f) of form t(φ, n) as in 3.2b2 by t(k, n), that is

v.t(k, n) = v + f(v, n)k · n where n ∈ N \N⊥, k ∈ K#,−k−1 ∈ q(n), v ∈ N

t(k, n) is called a pseudo-transvection with axis Kn. We remark that for any given n ∈
N \ radN , there exists a pseudo-transvection with axis Kn, unless n is a singular vector in
a quadratic space.

transitive
Lemma 3.3 Let (N, q, f) be a non-degenerate pseudo-quadratic space such that S(1) 6=Ø.

(a) N = 〈S(1)〉.

(b) Let i be a positive integer with S(i) 6=Ø and U ∈ S(i). Then QU acts transitively on
the set of all U0 ∈ S(i) with U0 ∩ U⊥ = 0.

Proof: (a) Let M = 〈S(1)〉 and suppose N 6= M . Let n ∈ N \ M . Then n is not
singular and so there exists a pseudo-transvection t in O(N, q, f) with axis Kn. Since t
normalizes M and n 6∈M , [M, t] ≤M ∩Kn = 0 and so n is perpendicular to M . It follows
that M ∪M⊥ = N , M⊥ = N , and M ≤ N⊥. Since M is generated by singular vectors,
M ≤ radN = 0, a contradiction.

(b) Let U1, U2 ∈ S(i) with U⊥ ∩ Uk = 0, k = 1, 2. As N is non degenerate, N ∩ U = 0
and so dimN/U⊥ = i. Thus N = U⊥ + Uk. Let x1, x2, . . . , xi be a basis for U over K and
for k = 1, 2 let y1(k), y2(k), . . . , yi(k) be the basis for Uk with f(xj , yl(k) = δjl. Note that
U⊥ = U ⊕ (U + Uk)⊥. Hence for every x ∈ (U + Uk)⊥ there exists a unique y ∈ (U + U2)⊥

with x+ U = y + U , and the map x→ y is an isometry. Extend this map to h ∈ GLK(N)
such that xjh = xj and yj(1)h = yj(2). Then it is easy to see that h is an isometry, h ∈ QU
and U1h = U2.
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parabolics
Lemma 3.4 Let (N, q, f) be a nondegenerate pseudo quadratic space, i a positive integer
and U ∈ calS(i). Then

(a) PU/QU ∼= GLK(U)×O(U⊥/U, q, f).

(b) QU/TU ∼= HomK(U⊥/U⊥⊥, U) ∼= HomK(N/U⊥, Uperp/U⊥⊥.

(c) TU/ZU ∼= HomK(N/U⊥, N⊥)

(d) QU/ZU ∼= HomK(N/U⊥, U⊥/U)

(e) ZU is isomorphic to the additive group of all i× i-matrices M with MT = −sMσ and
Mjj ∈ K− for all 1 ≤ j ≤ i.

(f) TU is isomorphic to the additive group o fall i× i-matrices M with MT = −sMσ and
Mjj +K− ∈ q(N⊥) for all 1 ≤ j ≤ i.

(g) Z(QU ) = TU (unless i = 1 and K− = 0, in which case QU is abelian)

(h) Q′U = ZU (unless QU = TU , that is U⊥ = U⊥⊥)

Proof: It follows easily from 3.3a and induction that there exists a singular subspace E
in N with N = U⊥ ⊕ E.

Put X = (U ⊕ E)⊥. Since U is finite dimensional and U ∩ N⊥ = 0, N = U ⊕ X ⊕ E
and U⊥⊥ = U ⊕N⊥.

(a) By 3.3b and a Frattini argument, PU = NPU (E)QU . Since NPU (E) normalizes
X, NPU (E) ∩ QU = 1 and it suffices to show that NPU (E) ∼= GLK(U) × O(X, q, f). Let
g ∈ GLk(U) and h ∈ O(X, q, f). It is an easy exercise to show that there exists unique
ĝ ∈ GLK(E) with f(ug, eĝ) = f(u, e) for all u ∈ U, e ∈ E. Moreover, there exists a unique
t ∈ GLK(N) which acts as g on U , as ĝ on E and as h on X. Clearly, t ∈ O and so (a)
holds.

(b) Let α ∈ HomK(X,U) with N⊥α = 0. Put Xα = {x + x.α|x ∈ X} and note that
U⊥ = U ⊕ Xα, Moreover, X⊥α = U ⊕ N⊥ ⊕ Eα for some i-dimensional singular subspace
Eα. As in 3.3b, there exists t ∈ O such that t centralizes U and xt = x+ xα for all x ∈ X.
Clearly t ∈ QU and so the map

QU → HomK(X/N⊥, U)

q → (x+N⊥ → [x, q])

is onto. Its kernel is obviously TU and so the first equality in (b) holds. The second is just
the dual version of the first.

Let β ∈ HomK(N,N⊥) with U⊥β = 0 and dimNβ = 1. Then clearly (kerβ)⊥ =
Ku + N⊥ for some 0 6= u ∈ U . Let e ∈ N with f(e, u) = 1 and put r = eβ. Then
0 6= r ∈ N⊥, q(r) 6= 0 and so there exists 0 6= λ ∈ K with −λ−1 ∈ q(r). Pick µ ∈ K with
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µσ = λ−1 and put n = r+ µ · e. Since e is singular and perpendicular to r, q(n) = q(e) and
so we obtain the pseudo-transvection t(λ, n) ∈ O. Moreover,

(1) [e, t(λ, n)] = f(e, n)λ · n = µσλ · (r + µu) = r + µ · u ≡ rmodU.

Note that U⊥⊥ = U ⊕ N⊥ and [N, t] ∈ U⊥⊥ for all t ∈ TU = CO(U⊥). Consider the
homomorphism ρ;

TU → HomK(N/U⊥, U⊥⊥/U)

t→ (x+ U⊥ → [x, t] + U)

Clearly ker ρ = ZU . Let β̂ the the compostion of β with the natural isomorphism N⊥ →
U⊥⊥/U . Then by (1), ρ maps t(λ, n) onto β̂. As the holds for all β’s,ρ is onto and (c) holds.

(d) Cosider the map
QU → HomK(N/U⊥, U⊥/U)

t→ (x+ U⊥ → [x, t] + U)

By (b) and (c) this map is onto. Its kernel is ZU and so (d) holds.
(e,f) Let u1, u2, . . . , ui a basis for U and pick e1, e2, . . . ei ∈ E with f(ul, ej) = δlj . Let

z ∈ GLk(N) with [N, z] ≤ U⊥⊥ and [U⊥, z] = 0. Define a i × i matrix M = (mkl) and
rk ∈ N⊥ by [ek, z] =

∑i
l=1mklul + rk. Then z is uniquely determined by M and (rk). We

need to find necessary and sufficient conditions on M and (rk) for z to be in O. So we
compute

f(ejz, ekz) = f(ej +
i∑
l=1

mjlul, ek +
i∑
l=1

mklul) =

= f(mjkuk, ek) + f(ej ,mkjuk) = mjk + smσ
kj

and

q(ekz) = q(ek +
i∑
l=1

mklul + rk) = f(mkkuk, ek) + q(rk) = mkk + q(rk).

Thus z ∈ O if and only if MT = −sMσ and mkk +K− ∈ −q(rk) for all 1 ≤ k ≤ i. Note
that qN⊥ is injective. Hence for any M with MT = −sMσ and mkk + K− ∈ q(N⊥) there
exists unique rk ∈ N⊥ with mkk + K− ∈ q(rk). Thus (f) holds. Moreover, z ∈ TU if and
only if in addition rk = 0. Thus also (e) holds.

(g,h) By definition of QU , [N,QU ] ≤ U⊥ and [U⊥, QU ] ≤ U . Thus [N,QU , QU ] ≤ U
and the three subgroup lemma implies [N,Q′U ] ≤ U . Thus Q′U ≤ ZU . Note that [N,TU ] ≤
U⊥⊥ = U+ rad N . Thus [N,TU , QU ] = 0 and [N,QU , TU ] = 0. Hence [QU , TU , N ] = 0 and
TU ≤ Z(QU ). So to prove (g) and (h) we need to show Z(QU ) ≤ TU and ZU ≤ Q′U .
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Let a, b ∈ QU . We wish to compute [a, b]. For this put ai = [ei, a] and bi = [ei, b].
Then ai, bi ∈ U⊥. Let x ∈ U⊥. Then [x, a] ≤ U and so 0 = f(x, ei) = f(x.a, ei.a) =
f(x+ [x, a], ei + ai) = f(x, ai) + f([x, a], ei]. Hence

−[x, a] =
i∑

k=1

f(x, ak)uk.

A similar formula holds for b. Furthermore, [ek, a−1] = −ak + rk and [ek, b−1] = −bk + sk
for some rk, sk ∈ U⊥⊥. Also [x, a−1] = −[x, a] and so

(ek.[a, b] = ek.a
−1b−1ab = (ek − ak + rk).b−1ab

= ek − bk + sk − ak −
i∑

j=1

f(ak, bj)uj + rk).ab

Using (ek − ak + rk).a = ek we get

ek.[a, b] = (ek − bk +
i∑

j=1

f(bk, aj)uj −
i∑

j=1

f(ak, bj)uj + sk).b

= ek +
i∑

j=1

f(bk, aj)uj −
i∑

j=1

f(ak, bj)uj .

Put B = (f(ak, bj)). Then [a, b] ∈ ZU corresponds to the matrix −B + sBTσ.
Suppose there exists a ∈ Z(QU ) \ TU . Then ak 6≤ U⊥⊥ for some k. Let 1 ≤ k, j ≤ i and

0 6= λ ∈ K. By (b) we can choose b such that bl ∈ U⊥⊥ if l 6= j and f(ak, bj) = λ. Since
a ∈ Z(QU ) we get B = sBTσ. Since all but the j’th colummns of B are zero and the k − j
spot of B is λ and so not zero, we conclude that j = k and λ = sλσ. Since j and λ are
arbitrary we conclude that i = 1 and K− = 0. Also if i = 1 and K− = 0, [a, b] = 1 for any
a, b ∈ QU and so (g) holds.

To complete the proof for (h) we may assume that U⊥ 6= U⊥⊥. Fix 1 ≤ k, j ≤ i and
λ ∈ K and choose a, b ∈ QU such that al ∈ U⊥⊥ if l 6= k, bl ∈ U⊥⊥ if l 6= j and f(ak, bj) = λ.
Then B is zero everywhere except in the k − j spot, where it is λ. Clearly every matrix M
with MT = −sMσ and mll ∈ K− for all l is the sum of matices of the form −B + BTσ,
1 ≤ kj ≤ i, λ ∈ K and so (h) is proved.

transitive2
Lemma 3.5 Let (N, q, f) be a non-degenerate pseudo-quadratic space with S(1) 6= ∅.

(a) Suppose that (N, q, f) is not a 2-dimensional quadratic space.

(a1) 〈QU |U ∈ S(1)〉 acts transitively on S(1).

(a2) If x, y ∈ S(1) with x 6= y ,then S(1) 6= (S(1) ∩ x⊥) ∪ (S(1) ∩ y⊥).
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(a3) Define x, y ∈ S(1) to be adjacent if x 6⊥ y. Then the corresponding graph on S(1)
is connected.

(b) 〈TU |U ∈ S(1)〉 acts transitively on S(1) unless N is a non defective quadratic space.

Proof: (a1) Let U1, U2 ∈ S(1) with U1 6= U2.
Suppose first that U1 ⊥ U2. Pick U3 ∈ S(1) with U3 ≤ U1 + U2 and U1 6= U3 6= U2. By

3.4a, QU3 induces a full unipotent subgroup on U1 + U2 and so U2 and U1 are conjugate
under QU3 .

Suppose next that U1 and U2 are not perpendicular. Assume that S(2) 6= ∅. Then U1 is
contained in a 2-dimensional singular subspace space W . Put U3 = W ∩U⊥2 . Then U1 and
U2 are both conjugate to U3 under 〈QU |U ∈ S(1). Thus we may assume that S(2) = ∅.

Suppose that there exists U3 ∈ S(1) with U1 6= U3 6= U2. Then by 3.3b U1 and U2 are
conjugate under QU3 and we may assume that no such U3 exists. Thus S(1) = {U1, U2},
QU1 centralizes U2 and so QU1 = 1. By 3.4 this implies U = U⊥ and K− = 0, i.e. N is a
2-dimensional quadratic space.

(a2) Let x, y ∈ S(1) and suppose that S(1) = (S(1) ∩ x⊥) ∪ (S(1) ∩ y⊥).
If S(2) = ∅, then S(1) = (S(1) ∩ x⊥) ∪ (S(1) ∩ y⊥) = {x, y}. As seen in the proof of(a)

this implies that (N, q, f) is a 2-dimensional quadratic space,.
So we may assume that S(2) 6= ∅. By 3.3a (a) applied to y⊥/y, y⊥ is generated by its

singular subspaces. Thus there exists z ∈ S(1)∩y⊥ with z 6= y and z 6⊥ x. Let w ∈ S(1)∩z⊥
with w 6∈ y⊥. Then w ∈ x⊥. So w+ z ∈ S(2), (w+ z) ∩ x⊥ = w and (w+ z) ∩ y⊥ = z. But
w + z contains more than two 1-dimensional subspaces contradicting the assumption that
S(1) = (S(1) ∩ x⊥) ∪ (S(1) ∩ y⊥).

(a3) By (a2) we can choose z ∈ S(1) with z 6⊥ x and z 6⊥ y. Thus x is adjacent to z and
z is adjacent to y, proving (a3).

(b) Without loss N is not a non defective quadratic space. Let U1, U2 ∈ S(1) with
U1 6= U2. We need to show that U1 and U2 are conjugate under 〈TU |U ∈ S(1)〉. By (a3) we
may assume that U1 and U2 are not perpendicular. Put R = U1 +U2 +N⊥. Then R itself is
a non degenerate, pseudo quadratic space which is not non-defective quadratic. So we may
assume N = R. By (a1) U1 and U2 are conjugated under 〈QU |U ∈ S(1)〉. Let U ∈ S(1).
As N/N⊥ is 2-dimensional, U⊥ = U +N⊥ = U⊥⊥ and so TU = QU . Thus (b) holds.

TU
Lemma 3.6 Let (N, q, f) be a nondegenerate pseudo quadratic space and 0 6= U a finite
dimensional singular subspace of N . Then

(a) TU = 〈TU ∩QE |E ∈ S(1) ∩ U〉

(b) QU = 〈QU ∩QE |E ∈ S(1) ∩ E〉

(c) TU = 〈TE |E ∈ S(1) ∩ E〉, unless N is a non-defective quadratic space.

(d) Let 0 6= E ≤ U . Then CQU (E⊥/E) = QU ∩QE and QU/QU ∩QE ∼= CE⊥/E(U⊥/U)∩
CE⊥/E(U/E)
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Proof: Let u1, . . . , ui be a basis for U . We use the correspondence between TU and
certain i× i matrices established in the proof of 3.4f without further reference.

(a) Let 1 ≤ j ≤ i. Then TU ∩QKuj corresponds to the set of matrices with mkl = 0 for
all 1 ≤ k, l ≤ i with k 6= j 6= l. This implies (a).

(b) Let E ∈ S(1)∩U and α ∈ HomK(U⊥, U) with U⊥⊥α = 0 and U⊥α ≤ E. Extend α
to an element β of HomK(E⊥, E). By 3.4b, there exists q ∈ QE with β = q − 1|E⊥ . Then
clearly q ∈ QU ∩QE and α = q − 1|U⊥ . Thus

QU = 〈QU ∩QE |E ∈ S(1) ∩ U〉TU
and so (b) follows from (a).

(c) Without loss N is not a non-defective quadratic space. Thus K− 6= 0 or N⊥ 6= 0.
Thus there exists 0 6= ρ ∈ K with ρ̄ ∈ q(N⊥). Since f vanishes on N⊥, 3.1 implies
ρ+ sρσ = 0. Let λ be an arbitrary element in K and put µ = −λρ−1sλσ. Then

µ = −λρ−1(sρσ)ρ−σλσ = (λρ−1)ρ((λρ−1)σ

and so µ = (λρ−1) ∗ ρ ∈ q(N⊥).
Note that (

0 −sλσ
λ 0

)
=
(
ρ 0
0 0

)
+
(

0 0
0 µ

)
+
(
−ρ −sλσ
λ µ

)
and −λρ−1 · (−ρ,−sλσ) = (λ,−µ). In particular all three matrices on the right side of the
above equation correspond to transvections and it is easy to see that (c) holds.

(d) Let F be a complement to E⊥ and X = (E+F )⊥. Then clearly CO(X)(X ∩U⊥/X ∩
U) ∩ CO(X)(U ∩X) ∼= CQU (E + F ) and (d) is easily verified.

connected1
Lemma 3.7 Let (N, q, f) be a nondegenerate pseudo quadratic space such that S(2) 6= ∅,
and define x, y ∈ S(2) to be adjacent if x ∩ y⊥ = 0. Then the corresponding graph on S(2)
is connected, unless (N, q, f) is a four dimensional quadratic space.

Proof: Without loss (N, q, f) is not a four dimensional quadratic space. Let x 6= y ∈
S(2).

Consider first the case that U = x ∩ y 6= 0. By 3.5a2 applied to U⊥/U in place of N
there exists z ∈ S(2) with U ≤ z, z 6⊥ x and z 6⊥ y. Let F ∈ S(1) ∩ z with F 6= U and
choose S ∈ S(1) ∩ F⊥ with S 6⊥ U . Then F + S ∈ S(2).

We claim that F + S is adjacent to x. Suppose not. Then T = x∩ (F + S)⊥ 6= 0. Since
U 6⊥ S, U 6≤ T . Hence Z = F + U ⊥ T + U = x and x ⊥ z, contradicting our choice of z.
Similarly F + S is adjacent to y and so x and y lie in the same connected component.

Next consider the case with x∩ y = 0. Let P1 ∈ x∩S(1) and P2 ≤ y∩P⊥ ∩S(1). Then
P1 + P2 ∈ S(2). By the previous paragraph x, P1 + P2 and y lie in the same connected
component and the lemma is proved.

connected2
Lemma 3.8 Suppose (G,Σ) fulfills Hypothesis’ (A),(B) or (C). Then graph on Σ is con-
nected.
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Proof: If (B) holds this is 3.5a3 and if (C) holds this is 3.7. So suppose (A) holds.
Let Z1 and Z2 be in Σ. Then it is readily verified that there exists Z3 in Σ such that Z3 is
adjacent to Z1 and Z2.

QU inG
Lemma 3.9 Suppose (G,Σ) fulfills Hypothesis (B) or (C).

(a) Let 0 6= U be a finite dimensional singular subspace of N . Then QU ≤ G.

(2) Let U ∈ S(1). Then CG(U) acts transitively on the 1-dimensional singular subspaces
of U⊥/U .

Proof: (a) Let U ∈ S(1). Pick x ∈ N \ U⊥. By 3.4 the map

α : QU/ZU → U⊥/U, qZU → [x, q] + U

is an isomorphism. For V ∈ S(2) with U ≤ V define Z(U, V ) = ZV ∩ QU . Then under
the isomorphism in 3.4e ( where we choose the first basis vector for V iin U), Z(U, V )
corresponds to the 2× 2 matrices M with MT = −T σ, m11 ∈ K− and m22 = 0. It follows
that α(Z(U, V )/ZU ) = V/U . By 3.3a, U⊥/U is spanned by its 1-dimensional singular
subspaces and so

QU = 〈Z(U, V )|U ≤ V ∈ S(2)〉.

We claim that ZV ≤ G. Indeed, in case (C) ZV ∈ Σ and in case (B) 3.6(c) yields ZV ≤
TV ≤ 〈TE |E ∈ S(1)〉 ≤ 〈Σ〉. In particular, Z(U, V ) ≤ G and so QU ≤ G. Thus (a) follows
from 3.6b.

(b) Suppose first that Hypothesis (B) holds. Then by 3.5b applied to U⊥/U , 〈TE |E ≤
S ∩ U⊥〉 acts transitively on the singular 1-spaces of U⊥/U .

Under Hypothesis (C) U⊥/U is at least three dimensional and so by 3.5a1 (applied to
U⊥/U) and 3.6d we get that 〈QV |U ≤ V ∈ S(2)〉 acts transitively on the singular 1-spaces
of U⊥/U . Thus (b) holds also in this case.

Qtransitive
Lemma 3.10 Suppose that (G,Σ) fulfills Hypothesis (A).

(a) Let 0 6= x ∈ N and X = Kx. Then QX ∩ G = {t(φ, x)|φ ∈ Ñ , xφ = 0}, and CG(x)
acts transitively on Q#

X ∩G. Moreover, QX ∩G acts transitively on the 1-dimensional
subspaces of Ñ outside of CÑ (x).

(b) Let 0 6= φ ∈ Ñ and Φ = Kφ. Then QX ∩ G = {t(φ, x)|x ∈ kerφ} and CG(x) acts
transitively on Q#

Φ ∩ G. Moreover, QΦ ∩ G acts transitively on the 1-dimensional
subspaces of N outside of kerφ.

(c) Let Z ∈ Σ and Q be the stabilizer in G of the series 0 ≤ [N,Z] ≤ CN (Z) ≤ N . Then
Q acts transitively on the set of all Z0 ∈ Σ adjacent to Z.
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Proof: (a) Let 1 6= t ∈ QX ∩ G. The clearly x is a transvection with axis Kx and so
t = t(φ, x) for some φ ∈ N∗ with xφ = 0. Furthermore, φ ∈ [N∗, t] ≤ [N∗, G] ≤ Ñ and so
first part of (a) holds. T (CÑ (x), N) acts transitively on the nonzero vectors of Ñ and so
also on Q#

X ∩ G. Finally, let φ1, φ2 ∈ Ñ with xφ1 = 1 = xφ2. Then φ1.t(φ1 − φ2, x) = φ2
and (a) is proved.

(b) Follows by a dual argument or by observing that T (Ñ ,N) = T (N, Ñ) if we identify
N with its copy in Ñ∗.

(c) Let Z = T (Φ, X) and Zi = T (Φi, Xi) ∈ Σ, i = 1, 2 with Zi adjacent to Z. We have
to show that Z1 and Z2 are conjugate under Q. Since Zi is adjacent to Z, XΦi 6= 0 and
XiΦ 6= 0. Note that QΦ ≤ Q and so by (b) we may assume that X1 = X2. Since XiΦi = 0,
the element of t(φ1 − φ2, x) (found in (a)), conjugates Φ1 to Φ2 and fixes X1 = X2 . This
proves (c).

Q = xCGU
Lemma 3.11 Suppose that (G,Σ) fullfils Hypothesis’ (A),(B) or (C). Let Z ∈ Σ, U a 1-
dimensional subspace of [N,Z] and Q = QU ∩G. Let x ∈ Q\Q′ such that [N, x] is singular.
Then Q = 〈xCG(U)〉, unless dimN/N⊥ = 4 and q(N⊥) 6= K/K−.

Proof: Under Hypothesis (A) this follows directly from 3.10a.
So suppose Hypotesis’ (B) or (C). Let 0 6= y ∈ [N, x] + U/UU and A the subgroup of

U⊥/U generated by y.CG(U). In view of 3.4d,h Q = 〈xCG(U)〉 if and only if A = U⊥/U . By
3.9 it suffices to show that A contains a singular 1-space. Also A spans U⊥/U as a K-space
and so f does not vanish on A. Let z ∈ A\y⊥ and E = [N, x]U . By 3.6d, QE acts as QE/U
on U⊥/U .

Suppose that A ∩ y⊥ 6≤ E + radN/U . Then by 3.4b, E/U ≤ [A ∩ y⊥, QE ] ≤ A and the
lemma holds.

So we may assume that A ∩ y⊥ ≤ E + radN/U . In particular, [z,QE ] ≤ E + radN/U
and so by 3.4b, E⊥ = E + radN . Hence dimN/N⊥ = 4. If q(N⊥) = K/K− then by
3.4f, [z,QE ] + radN + U/U = E + radN/U . Thus A + rad(U⊥/U) = U⊥/U . Hence
[(U ⊥ /U,QE ] ≤ A. If |K| = 2, {0, y} is a singular 1-space and we may assume that
|K| 6= 2. But then [(U⊥/U,QE ] = E + radN/U , and the lemma is proved.

perfect
Lemma 3.12 Suppose that Hypothesis (A), (B) or (C) holds, Then G is perfect.

Proof: Let

4 The structure of [V,G]/[V,G] ∩ CV (G).

Throughout this section (G,Σ) fulfills Hypothesis (A),(B) or (C), Z ∈ Σ, L = CG([N,Z]
and V is an RG-modules with [V, Z, L] = 0. Let Z0 ∈ Σ be adjacent to Z and let U be a
1-dimensional singular subspace of [N,Z]. Put X = 〈Z,Z0〉, and P = CG(U).

o+ 4
Lemma 4.1 Suppose that Hypothesis (C) holds. The there exists g1 ∈ P so that the fol-
lowing holds for X1 = Xg1 and L∗ = LX1.
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(a) [X,X1] = 1 and [N,X] = [N,X1].

(b) X1 nomalizes [N,Z] and L. In particular L∗ is a subgroup of NG([N,Z]).

(c) [N,Z].g1 = U + [N,ZO] ∩ U⊥, [N,Z0].g1 = [N,Z] ∩ [N,Z0].g1 + [N,Z0] ∩ [N,Z0].g1.

Proof: Let U1 be a singular 1-space in [N,Z] different from U . Put U2 = [N,Z0]∩U⊥ and
U3 = [N,Z0] ∩ U⊥1 . Then U + U1 + U2 + U3 = [N,Z] + [N,Z0] = [N,X] is a 4 dimensional
quadratic space ”+”-type. Let E = [N,Z] = U+U1, E0 = [N,Z0] = U2 +U3, E1 = U+U2,
E2 = U1 + U3, Zi = TEi , i = 1, 2 and X1 = 〈Z1, Z2〉. Note that for z ∈ Z and n ∈ N , n.z is
perpendicular to n. Hence [U1, Z1] ≤ U⊥1 ∩ [N,Z1] = U⊥1 ∩ (U + U2) = U . It follows that
Z1 normalizes E and so centralizes Z. By symmetry, also Z2 normalises E and centralizes
Z. So (b) holds. Morover, X1 centralizes Z and (by symmetry) ZO. Thus (a) holds. To
complete the proof of this lemma it now suffices to find g1 ∈ P with Zg1 = Z1 and Zg1

O = Z2,
i.e with E.g1 = E1 and EO.g1 = E2.

By 3.9b there exists g ∈ P with E.g = E1. Since E⊥ ∩E=
0 0, E⊥1 ∩E0.g = 0. Since also

E1 ⊥ ∩E2 = 0 we conclude from 3.3b that E0.gq = E2 for some q ∈ QE1 . Put g1 = gq. As
g1 centralizes E1, we get g1 ∈ P , E.g1 = E1 and EO.g1 = E2.

G = LZ0
Lemma 4.2 G = 〈L,Z0〉 = 〈L,X〉.

Proof: Let Σ0 = Z〈L,Z0〉. By 3.3b, 3.9a and 3.10, ZL0 contains all elements in Σ
adjacent to Z. Further, if Z1 and Z2 are adjacent in Σ, then they are conjugated in
〈Z1, Z2〉. It follows that Σ0 contains the connected component of Σ which contains Z. So
3.8 implies Σ0 = Σ. Since G = 〈Σ〉, G = 〈L,Z0〉.

[W,Z] =
W0Lemma 4.3 Let B = NX(Z) and W0 an R(LB)-submodule of V with [W0, L] = 0. Put

W = 〈W0.X〉. Then
CW (X) ≤ CV (G), [W,Z] + CW (G) = W0 + CW (G) and W = [W,X] + CW (G).

Proof: By 2.2 we have CW (X) ≤ W0 + [W,Z]. Since [V, Z, L] = 0 this implies
[CW (X), L] = 0. By 4.2, 〈L,X〉 = G and so CW (X) ≤ CV (G). The other assertions
now follow from 2.2.

[M,Z] =
M1Lemma 4.4 Let M0 be an RNG(U)-submodule of V with [M0, P ] = 0. Put M1 = M0,

in cases (A) and (B), and M1 = 〈M0.L
∗〉,in case (C). Put M = 〈M0.G〉. Then [M,Z] +

CM (G) = M1 + CM (G).

Proof: Let g ∈ G. If [U.g, Z] = 0, then Z ≤ P g and [M0g, Z] = 0.
If [Ug, Z] 6= 0, we claim that there exists ω ∈ NX(Z) and h ∈ L ∩ CG(Z) (or, in case

(C), h ∈ L∗) with Ug = Uωh. Indeed, in case (A) this follows from 3.10b. In case (B) U.g
and U.ω both are not perpendicular to U and the claim follows from 3.3b. In case (C) we
first choose h1 ∈ L∗ with Ugh1 ⊥ U . Then both U.gh1 and U.ω are perpendicular to U and
neither Ugh1 nor Uω are perpendicular to [N,Z]. Thus by 3.6d and 3.3b (the latter applied
to U⊥/U) we get U.gh1q = U.ω for some q ∈ Q[N,Z]. This proves the claim. In particular,
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[M0.g, Z] = [M0.ωh, Z] = [M0.w, Z]h.

By 4.3 we have
[M0.ω, Z] + CM (G) = M0 + CM (G).

Thus [M0g, Z] + CM (G) = M0h + CM (G) and M0h + CM (G) ≤ [M,Z] + CM (G) ≤
M1 + CM (G). Since L∗ normalises [M,Z] the lemma is established.

CV LG
Lemma 4.5 (a) 〈CV (L).X〉 = [CV (L), X] + CV (G).

(b) 〈CV (L).G〉 = [V,G] + CV (G).

(c) If V = 〈CV (L).G〉, then [V,G] = [V,G,G].

(d) [V,G,G,G] = [V,G,G].

(e) Let D be maximal in V with [V,G,G] = 0, then CV/D(G) = 0.

Proof: (a) follows immediately from 4.3 applied to W0 = CV (L).
(b) By (a) 〈CV (L).G〉 ≤ [V,G] + CV (L). Now [V,G] = 〈[V, Z].G〉 ≤ 〈CV (L).G〉 and (b)

is proved.
(c) follows from (b). (d) from (c) applied to [V,G] in place of V and (e) from (d) applied

the inverse image of CV/D(G) = 0 in V .
V QQ

Lemma 4.6 Suppose that (C) holds. Then
(a) [CV (L), QU , P ] = 0
(b) [V,QU , QU , P ] = 0 and [V,Q,Q] = [V,Q,Z].
(c) [V, Z, L∗] ≤ 〈CV (P )G〉

Proof: Let g ∈ P with [N,Z]g 6⊥ [N,Z]. Then by ?? P = 〈L,Lg〉 and QU = Zg(QU ∩
L). Thus

[V, Z,QU ] ≤ [CV (L), QU ] = [CV (L), Zg] ≤ CV (〈L,Lg〉 ≤ CV (P )

. Thus (a) is proved. Now (b) follows from QU = 〈ZP 〉 and (c) from L∗ = 〈QL∗U 〉L.
V ZL∗

Lemma 4.7 Suppose that (C*) holds and [V, Z, L∗] = 0. Then [V,G] = 0

Proof: By 4.5 we may assume that CV (G) = 0. Let D = [V, Z]. Since G = 〈ZG〉 we
need to show that D = 0. Suppose not.

Assume first that char K 6= 2. Then Z(X) = Z(X1) ≤ L∗. Thus [D,Z(X) = 0 and so
we conclude from 2.3 that [D,X] = 0. By 2.3, D ≤ CV (G) = 0 and we are done in this
case.

Assume next that char K = 2. We may assume without loss that V = 〈DG〉. We will
first prove
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(1) V,QU , QU ] = 0.

Indeed by 4.6, [V,Q,Q] = [V,Q,Z] is centralized by P and by L∗ and so by G.
(2) If N has Witt index at least three, then N is nondefective of dimension 6 and

|K| = 2.
Pick E ∈ calS(2) ∩ [N,Z]⊥ with E ∩ U = 0. Then ZE ≤ P and so [CV (QU ), ZE ]

is centralized by Y = 〈QU , L∗E. Hence if dimN > 6 we conclude from ?? that Y = G
and CV (G) = 0i mplies [CV (QU ), ZE=0. Since [V, Z] ≤ CV (QU ), [V, Z] is centralized by
〈ZPE 〉 and L∗ and so by G. To show that K=2,pick Z2 ∈ P ∩ Σ adjacent to ZE . Put
S = 〈ZE , Z2. Note that NS(ZE) ≤ L∗ and so centalizes D. Suppose that |K| 6= 2. Then
ZE = [ZE , NS(ZE)] and so by 2.2d, S centralise D. But 〈S,L∗〉 = G and (2) holds.

(3) N has Witt index at least three.

Suppose that N has Witt index 2. Since Q[N,Z = (Q[N,Z ∩ QU )(Q[N,Z] ∩ QU )g for
ginL∗ \ NG(U) we conclude from (1) that [CV (QU ), Q[N,Z], Q[N,Z]] = 0 and we can apply
2.2 to 〈DP 〉. Since L cenralizes D and since by ?? QEQU = [QE , L]QU we conclude from
2.2d that 〈QPU 〉 centralizes [D]. So again [D,G] = 0.

CV PG
Lemma 4.8 Suppose that (A),(B) or (C*) holds. Then 〈CV (P )G〉 = [V,G] + CV (G).

Proof: If (A) or (B) holds this is 4.5. So suppose that (C*) holds. Then by the
same reference, CV (P ) ≤ CV (L) ≤ [V,G] + CV (G). Moreover, by 4.6c and 4.7 (applied to
V/〈CV (P )G〉), [V,G] ≤ 〈CV (P )G〉.

For the case (B) we need to define a few more subgroups of G. Let U1 ∈ (2) with
U ≤ U1. Let U2 ∈ S(2) with U1 ∩ U⊥2 = 0 and put F = U + (U2 ∩ U⊥. Define X̃ =
CO((U1+U2))∩NO(U1)∩NO(U2), Z∗ = CX̃(F ), and X∗ = 〈Z∗X̃〉. Note thatX∗ ∼= SL2(K)
and Z∗ is a maximal unipotent subgroup of X∗. Moreover, Z∗ ≤ ZF ≤ QF and so by 3.9
both Z∗ and X∗ are contained in G.

V Z ∗ Z∗
Lemma 4.9 Suppose that (B) holds.

(a) [V, TF , CG(F )) = 0. Inparticular, [V, Z∗, Z∗] = 0.
(b) G = 〈X∗, CG(F )〉.
(c) 4.3 still holdsif X, Z and L are replaced by X∗, Z∗ and CG(F ), respectively.

Proof: By 3.6, TF = 〈TE |E ∈ S(1) ∩ F 〉. Futhermore, CG(F ) ≤ CG(E) ≤ CG([V, TE ]
for all E in S(1) ∩ F . Thus (a) holds.

(b) G0 = 〈X∗, CG(F )〉 and Λ = FG0 ⊆ S(2). Since FX∗ contains elements adjacent
to F (with respect to the graph defined in 3.7 )3.3b implies that Λ containes all elements
in calS(2) adjacent to F . Since G0 acts transitive on Λ, Λ is a connected component of
calS(2) and so by 3.7 Λ = calS(2). Since TF ≤ G0 and G = 〈Σ〉, G = G0.

(c) Using (a) and (b) the proof for 4.3 goes through.
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main
Theorem 4.10 Suppose that V = 〈CV (P )G〉. Then there an (R,K)-module M such that
V/VV (G) ∼= M ⊗K N/N⊥ as an RG -module.

Proof: By4.5 we may assume that CV (G) = 0. Let P0 = NG(U). In case (B) define
X∗ and Z∗ as above. In cases (A) and (C) let X∗ = X and Z∗ = Z. Then X∗ ∩ P0 acts
transitively on U# and therefore P0 = (X ∩ P0)P .

Let W = CV (P ) and W1 = 〈WX〉. It is easily checked that X ≤ L,X∗〉 and so
by 4.2, G = 〈L,X∗. Note that by 4.9b Z∗ acts quadratically on W1. By 4.3 and 4.9c
CW1(X∗) ≤ CV (G) = 0, W1 = [W1, X∗] and W = [W1, Z

∗]. Let U1 = 〈UX∗〉. Then
U1 is a natural module for X∗ ∼= SL2(K),U = [U1, Z

∗] and CX∗(U) = P ∩ X∗. Hence
[W,CX∗(U)] = 0 and [W1, Z∗, CX∗(U)] = 0. Therefore we can apply 2.3 to X∗ and W1 and
find an (R,K)-module M such that

(1) W1 ∼= M ⊗K U1 as an RX∗- module.

Let N0 = M⊗K(N/N⊥). We will show that N0 and V are isomorphic as RG- modules.
P0 = (X∗ ∩P0)P and (1) imply that M ⊗K U and W are isomorphic RP0-modules. Let M
be the RG-module induced from the RP0-module W . Let

M̃ = M/〈[M,Z,L]G〉 and M̄ = M̃/CM̃ (G).

By assumption V = 〈WG〉. Furthermore, N0 = 〈M ⊗K G〉 and so by the universial
property of induced modules there exist RG-epimorphisms:

φ1M → V and φ2M → N0.

Since [V, , Z, L] = 0 and [N0, Z, L] = 0 we get that 〈[M,Z,L]〉 ≤ kerφi for i=1,2. Further,
CV (G) = 0 and CN0(G) = 0, the latter being true since N0 as a ZG module is the direct
sum of copies of N/N⊥. Thus φ1 and φ2 induce RG-epimorphism

φ1M → V and φ̄2M → N0.

We now prove that

(2) ker phii ∩ [M,Z] = 0.

For this note first that by 4.4 applied to [M,Z] = 〈WL∗〉, where we identified W with
its canonical image in M . Obviously φi restricted to W is one to one. So if [I, Z] = W , (2)
is proved. Otherwise (C) holds. Recall the definition of X − 1 and g1 at the beginning of
this section.Then

[I, Z] = 〈WL∗〉 = 〈WX1〉〈WX〉g1 = 〈W1〉g1

Now [W1g1, Z
g
1 ] = Wg1 = W and so [W1g1, Z] ∩ kerφi = 0, [kerφi ∩W1g1, Z] = 0 and

kerφi ∩W1g1 ≤ CW1g1(X1) = 0. This proves (2).
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By (2) we get that [kerφi, Z] = 0 and so kerφi ≤ CbarM (G). By 4.5c, CM̄ (G) = 0 and
thus φi is one to one. Hence

V ∼= M ∼= N0 as RG-modules,

Theorem 4.10 is established.

5 Determination of [V,G] ∩ CV (G)

Retain the assumptions and notation from the previous section. This section is entirely
devoted to the proof of

CE
Proposition 5.1 Suppose that V/CV (G) ∼= M ⊗K N/N⊥ for some (R,K)-module M and
that V = [V,G]. Then one of the follwing holds

(a) There exists an R-submodule C ≤ M ⊗ N⊥ such that V ∼= M ⊗K N/C as RG-
modules.

(b) |K| = 4, σ 6= id and dimN = 4.

Proof: Recall the notations introduced in 2.5 and 2.7. Then we are trying to proof
that M ⊗K N is a universial central C extension, where C is the class of RG-modules W
with [W,Z,L] = 0. In view of 2.7 we may assume without loss that V/CV (G) ∼= N/N⊥.
We first prove

(1) There exists an RG-module W and RG-submodules C1 and C2 of CW (G) such
that W/C1 ∼= V ,W/C2 ∼= N and [W,Z,L] = 0.

Let µ be an RG-isomorphism from V/CV (G) onto N/N⊥. Put W = {(v, n)|v ∈ V, n ∈
N,µ(v + CV (G)) = n+N⊥}, Let C1 = {0} ×N⊥ and C2 = CV (G)× {0}. Then Ci is the
kernel of the projection of W onto the i’th coordinate and so W/C1 ∼= V and W/C2 ∼= N .

In view of (1) we may assume that CV (G) has a submodule C such that V/C ∼= N . Pick
x ∈ QU \ TU such that [N, x] is singular. Put V̄ = V/CV (G) and A = [V, P,QU ]. Note that
V̄ ∼= N/N⊥.

(2) CV̄ (x) = CV (x).

Let R be maximal in G with respect to acting trivially on [V̄ , x], CV̄ (x)/[V̄ , x] and
V̄ /CV̄ (x). Then by 3.4b and3.10a, [V̄ , R] = CV̄ (x). Note that [V, x,R, Z]=0. Indeed, if x is
contained in an element of Σ, then this follows from [V, Z, L] = 0 and if not, (B) holds and it
follows from 4.9a. Moreover, [R,Z] = 0 anf the three subgroup lemma implies [V,R, x] = 0.

(3) Asssume that (B) holds and |K| 6= 2, 4. Then [V, Z∗] ∩ CV (G) = 0.

Recall the definitions of X∗, X̃ and Z∗ (see before ??). It is enough to prove that
[V,X∗] ∩ CV (G) = 0. By (2), V = [V,X∗]CV (X∗) since the same statement holds for V̄ in
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plcae of V . Thus if K is not commutative or char K 6= 2 we are done by 2.4 So assume that
K is commutative. Since |K| 6= 2, 4 there exist λµ ∈ K\{0} so that λµ 6= 1 and λ2 = µ−1µσ.
This in turn yields an element 1 6= h ∈ X∗ with [h,X∗] = 1 and acting as λµ on one of the 2-
dimensional singular subspaces of [N,X∗] normalised by X∗. Now [[V,X∗], h]∩CV (G) = 0,
[V,X∗, X∗] ≤ [[V,X∗], h] and since X∗ is perfect [V,X∗] ∩ CV (G) = 0. So (3) is proved.

(4) A ∩ CV (G) = 0, except possibly in the case (B), |K| = 4, dimN = 4 and σ 6= id.

Suppose first that Q = 〈xP 〉. Since [V, P, x, P ] = 0 we get that [V, P,Q] = 〈xP 〉 =
〈[V, P, x]〉 = [V, P, x]. Now by (1), [V, x] ∩ CV (G) = 0 and (4) holds in this case. Suppose
next that the hypothesis of (3) holds. Note that by ??, Q = 〈Z∗P 〉. So replacing x by Z∗ in
the preceeding argument shows that (4) holds also in this case. Now by ?? we have covered
all cases but the one excluded in (4).

(5) If A ∩ CV (G) = 0, then C = 0.

Let v ∈ V \ ([V, P ] + CV (G)). We claim that [v,Q] ∩ (CV (G) + A) ≤ A. Suppose not
and put Ṽ = V/A. Since [Ṽ , Q,Q] = 0, we have [V,Q′] = 0 and [ṽ, Q] = {[ṽ, q]|q ∈ Q]}.
Hence there exists q ∈ Q with [ṽ, q] 6= 0 and [v, q] ∈ CV (G) + A. Reading this equation
modulo C and applying the ”Q′ = T”-statement of ?? we get that q ∈ Q′, a contradiction
to [ṽ, q] 6= 0.

Therefore ([v,Q] + A) ∩ CV (G) = 0. Since P normalizes [v,Q] + A, we conclude that
[v,Q] + A = [V, P, P ] = [V,Q] and [V,Q] ∩ CV (G) = 0. Let g ∈ G with Ug 6≤ U⊥. Then
V = [V,Q]⊕CV (G)⊕Ag. P = (P ∩ P g)Q and [Ag, P ∩ P g] = 0 imply that [V, P ] = [V,Q].
Moreover, [V,Q] = A⊕ [V, P ∩P g] and so V = [V,G] = [V, P ] + [V, P ]g = A⊕ [V, P ∩P g]⊕
Ag. Finally, this direct sum remains a direct sum modulo C and C intersects each of the
summands trivally. This implies that C = 0, proving (5).

Theorem A is now a direct consequence of (4) and (5).

6 Proof of Theorem B
ProofOfTheoremB

ReductionTheorem 6.1 Suppose (G,Σ) fulfills the hypothesis of Theorem B. Let L1 = CG([N,Z]),
L2 = CG([Ñ , Z]), F = [V0, Z], Fi = CF (Li) and Vi = 〈FGi 〉, (i = 1, 2). Then for i = 1, 2
[Vi, Z, Li] = 0 and [V0, G] = W1 +W2.

Proof: Since dimN > 2 we can choose 1-dimensional subspaces U and Ũ of N and
Ñ , respectively, so that Ũ([N,Z]) = 0, Ũ(U) = 0, [Ñ , Z](U) 6= 0 and Ũ 6= [Ñ , Z]. Let
Z0 = T (Ũ , [N,Z]). Then [V0, Z0] is centralized by CG(Ũ) ∩ CG([N,Z]) and, in particular,
by Q := CG(Ũ⊥) ∩ CG()̃. Note that Z centralizesŨ and therefore normalizes Q. Now
[V0, Z0] ≤ CV0(Q) and so

[V0, Z0, Z] ≤ CV0(Q).
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By ?? applied to L1/CL1(CÑ ([N,Z]) in place of G we have 〈L0, Z0〉 = L1. Hence L1 =
〈L0, Q〉 and

[V0, Z0, Z] ≤ CV0(L0) ∩ CV0(Q) ≤ CV0(L1).

Since 〈ZL0
0 〉 is normalized by 〈L0, Z0〉 = L1, we have L1 = 〈ZL0

0 〉 and thus

[V0, 〈ZL0
0 〉, Z] = [V0, L1, Z] ≤ CV0(L1)

By a symmetric argument [V0, L2, Z] ≤ CV0(L2). Furthermore,

[V0, G] = [V0, 〈L1, L2〉] = [V0, L1] + [V0, L2]

and thus It follows that [V0, G] = [V0, G,G] = V1 + V2.
To complete the proof of 6.1 it is enough to show that [Vi, Z] ≤ Fi + CVi(G). A glance

at the proofs of ??, ?? and ?? shows that these lemmas hold with V replaced by Vi and L
replaced by L0. It follows that [Vi, Z] ≤ Fi+CV (G). So [Vi, Z, Li] = 0 and 6.1 is established.

To prove Theorem B we now merely have to apply Theorem A to the modules V1 and
V2 of 6.1. Note here that we can view N as a subspace of the dual space of Ñ and that
then T (̃,N) = T (N, Ñ).

7 Finitary modules for Classical Groups
finitary

Remark: we need to be more precise
Suppose G is one of the groups in the introduction and that N is infinite dimensional

over K. Furthermore, let W be a G-module over the integers such that [W, g] has finite rank
for all g ∈ G. In case (A) let L0 be defined as in Theorem B, otherwise let L0 = L. Then
in any case [Z,L0] = 0. Now it is well-known(?) that L0 has no non-central Z-module of
finite rang. Hence [W, z, L0] = 0, for all z ∈ Z, and so [W,Z,L0] = 0. Therefore we can
apply our main theorems with R the ring of integers to see that [W,G]/[W,G] ∩ CW (G) is
a direct sum of natural modules. Thus Theorem C holds.
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