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1 Introduction

Let K be a skew field, R a ring, G a ”classical” group defined over K, Z a ”long root”
group contained in G and N a "natural” KG-module, where N is allowed to be finite or
infinite dimensional over K. Further, put L = Cg ([N, Z]) and let V' be an RG-module such
that [V, Z, L] =0 and V = [V, G]. The main goal of this paper is to prove that any such V'
has to be of the form M ®@x N , for some (R, K)-module M with G acting trivally on M.
This is achieved in Theorems A and B. We became interested in this problem through the
work of J.I.LHall and R.E.Phillips [Hal], [Ha2], [Ph] on groups of finitary transformations.
They classified certain classes of such groups. In Theorem C we are able to classify the
corresponding modules. Theorems A, B and C' partially generalize similar results found in
[Cu],[LP], [Ha3], and [T{].

In order to state exactly what we mean with ”classical” groups, ”natural ”module” and
”long root” groups we now introduce some notations and definitions which will be used
throughout the paper:

K is a skew field.

R is a ring.

G is a group.

An (R, K)-module M is an abelian group , which is a left R-module and a right vector
space over K such that (rm)k = r(mk) for all r € R,k € K and m € M. M is called
unitary if R has a unit 1 and 1m = m for all minM.

An RG-module M is an abelian group , which is a left R-module and a right ZG-module
such that (rm)k = r(mk) for all r € R,k € K and m € M.

N is a left vector space over K. N is a subspace of the dual space N* of N with
Cn(N) =0, i.e for every 0 # n € N there exists . € N such that ni # 0. (Note that N is

a right vector space over K and so a left vector space over K,,, the opposite skew field of



For n € N and n* € N* define t(n,n) €Endg(N) by

vit(n*,n) =v+ovn*-n
For a subspace X of N and a subspace X of N the following subgroup of GL Kk (N) was
introduced in [CH]
T(X,X) = (t(i,z)|lz € X,i € X,z =0).

For the convenience of the reader we will recall the definition of a pseudo quadratic
space (see [Ti] and [Gr] for basic properties of pseudo quadratic spaces).

(N,q, f) is a (o, s)-pseudo quadratic space provided that

(PQ1) o is an anti-automorphism of K and 0 # s € K such that for all x € K

2 _ —
2% =2 =slzsand s = s}

(PQ2) f is a trace-valued (o, s)-hermitian form on N, i.e
f: N x N — K is biadditive,
[, Aw) = pf (v, w)A7,
f(va w) = sf(w,v)“,
f(va U) € K+7

for all u, A € K and v,w € N. Here K, is the additive subgroup of K defined by
Ky ={k+sk’|k € K}.

(PQ3) ¢ is a map from N to K = K/K_ so that

q(v, w) = q(v) + q(w) + f(v,w),

q(Av) = A xq(v).
Here K_ = {k — sk’|k € K} and k x A = k\k°.

(N,q, f) is called a quadratic space if 0 = idg and s = 1, that is if K_ = 0. Note that
in this case K is necessarily commutative.

We mention some other special cases of pseudo-quadratic spaces. If 0 = idg, s = —1 and
char K # 2, then K = K_ and so ¢ = 0. Hence ¢ is redundant and (N, f) is a symplectic
space. The symplectic spaces over fields of even characteristic are also included, since they
can be written as N/N L where N is an appropriate quadratic space. More generally, any
vector space with a trace-valued (o, s)-hermitian form can be written as N/N+, where N is
an appropriate pseudo-quadratic space (see [Ti]). Finally, the case |o| =2 and s = 1 covers
the unitary spaces over fields.



O = O(N,q, f) is the group of invertible K-linear transformations g of N such that
flv,w) = f(vg,wg) and q(v) = q(vg) for all v,w € N.

If U is a subset of N, then U+ = {v € N|f(v,u) =0 for all u € U} . A subspace U of
N is called singular provided that the restrictions of ¢ and f to U vanish.

rad N = {n € N*|q(n) = 0.

N is called degenerate if rad N # 0 and defective if N+ # 0.

S(1) is the set of i-dimensional singular subspaces of N.

The Witt index of (N, g, f) is the maximal dimension of a singular subspace in N. Note
that the Witt index can be zero, any positive integer or infinite.

For U € 8(i) let Py = No(U), Qu = Co(U+/U)N Co(U), Ty = Co(Ut) and Zy =
Co(N/U). LetX be a set of subgroups of G. We will consider the following hypotheses:

Hypothesis (A) 1. X is the set of all {T()N(N, X) where X and X are 1-dimensional
subspaces of N and N, respectively, with XX =0; and G = () =T(N,N)

2. N is at least 3-dimensional over K.

Hypothesis (B) 1. X = {ITy|U € S(1)} and G = (X) where (N,q, f) is a non-

degenerate pseudo-quadratic space with Witt index at least two.

2. If (N,q, f) is quadratic, then (N,q, f) defective.

Hypothesis (C) ¥ = {Zy|U € S(2)} and G = (X), where (N,q, f) is a nondegenerate
quadratic space with Witt index at least two and dim N > 5.

Hypothesis (C*) Hypothesis (C) holds and if char K = 2, then dim N/N+ > 6, and if
|K| =2 and dim N = 6, then (N,q, f) has Witt indez 2.

We define the following graph on ¥. Let Z1,Zs € ¥. Then Z; and Z» are adjacent if,
in case (A), (Z1,Z2) = SLy(K), or if, in case (B) or (C), [N, Z1] N[N, Za]*+ = 0.

For convenience we view N under Hypothesis (A) as a singular pseudo quadratic space.
In particular, O = GLg(N) and Qx = Cgr,.(n)(X) N Car vy (N/X).

We are now able to state our main results:

Theorem A Suppose that (G, X) fulfills Hypothesis (A),(B) or (C*) from above. Let Z € ¥
and put L = Cg([N, Z]). Let V be an RG-module with [V,Z,L] = 0. Then there exist an
(R, K)-module M and an R-submodule C of M @ N with [C,G] = 0 such that one of the
following holds:

1. [V,G] and (M ®k N)/C are isomorphic as RG-modules.

2. G fulfills (B), |K| = 4, 0 # id, dim N = 4 and [V,G]/Cv(G) and M @k N are

isomorphic as RG-modules.



Theorem B Assume that (G, ) fulfills Hypothesis (A). Put Lo = Ca([N, Z])NCq([N, Z])
and let Vo be an RG-module with [Vo, Z, Lo] = 0. Then there exists an (R, K)-module M
and an (R, Kop)-module M such that

Vo, G] is isomorphic to M @ N & M ®K,p N as RG-modules.

Theorem C Remark: Need Witt index assumption ?  Suppose that (G, %) fulfills
Hypthesis (A), (B) or (C) and that N/N* is infinite dimensional over K. Let R be a divison
ring and V' be a non-trivial irreducible finitary RG-module. Then one of the following holds:

1. There exists an irreducible (R, K)-module M, which is finitely generated over R so
that V' is isomorphic to M Qg N as RG-module.

2. Hypothesis (B) holds and there exists an irreducible (R, K,p)-module M, which s

finitely generated over R, so that V is isomorphic to M ®k,, N as RG-module.

Some remarks on Hypothesis’ (B) and (C). In case (B) the quadratic space are assumed
to be defective to ensure that Ty # 1 for U € S(1) (see 3.2). Note that Hypothesis (C) can
be used to characterize the natural module of G for non-defective quadratic spaces. The
assumption that N contains 2-dimensional singular subspaces is needed in the proof of 4.8.
We do not know whether Theorem A holds also in the case where the maximal singular
subspaces are 1-dimensional.

Under hypothesis (C) the assumption that (N,gq, f) is quadratic rather then pseudo-
quadratic is redundant. Indeed, if N is pseudo-quadratic but not quadratic, it is easy
to see that (G,V) fulfills the hypothesis (B). (C*) is needed since, if char K = 2 and
dim N/N+ < 6, or if |[K| = 2, dim N = 6 and N has Witt index three, the half-spin module
for G fullfills Hypothesis (C) but not the conclusion of Theorem A.

We conclude this introduction with some remarks on the structure of M ®x N, where
N = N/N L. Since M is a right vector space over K, we can decompose M into a direct
sum of 1-dimensional K-subspaces. This leads to a ZG-decomposition of M ®x N into
a direct sum of copies of N. But as an RG-module M ®x N might still be irreducible
or indecomposable. For example, if R = M = K, ¢ is an embedding of K into itself
and M is regarded as an R-module by multiplication from the left and as a K-module by
multiplication from the right by ¢(k), then M ®f N is an irreducible RG-module. Now if
¢ is not onto, then M ®x N is not irreducible as a ZG-module. In particular, M ®@x N is
not isomorphic to N. For another example, let K be a field with a non-trivial derivation 4,
( that is a map § : K — K with §(kl) = §(k)l + kd(l)), R = K and M = R?, viewed as left

ko0 ) Since ¢ is
o(k) k)
a derivation this map is indeed a homomorphism. Via this homomorphism M becomes an
(R, K)-module and M ®f N is as an RG-module a non-split extension of N by N.

On the otherhand, if R = K and K is an algebraic Galois extension of its ground field,
M ®k N is as an RG-module the direct sum of modules algebraically conjugate to N.
Indeed, this follows easily from 2.1 below.

vector space over R. Embed K into Homp(M) by mapping k to <



2 Preliminaries

Lemma 2.1 Let K,L be such that L is isomorphic to a subfield of K and M an inde-
composable unitary (K, L)-module.If L is algebraic and Galois over its ground field, then

there exist a Z-isomorphims o : M — K and a field monomorphism o : L — K such that
a(kml) = ka(m)l® for allk € K,m € M,l € L.

Proof: Let @ be the ground field of I and ¢ the isomorphism from @) to the ground
field of K. View M as a left vector space over K. Since M is unitary, each ¢ € @) acts as
scalar multiplication by ¢ on M. Let [ € L and f the minimal polynomial of [ over Q.
Then f?(1) = 0 as an element of Endg(M). Since L : @ is Galois, f splits over L and has
no double roots. Since K contains a subfield isomorphic to L, f7 splits over K and has no
double roots. Thus as a left vector space over K, M decomposes into the direct sum of the
eigenspaces for [ on M. Since L is commutative, L normalizes each of the eigenspaces. But
M is indecomposable as a (K, L)-module and so [ acts as a scalar [ € K on M. Since this
is true for each [ € L, L normalizes all K-subspaces in M and M is 1-dimensional over K.
The lemma is now readily verified. O

Lemma 2.2 Let S be a group, T a subgroup of S, B = Ng(T), w € S\B, W an RS-module
and Y an RB-submodule of Cy (T). Suppose that each of the following holds:

(i) S = BUBWT and S = (T%),
(i) W, T, 1] =0,
(iil) W = (Y'S).
Then each of the following is true:
L. W=[W,S]+Cw(S) =Y +Yw+ Cw(S),
2. Cw(T) =Y + Cw(S) =Y + [W,T] = [W,T] + Cy(S),
3. Put W =W/Cw(S). Then C(S) = 0.

4. If T = [T,H] and [Y,H] = 0, for some H < B with H = H%, then [W,S] = 0 and
W=Y.

Proof: Put Yy =Y + [W,T]. By the assumptions T centralizes Yy. By (a)
79 =1PuThT =TUTT
and hence
S =(T%) =(T,T%).
This implies

Preliminaries
KML

BwB



W=(YS)=Y +[W,S] =Y + [W,T] + [W,T%] = Yy + [W, T)w.

Similarly W = ((Yw)S) = Yow + [W,T]. Form the last two statements and the modular
laws

Yo + Cwriw(T) = Cw(T) = Cyu(T) + [W, T
Moreover, Cy,,(T) < Cw (T, T¥)) = Cw(S) and Cy,,(T) < Cw(S) N Yow < Yp. So

Cw(T) = Yo = [W, T] + Cw (5).

Since W = (Y'S) we conclude from (a) that

W=Y+YuwI'=Y+Yw+ [Yw,T]|=Yw+ Cw(T).

Therefore
Cw(T?)=Yw+ (Cw(T)NCw(T*)) = Yw + Cw (S)

and

W=Y+Cw(T”)=Cw(T*)+Cw(T) =Yw+Cw(S)+Y =

= W, T]+ [W,Tw 4+ Cw (5) = [W, 5] + Cw ().

This completes the proof of (1) and(2).

Let U be the inverse image of CW(S) in W. By (2) applied to W we have U < Y[W,T].
Thus U < Y[W,T]Cw(S) < Cw/(T) and [U,T] = 0. Since § = (T%) we get U < C(S)
and U = 0, proving (3).

To prove (4) note that H centralizes W =Y + Yw + Cy(S) and hence H < Cg(W). It
follows that

T =[T,H] < Cs(W) and S = (T°) < Cs(W).

So [W, S] = 0 and the lemma is proved. O

SL2K
Lemma 2.3 Suppose that (G,X) fulfills (A)(1) with dim N = 2. Let Z € ¥, L = Cg[N, Z]

and V' an RG modules with [V,Z,L] =0, V = [V,G] and Cy(G) = 0, then there exists an
(R, K)-module M such that V= M @ N.

Proof: We start with defining some elements of G = SLy(K). Let

a(k:)-(li ?),keK;h(A)-(é )\01>,07EA€K;UJ—<_01 é)

Z = {a(k)|k € K} andH:{< (1) A ) A e (K\ {0},

o
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Note that Z as defined above is indeed an element of ¥. We reader might verify that
the following relation holds for all ¢ € K#. ( But the relation will follows from some
computation below)

(%) wla(—t)w = a(t™Hh(t)wa(t™h).
Since both a(t~!) and a(t)* are in G, this implies h(t)w € G. Hence h(t)h(r—!) € G for
all t,7 € K* and we conclude that all h(t) and w € G. Hence also h(t)h(r)h(r~'t=t € H

and so H < G. In particular, ZH < L (actually L=ZH, but we will not need that). Put
M =1V, Z]. Since G = (Z,Z%) we get

V=[V,G]l=M+ Mw and M N Mw < Cy(G) = 0.
Hence,

V=M®&Muwv.

Let D = Homp(M, M) and My(D) the ring of 2 x 2-matrices with coefficients in D. We

define a ring isomorphism from My (D) to Hompg(V, V) by sending < CCL cbl > to ¢ where

¢ is defined by (u +v)¢ = ua + vw e + ubw + vw ldw for u € M and v € Mw. Direct
computations show that this indeed defines a ring isomorphism. Furthermore we see that:

a(k)a(l) = a(k + 1) implies

(1) 2(k) + z(l) = 2(k +1).

Since w? € Z(G) we have ey(A) = y(A)e. From w™ h(A)w = h(A~1) we get
(2) 2(A) =y(A7).

Since h(A)h(k) = h(Ak) (mod H) and [M, H| = 0, we have h(A)h(k) = h(Ax) (mod
Ca(M)). Thus

(3) y(Ny(k) = y(Ar).



Next we make another use of (*). a(t~1)h(t)wa(t~1) corresponds to
Coatn V)0 0t ) (2 0) (o 1)

( w(tl‘lgg?v(t) y(to‘l) ) ( rv(t:) (1) )

< y(t)z(t™?) y(t) >
et Dyt +y(t e x(tHy(t)

and w™ta(—t)w to
()t D D-(76 ) (20)
(o )

Soyt)z(t ) =a(t Hyt) =1, 2t ') =y(t)"! = y(t!) and hence
(4) a(t) =y(t), forall 0 £ t € K.

Moreover, y(t) = ex(—t) = —ex(t) = —ey(t) and since y(1) = 1,

(5) e=—1.

By (1),(3) and (4) « : K — D is a ring homomorphism. In particular, M is an (R, K)-

module. Moreover,
= (50) =05 50

= (L 1) = (2 o0 )

Since G = (Z, Z%) = (Z,w) we conclude
(ea)- (0 )
for all <‘C‘ d)eG.

On the other hand cleary M ®x K =2 M as R-modules. Since N = K ¢ K as K-
modules, we conclude that M @ N = M @& M as R-modules. Let e; = (1,0) € K & K,
ez = (0,1) € K & Ka nd m;,mg € M. Direct computations now show that

b

mi + maow — M1 ®e; + ma & e

defines an RG isomorphism from V to M ®x N O



Lemma 2.4 Suppose that (G, %) fulfills part 1 of Hypothesis (A) with dim N = 2. Let
Z € 3,L = Cg[N,Z] and V an RG modules with [V,Z,L] = 0 and V = [V,G]. If
char K # 2 or K is not commutative, then Cy(G) = 0.

Proof: Put V = V/Cy(G). Since V = [V,G], V = [V, Z]¢ and we can apply 2.2(c).

Thus CV(G) =0and by 2.3V 2 M ®k N, for some (R, K)-module M.

Assume first that char K # 2 amd let t = —id € Z(G). Then V = [V, t] and Cv(t) =0.
It follows that V = [V,t] & Cy(G) and V = [V, G| = [V, t], and so Cy(G) = 0.

Next assume that char K = 2 and K is not commutative. We claim that 2v =v+v =0
for all v € V. Indeed let X = {v € V|2v = 0}. Since 2V = 0, [2V,G] = 0. Moreover,
V/X =22V and so V = [V,G] < X, proving the claim.

Let a(t),w and Z be as in 2.3. By 2.2b, Cy(Z) = [V, Z] + Cy(G). Pick A € (K \ 0)
with A # 1 and put h = < ())\ (1) > Note that h € G. Then a(t)" = a(t\) and since
[N,h] <IN, Z], [V,h] < Cy(Z). So for v € V and t € K we get

[v, a(t)]h = [vh, a(t)"] = [v + [v, h], a(tN)] = [v, a(t))].

Hence

[v,a(t(1+ N))] = [v,a(t)a(tN)] = [v,a(t)] + [v,a(tN)] =
= [v,a(t)] + [v,a(t)]h = [v, a(t), h],

where we used 2V = 0 in the last equality. So [v,a(t(l +1))] € [V, Z, h]. Since every s € K
is of the form (A + 1) for some ¢ we conclude that [V, Z] < [V, Z,h]. Now Cjy »(h) =0
and so [V, Z,h] N Cy(G) = 0. Thus [V, Z] N Cy(G) = 0. On the other hand by 2.2b applied
toY = [V, Z], Cy(G) <[V, Z] and so Cy(G) = 0. O

Remark: we should make some remark on the existence of universial central
extensions

Definition 2.5 Let X be an ZG-module. Then a ZG-module X is called a universial central
7.G-extension of M provided that

(a) There exists a XG-homomorphism ¢ : X — X with [ker ¢, G] = 0.

(b) Whenever W is a ZG-module and i : W — X is a ZG-homomorphism with
[ker 1, G] = 0, then there exist a unique ZG-homomorphism c : X — W with ¢ = Ya.

Lemma 2.6 Let X be a KG-module and (X, ¢) a universial central ZG-extension of X .
(a) X is a KG-module and ¢ is KG-linear.
(b) Let M be an right vector space over K. Then M Qg X is a universial central
Z.G-extension of M Rk X.

CVG =0

defUE

UE



Proof: (a) Let 0 # k € K. Then by part (b) of 2.5 applied W = X and ¢ = k™19,
there exists a ZG-homomorphism «y : M — M with ¢ = k~pay, i.e such that k¢ = pay,.
By the uniqueness of ay, a1 = id,ap1; = o + o and ag; = agy. Defining ki = o (), X
becomes a vector space over K and (a) is proved.

(b) Let W be a ZG-module and v : W — M ® X be any ZG-homomorphism with
[kerv), G] = 0. For 0 # m € M, let W,, be the inverse image of m ® X under ¢. The
map x — m® x is a ZG from X to m ® X and we can define a ZG-homomorphism
Um : Wi — X by ¢(w) = m ® ¥, (w). By the universial property of X (2.5b) there exists
a ZG homomorphism oy, : X — W, with ¢ = Ymaum,. Also put ap = 0. We obtain a map
a:MxX —W, (m,z) — am(z). Clearly, v is additive in the second coordinate and by the
uniqueness of a;, it is easy to check that « is additive in the first coordinate and is balanced (
that is a(m, kx) = a(mk, z) for all m € M,z € X,k € K.) Thus by the universial property
of a tensor product a can be extended to a Z-homomorphism « : M ® x X — W. Moreover,
one readily verifies that & commmutes with G and ¢ = Ya. O

rUE
Remark 2.7 Let C be a class of ZG-modules. For X in C define a universial central C

extension of X as in 2.5 except that X and W are assumed to be in C. Then (with the same
proof) 2.6 is still true for universial central C-extensions provided that M Q@ X is in C.

O

3  Some properties of pseudo quadratic spaces
Lemma 3.1 Let (N,q, f) be a pseudo quadratic space and put K™ = {k € K|k+ sk’ = 0}. Fnm)
Then

(a) K- < KT.

(b) For alla € N and q € q(a), f(a,a) =q+ sq°.

(c) Suppose that K_ = K*. Then q(a) is uniquely determine by f(a,a). In particular,
f(a,a) = 0 implies g(a) = 0 and rad N = N+,

(d) Suppose that charK # 2 or that o acts non trivially on Z(K). Then K_ = K.

Proof: (a) (kK — sk?)? = k% — ko's? = k% — s lkss™! = k% — s~k and so k — sk =
—s(k—sk?)°, k— sk € KT and K_ < K™.
(b) Let k,1 € K. Then on the one hand

q(ka + la) = q(ka) + q(la) + f(ka,la) = k *xq(a) + 1 x q(a) + kf(a,a)l®

= kqke + lqlb° + kf(a,a)l®
and on the other hand

q(ka+la) = q((k+1)a) = (k+1) * q(a) = kqk? + kql® + lqgk® + lql°.
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Thus

kf(a,a)l” = kql® + lqke.
But lgk? — ksql? = lgk® — s(lgk?)? € K_ and so

kf(a,a)l® = k(q+ sq°)l°

for all k,1 € K. If K # 0 this cleary implies f(a,a) = ¢+ sq°. If K = 0, then K = K_ and
so by (a) K = K. Thus Ky = 0 and ¢ + sq° = 0. Moreover, by (PQ1), f is trace valued
and so also f(a,a) = 0.

(c) By (b) ¢(a) is unique up to an element K+. Thus (c) holds

(d) If char K # 2, put A =1 and if char K = 2 and o acts non trivially on Z(K) pick
A\ € Z(K) with A # A\?. Then in any case, A € Z(K) and A+ \° # 0. Put g = A(A+\7)~L.
Since A € Z(K), A" = A. Thus p+ p° =1 and p° € Z(K). Let k € K with k = —sk°.
Then

kp — s(kp)” = kp — sp’k® = kp — sk7p” = k(p+ p%) = k.
Hence k € K_, K™ < K_ and (d) follows from (a). O
Lemma 3.2 Let N be a left vector space over K, 0#n € N and 0 # ¢ € N*.
(a) t(p,n) is invertible if and only if ng # —1, in which case the inverse is given by
6, —(1+ng)~'n).

(b) Let (g, f) be a (o,s)-pseudo quadratic form on N. Then t(¢,n) € O(V,q, f) if and
only if one of the following holds:
(bl) n€ rad N and ngp # —1.
(b2) n & Nt and there exists 0 # k € K with —k~! € q(n) and vp = f(v,n)k for all
veEN.

Proof: Put t=t(n*n).

(a) If n¢g = —1 then n.t = 0 and ¢ is not invertible. If n¢ # —1 it is trivial to verify that
t(¢, —(1 4+ n¢p)~L.n) is an inverse for t.

(b) Recall that t € O(N,q, f) if and only if f(at,bt) = f(a,b) and g(at) = q(a) for all
a,b € N. Since f(at,bt) = f(a+ ap.n,b+ bp.n) weget

(1) f(atvbt) = f(a7 b) + a¢ ’ f(n7 b) + f(avn)’(b¢)a + a‘b ' f(na n) ’ (b¢)a’

and since ¢(at) = q(ad.n + a)

(2) q(at) = ag + q(n) + ad.f(n,a) + q(a).

In particular, if n € radN and t is invertible, t € O(N,q, f). Thus we may assume that
n & radN.

11

transvection



Assume now that ¢t € O(V,q, f). Suppose that n € N+. Since n ¢ rad V, q(n) # 0.
Hence by (2) ap =0 for all @ € N, a contradiction.

Thus n ¢ N+. Let b € ker ¢. Then by (1) a¢.f(n,b) =0 for all @ in N and so b € N+
and ker ¢ < nt. Since both ker ¢ and n' are hyperplanes in N, ker ¢ = n'. Therefore
there exists k € K with

(3) ap = f(a,n)k for all a € N.

Since f(n,a) = sf(a,n)?, (2) now implies f(a,n)k * g(n) + f(a,n)ksf(a,n)® = 0. Thus
Fa,n) « (k % q(n) + f(a,n) s = 0

Hence k % q(n) = —ks and g(n) = k™'« ks = —sk=. Now k™! — sk™7 € K_ and so

k=1 = sk=o. Thus ¢(n) = —k~1 and (b2) holds in this case.

Suppose next that ¢ fulfils (b2). Reading the above calculations backwards we see that
q(a) = q(at) for all @ € N. Put ¢ = —k~!. By assumption ¢ € ¢(n) and so by 3.1
f(n,n) = q+sq°. Using (1) it is now readily verified that f(at,bt) = f(a,b) for all a,b € N.
It remains to show that ¢ is invertible. Otherwise by (a), —1 = n¢ = f(n,n)k and so
q=k' = f(n,n). Thus ¢ = f(n,n) = ¢+ s¢°, s¢° = 0 and ¢ = 0, a contradiction to the
definition of q. O

We denote the element in O(V, g, f) of form (¢, n) as in 3.2b2 by ¢(k,n), that is

v.t(k,n) =v+ f(v,n)k-n wheren € N\ Nt k€ K# -k ' cq(n),ve N

t(k,n) is called a pseudo-transvection with axis Kn. We remark that for any given n €
N\ radN, there exists a pseudo-transvection with axis Kn, unless n is a singular vector in
a quadratic space.

Lemma 3.3 Let (N,q, f) be a non-degenerate pseudo-quadratic space such that S(1) #0.
(a) N =(S(1)).

(b) Let i be a positive integer with S(i) #0 and U € S(i). Then Qu acts transitively on
the set of all Uy € S(i) with Up N U+ = 0.

Proof: (a) Let M = (S(1)) and suppose N # M. Let n € N \ M. Then n is not
singular and so there exists a pseudo-transvection ¢ in O(N, ¢, f) with axis Kn. Since ¢
normalizes M and n ¢ M, [M,t] < M N Kn =0 and so n is perpendicular to M. It follows
that M UM+ = N, M+ = N, and M < Nt. Since M is generated by singular vectors,
M < radN = 0, a contradiction.

(b) Let Uy, Us € S(i) with U N U, =0,k = 1,2. As N is non degenerate, NN U = 0
and so dimN/UJ- =i. Thus N = UL + Uy,. Let x1, 9, ...,2; be a basis for U over K and
for k = 1,2 let y1(k),y2(k), ..., yi(k) be the basis for Uy, with f(x;,(k) = d;. Note that
Ut =U®q@ (U + Ug)*. Hence for every x € (U + Uy)* there exists a unique y € (U + Up)*
with z + U =y + U, and the map = — y is an isometry. Extend this map to h € GLk(N)
such that z;h = x; and y;(1)h = y;(2). Then it is easy to see that h is an isometry, h € Qu
and Uih = Us. |
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Lemma 3.4 Let (N,q, f) be a nondegenerate pseudo quadratic space, i a positive integer
and U € calS(i). Then

Py/Qu = GLk(U) x O(U*/U,q, f).
Qu/Ty = Homg (UL /U, U) =2 Homg (N/UL, UPerp /U,

)
)
¢) Ty/Zy = Homg (N/UL, Nt)
) Qu/Zy = Homg (N/U+,U*/U)
)

Zy is isomorphic to the additive group of all i x i-matrices M with MT = —sM? and
M;; € K_ forall1l < j <i.

(f) Ty is isomorphic to the additive group o fall i x i-matrices M with MT = —sM? and
M+ K_ € g¢(N*) for all1 < j <i.

(g) Z(Qu) =Ty (unlessi =1 and K_ =0, in which case Qu 1is abelian)

(h) Q= Zy (unless Qu =Ty, that is UL =U+L)

Proof: It follows easily from 3.3a and induction that there exists a singular subspace F
in N with N =Ut @ E.

Put X = (U @ E)*. Since U is finite dimensional and UNN+ =0, N=U® X & E
and Ut =U @ N+

(a) By 3.3b and a Frattini argument, Py = Np,(E)Qu. Since Np,(E) normalizes
X, Np,(E) N Qu = 1 and it suffices to show that Np, (E) = GLg(U) x O(X,q, f). Let
g € GLp(U) and h € O(X,q, f). It is an easy exercise to show that there exists unique
g € GLk(FE) with f(ug,eg) = f(u,e) for all u € U,e € E. Moreover, there exists a unique
t € GLi(N) which acts as g on U, as g on E and as h on X. Clearly, ¢t € O and so (a)
holds.

(b) Let @ € Homp (X,U) with Nta = 0. Put X, = {z + z.a|]z € X} and note that
Ut = U @ X,, Moreover, X3 = U @ N+ @ E, for some i-dimensional singular subspace
E,. As in 3.3Db, there exists t € O such that ¢ centralizes U and at = z 4+ x« for all z € X.
Clearly t € Qu and so the map

Qu — Homg(X/N*+.U)

¢ — (¢+N*— [z,q))

is onto. Its kernel is obviously 7y and so the first equality in (b) holds. The second is just
the dual version of the first.

Let 3 € Homg (N, Nt) with U+ = 0 and dim N3 = 1. Then clearly (ker )+ =
Ku + N+ for some 0 # u € U. Let e € N with f(e,u) = 1 and put » = e3. Then
0#rc N, g(r) # 0 and so there exists 0 # A € K with —A\~! € ¢(r). Pick u € K with
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u’ = A~1and put n = r + - e. Since e is singular and perpendicular to 7, ¢(n) = ¢(e) and
so we obtain the pseudo-transvection ¢(\,n) € O. Moreover,

(1) le,t(\,n)] = fle,n)A-n=p’X- (r+pu) =r+ p-u=rmodlU.

Note that U+ = U @ N+ and [N,t] € U+ for all t € Ty = Co(U*). Consider the
homomorphism p;

Ty — Homy (N/UL, U /U)

t— (z4+ Ut = [z,t] 4+ U)

Clearly kerp = Zy;. Let {3 the the compostion of 8 with the natural isomorphism N+ —
U+L/U. Then by (1), p maps t(A,n) onto 3. As the holds for all §’s,p is onto and (c) holds.
(d) Cosider the map
Qu — Homg (N/U*, U+ /U)

t— (x+ UL = [z,t] +U)

By (b) and (c) this map is onto. Its kernel is Zy; and so (d) holds.

(e,f) Let uy,ug,...,u; a basis for U and pick e, es,...e; € E with f(u,ej) = 0;5. Let
z € GLp(N) with [N,2] < U+ and [U+,2] = 0. Define a i x i matrix M = (my;) and
ry € Nt by [e, 2] = 25:1 myiu; + 7. Then z is uniquely determined by M and (rg). We
need to find necessary and sufficient conditions on M and (ry) for z to be in O. So we
compute

% i
flejzienz) = flej+ Y mju, e+ Y mpw) =
=1 =1

= f(mjkuk, ex) + fej, mgjug) = mjp + smy;

and

qlerz) = qlex + Y mpur + i) = f(mupue, ex) + q(rr) = Mk + (i)
=1

Thus z € O if and only if MT = —sM? and my, + K_ € —q(r) for all 1 < k < i. Note
that gy is injective. Hence for any M with M7 = —sM? and my, + K_ € q(N1) there
exists unique r, € N+ with mg, + K_ € ¢(ry). Thus (f) holds. Moreover, z € Ty if and
only if in addition 7, = 0. Thus also (e) holds.

(g,h) By definition of Qu, [N,Quy] < Ut and [U+,Qy] < U. Thus [N,Qu,Qu] < U
and the three subgroup lemma implies [N, Q] < U. Thus @}, < Zy. Note that [NV, Ty] <
U+t = U+ rad N. Thus [N, Ty, Qu] = 0 and [N, Qy, Ty] = 0. Hence [Qy, Ty, N] = 0 and
Ty < Z(Qu).- So to prove (g) and (h) we need to show Z(Qu) < Ty and Zy < Q.
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Let a,b € Qu. We wish to compute [a,b]. For this put a; = [e;,a] and b; = [e;, b].
Then a;,b; € Ut. Let x € U*. Then [z,a] < U and so 0 = f(z,¢;) = f(z.a,e;.a) =
flxz+[z,a],e; +a;) = f(z,a;) + f([z,a],e;]. Hence

—[z,a] =Y fla, ).
k=1

A similar formula holds for b. Furthermore, [ex,a™ '] = —ay + 7 and [er, b~ = —by, + sp
for some 7y, s, € UL, Also [x,a7'] = —[z,a] and so

(ex.la,b] = ep-a b tab = (e — ap + r1,).b tab

e — by + s —ap — Z f(ak, bj)u]' + Tk).ab
j=1

Using (er — ax + ri).a = e, we get

ex-la,b] = (er — b + Y f(braz)u; — Y flag, bj)uj + sx).b

J=1 Jj=1

7 (2
=er+ Z f(bg,aj)uj — Z flak, bj)u;.
j=1 J=1

Put B = (f(ax,b;)). Then [a,b] € Zy corresponds to the matrix —B + sB1°.

Suppose there exists a € Z(Qu) \ Ty. Then aj, £ ULt for some k. Let 1 < k,j < i and
0 # A € K. By (b) we can choose b such that b € UL if | # j and f(ay,b;) = A. Since
a € Z(Qu) we get B = sBT9. Since all but the j’th colummns of B are zero and the k — j
spot of B is A and so not zero, we conclude that j = k£ and A = sA?. Since j and A are
arbitrary we conclude that i =1 and K_ = 0. Alsoif i =1 and K_ =0, [a,b] = 1 for any
a,b € Qu and so (g) holds.

To complete the proof for (h) we may assume that U+ # U+, Fix 1 < k,j < i and
A € K and choose a,b € Qu such that a; € UL if I # k, by € UL if I # j and f(ax, bj) = A.
Then B is zero everywhere except in the k — j spot, where it is A. Clearly every matrix M
with MT = —sM? and my € K_ for all [ is the sum of matices of the form —B + BT?,
1<kj<i, A€ K and so (h) is proved. O

transitive2

Lemma 3.5 Let (N,q, f) be a non-degenerate pseudo-quadratic space with S(1) # ().

(a) Suppose that (N,q, f) is not a 2-dimensional quadratic space.
(al) (Qu|U € S(1)) acts transitively on S(1).
(a2) If v,y € S(1) with x #y ,then S(1) # (S(1) Nzt) U (S(1) Nyt).
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(a3) Define z,y € S(1) to be adjacent if x L y. Then the corresponding graph on S(1)
is connected.

(b) (Ty|U € §(1)) acts transitively on S(1) unless Nis a non defective quadratic space.

Proof: (al) Let Uy, Us € S(1) with Uy # Us.

Suppose first that U; L Us. Pick Us € S(1) with Us < Uy + Uy and Uy # Us # Us. By
3.4a, Qu, induces a full unipotent subgroup on U; 4+ Uy and so Uz and U; are conjugate
under Q.

Suppose next that U; and Us are not perpendicular. Assume that S(2) # (). Then Uj is
contained in a 2-dimensional singular subspace space W. Put U3 = W N UZJ-. Then U; and
Uy are both conjugate to Us under (Qu|U € S(1). Thus we may assume that S(2) = 0.

Suppose that there exists Us € S(1) with Uy # Us # U,. Then by 3.3b U; and U are
conjugate under Qp, and we may assume that no such Us exists. Thus S(1) = {Uy, Ua},
Qu, centralizes Uy and so Qp, = 1. By 3.4 this implies U = U+ and K_ = 0, i.e. N is a
2-dimensional quadratic space.

(a2) Let 2,y € S(1) and suppose that S(1) = (S(1) Nat) U (S(1) Nyt).

If S(2) = 0, then S(1) = (S(1) Nat) U (S(1) Nyt) = {x,y}. As seen in the proof of(a)
this implies that (N, q, f) is a 2-dimensional quadratic space,.

So we may assume that S(2) # 0. By 3.3a (a) applied to y*/y, y* is generated by its
singular subspaces. Thus there exists z € S(1)Ny* with 2z # y and z £ z. Let w € S(1)Nz*
with w € y*. Then w € 2. So w+ 2 € S(2), (w+ z)Nat =w and (w+ 2) Nyt = 2. But
w 4+ z contains more than two 1-dimensional subspaces contradicting the assumption that
S(1) = (S(1) Nat) U (S1) Nyh).

(a3) By (a2) we can choose z € S(1) with z £ z and z £ y. Thus x is adjacent to z and
z is adjacent to y, proving (a3).

(b) Without loss N is not a non defective quadratic space. Let Up,U; € S(1) with
Uy # U,. We need to show that U; and Uz are conjugate under (ITy/|U € S(1)). By (a3) we
may assume that U; and Us are not perpendicular. Put R = U; 4+ Uy +N+. Then R itself is
a non degenerate, pseudo quadratic space which is not non-defective quadratic. So we may
assume N = R. By (al) U; and Uy are conjugated under (Qu|U € S(1)). Let U € S(1).
As N/N* is 2-dimensional, U+ = U + N+ = U+ and so Ty = Qp. Thus (b) holds. O

Lemma 3.6 Let (N,q, f) be a nondegenerate pseudo quadratic space and 0 # U a finite
dimensional singular subspace of N. Then

(a) Ty = Ty NQEe|E € S(1)NU)

(b) Qu=(QuNQr|lE e S(1)NE)

(c) Ty = (Ts|E € S(1) N E), unless N is a non-defective quadratic space.

(d) Let 0 # E <U. Then Cq,(E*/E) = QuNQr and Qu/QuNQr = Cp. /x(U+/U)N
Cprp(U/E)
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Proof: Let uq,...,u; be a basis for U. We use the correspondence between Ty and
certain ¢ x ¢ matrices established in the proof of 3.4f without further reference.

(a) Let 1 < j <. Then Ty N Q Ku; corresponds to the set of matrices with my; = 0 for
all 1 < k,l <iwith k # j # [. This implies (a).

(b) Let E € S(1)NU and o € Homg (U+,U) with Utta =0 and Uta < E. Extend a
to an element 3 of Homg (E+, E). By 3.4b, there exists ¢ € Qg with 8 = ¢ — 1|g.. Then
clearly ¢ € Qu N Qg and a = ¢ — 1|;;1. Thus

Qu =(QuNQplEeS1)NU)Ty
and so (b) follows from (a).
(c) Without loss N is not a non-defective quadratic space. Thus K_ # 0 or N+ # 0.
Thus there exists 0 # p € K with p € ¢(Nt). Since f vanishes on N+, 3.1 implies
p+sp” = 0. Let X be an arbitrary element in K and put p = —Ap~'sA\°. Then

p=—=Xp""(sp")p A = (Ao~ p((Ap~h)7

andso i = (A\p~ 1) xp € q(N?1).

Note that
0 —sA2\ [(p O 0 0 —p —sA?
(0 )=(0 o)+ (o w)+ ()

and —A\p~!-(—p, —s\?) = (\, —u). In particular all three matrices on the right side of the
above equation correspond to transvections and it is easy to see that (c) holds.

(d) Let F be a complement to E+ and X = (E+ F)*. Then clearly Cox)(XN Ut/xXn
U)NCox)(UNX) = Cq,(E+ F) and (d) is easily verified. O

Lemma 3.7 Let (N,q, f) be a nondegenerate pseudo quadratic space such that S(2) # 0,
and define x,y € S(2) to be adjacent if x Ny~ = 0. Then the corresponding graph on S(2)
is connected, unless (N,q, f) is a four dimensional quadratic space.

Proof: Without loss (IV, ¢, f) is not a four dimensional quadratic space. Let = # y €
S(2).

Consider first the case that U = x Ny # 0. By 3.5a2 applied to U+/U in place of N
there exists z € §(2) with U < z, z L x and z £ y. Let F € S(1) Nz with F' # U and
choose S € S(1)N F* with S  U. Then F + S € S(2).

We claim that F + S is adjacent to . Suppose not. Then T = N (F + S)* # 0. Since
UJLS ULT. Hence Z =F+U 1L T+ U =z and « | z, contradicting our choice of z.
Similarly F'+ S is adjacent to y and so x and y lie in the same connected component.

Next consider the case with zNy = 0. Let P, € xtNS(1) and P, < yNP-NS(1). Then
P, + P, € §(2). By the previous paragraph z, P; + P» and y lie in the same connected
component and the lemma is proved. O

Lemma 3.8 Suppose (G,X) fulfills Hypothesis’ (A),(B) or (C). Then graph on ¥ is con-
nected.
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Proof: If (B) holds this is 3.5a3 and if (C) holds this is 3.7. So suppose (A) holds.
Let Z; and Z5 be in X. Then it is readily verified that there exists Z3 in ¥ such that Z3 is
adjacent to Z; and Zs. O

Lemma 3.9 Suppose (G,X) fulfills Hypothesis (B) or (C).
(a) Let 0 # U be a finite dimensional singular subspace of N. Then Qu < G.

(2) Let U € §(1). Then Cq(U) acts transitively on the 1-dimensional singular subspaces
of U+/U.

Proof: (a) Let U € S(1). Pick z € N\ U*. By 3.4 the map
a: Qu/Zy - UYU, ¢Zy — [z,q+U

is an isomorphism. For V € S§(2) with U < V define Z(U,V) = Zy N Qu. Then under
the isomorphism in 3.4e ( where we choose the first basis vector for V iin U), Z(U,V)
corresponds to the 2 x 2 matrices M with M” = —T7, m1; € K_ and may = 0. It follows
that a(Z(U,V)/Zy) = V/U. By 3.3a, U+/U is spanned by its 1-dimensional singular
subspaces and so

Qu = (Z(U,V)IU <V € S(2).

We claim that Zy < G. Indeed, in case (C) Zy € ¥ and in case (B) 3.6(c) yields Zy <
Ty < (Tg|E € §(1)) < (¥). In particular, Z(U,V) < G and so Qu < G. Thus (a) follows
from 3.6b.

(b) Suppose first that Hypothesis (B) holds. Then by 3.5b applied to U+ /U, (Tg|E <
S NU™L) acts transitively on the singular 1-spaces of U+ /U.

Under Hypothesis (C') U*/U is at least three dimensional and so by 3.5al (applied to
U+/U) and 3.6d we get that (Qy|U <V € §(2)) acts transitively on the singular 1-spaces
of U+ /U. Thus (b) holds also in this case. O

Lemma 3.10 Suppose that (G,YX) fulfills Hypothesis (A).

(a) Let 0 # 2z € N and X = Kz. Then Qx NG = {t(¢,z)|¢ € N,z¢ = 0}, and Cg(x)
acts transitively on Qﬁ NG. Moreover, Qx NG acts transitively on the 1-dimensional
subspaces of N outside of C'y(x).

(b) Let 0 # ¢ € N and ® = K¢. Then Qx NG = {t(¢,x)|x € ker ¢} and Cg(x) acts
transitively on Qﬁ N G. Moreover, Qo N G acts transitively on the 1-dimensional
subspaces of N outside of ker ¢.

(c) Let Z € ¥ and Q be the stabilizer in G of the series 0 < [N, Z] < Cn(Z) < N. Then
Q acts transitively on the set of all Zy € ¥ adjacent to Z.

18

QuinG

Qtransitive



Proof: (a) Let 1 # ¢t € Qx N G. The clearly z is a transvection with axis Kz and so
t = t(¢, x) for some ¢ € N* with z¢ = 0. Furthermore, ¢ € [N*,t] < [N*,G] < N and so
first part of (a) holds. T(C(x), N) acts transitively on the nonzero vectors of N and so
also on Qéﬁ N G. Finally, let ¢, ¢y € N with 2¢; = 1 = x¢. Then d1.t(d1 — P2, ) = P9
and (a) is proved.

(b) Follows by a dual argument or by observing that T(N, N) = T(N, N) if we identify
N with its copy in N*.

(c) Let Z=T(®,X) and Z;, = T(®;, X;) € ¥, i = 1,2 with Z; adjacent to Z. We have
to show that Z; and Z, are conjugate under Q). Since Z; is adjacent to Z, X®; # 0 and
X;® # 0. Note that Qp < @ and so by (b) we may assume that X; = X5. Since X;®; =0,
the element of ¢(¢1 — ¢2,z) (found in (a)), conjugates ®; to P2 and fixes X; = Xy . This
proves (c). O

Lemma 3.11 Suppose that (G,X) fullfils Hypothesis’ (A),(B) or (C). Let Z € ¥, U a 1-
dimensional subspace of [N, Z] and Q = QuNG. Let x € Q\ Q' such that [N, x] is singular.
Then Q = (z¢6W)Y unless dim N/N* = 4 and q(N+) # K/K_.

Proof: Under Hypothesis (A) this follows directly from 3.10a.

So suppose Hypotesis’ (B) or (C). Let 0 # y € [N,z] + U/UU and A the subgroup of
UL /U generated by y.Cq(U). In view of 3.4d,h Q = (z¢¢()y if and only if A = U+/U. By
3.9 it suffices to show that A contains a singular 1-space. Also A spans U+ /U as a K-space
and so f does not vanish on A. Let z € A\y* and E = [N, 2]U. By 3.6d, Qg acts as Qp/w
on UL/U.

Suppose that ANyt £ E +radN/U. Then by 3.4b, E/U < [ANny*,Qg] < A and the
lemma holds.

So we may assume that ANyt < E +radN/U. In particular, [z,Qg] < E + radN/U
and so by 3.4b, B+ = E +radN. Hence dim N/N+ = 4. If ¢(N') = K/K_ then by
3.4f, [2,Qg] + radN + U/U = E +radN/U. Thus A + rad(U+/U) = U+/U. Hence
(U L JU,Qg] < A. If |[K| = 2,{0,y} is a singular 1-space and we may assume that
|K| # 2. But then [(U'/U,Qg] = E +radN/U, and the lemma is proved. O

Lemma 3.12 Suppose that Hypothesis (A), (B) or (C) holds, Then G is perfect.
Proof: Let

4 The structure of [V,G|/[V,G] N Cy(G).

Throughout this section (G, X) fulfills Hypothesis (A),(B) or (C), Z € ¥, L = Cg([N, Z]
and V is an RG-modules with [V, Z, L] = 0. Let Zy € ¥ be adjacent to Z and let U be a
1-dimensional singular subspace of [N, Z]. Put X = (Z, Zy), and P = Cg(U).

Lemma 4.1 Suppose that Hypothesis (C) holds. The there exists g1 € P so that the fol-
lowing holds for X1 = X9 and L* = LX;.
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(a) [X,Xl]:1 and [N,X]:[N,Xl]
(b) X1 nomalizes [N, Z] and L. In particular L* is a subgroup of Na ([N, Z]).
(C) [N, Z].gl =U+ [N, ZO] N UJ‘, [N, ZO]-gl = [N, Z] N [N, ZO]-gl + [N, Zo] N [N, ZO]-gl'

Proof: Let U be a singular 1-space in [N, Z] different from U. Put Uy = [N, Zo]NU~* and
Us =[N, Zog) N U;{. Then U + Uy + Uy + Uz = [N, Z] + [N, Zo] = [N, X] is a 4 dimensional
quadratic space " +"-type. Let E = [N, Z] = U+U,, Ey = [N, Zy] = U2+ Us, E1 = U +Us,
Ey=U1+Us, Z; =Tg,,i =1,2 and X; = (Z1, Z>). Note that for z € Z and n € N, n.z is
perpendicular to n. Hence [Uy, Z1] < Ui N[N, Z1] = Uf- N (U + Us) = U. It follows that
Z1 normalizes E and so centralizes Z. By symmetry, also Z> normalises £ and centralizes
Z. So (b) holds. Morover, X; centralizes Z and (by symmetry) Zp. Thus (a) holds. To
complete the proof of this lemma it now suffices to find g1 € P with Z9' = Z; and Zgl = Zo,
i.e with F.g1 = F1 and Ep.g1 = E».

By 3.9b there exists g € P with E.g = E;. Since E+ N E50, Ei- N Ey.g = 0. Since also
E; 1L NEy = 0 we conclude from 3.3b that Ey.gq = E» for some ¢ € Qg,. Put g1 = gq. As
g1 centralizes F1, we get g1 € P, E.g1 = F1 and Ep.g1 = Fb». O

Lemma 4.2 G = (L, Zy) = (L, X).

Proof: Let ¥y = Z(&%0), By 3.3b, 3.9a and 3.10, ZOL contains all elements in X
adjacent to Z. Further, if Z; and Z, are adjacent in X, then they are conjugated in

(Z1,Z5). It follows that ¥y contains the connected component of ¥ which contains Z. So
3.8 implies ¥y = X. Since G = (X), G = (L, Zy). O

Lemma 4.3 Let B = Nx(Z) and Wy an R(LB)-submodule of V' with [Wy, L] = 0. Put
W = (Wy.X). Then
Cw(X) < Cv(G), W, Z] + Cw(G) = Wo + Cw(G) and W = [W, X] + Cw (G).

Proof: By 2.2 we have Cyw(X) < Wy + [W,Z]. Since [V,Z,L] = 0 this implies
[Cw(X),L] = 0. By 4.2, (L,X) = G and so Cw(X) < Cy(G). The other assertions
now follow from 2.2. 0

Lemma 4.4 Let My be an RNg(U)-submodule of V' with [My, P] = 0. Put M; = My,
in cases (A) and (B), and My = (My.L*),in case (C). Put M = (My.G). Then [M,Z] +
CM(G) = M; + CM(G)

Proof: Let g€ G.If [U.g,Z] =0, then Z < P9 and [Myg, Z] = 0.

If [Ug, Z] # 0, we claim that there exists w € Nx(Z) and h € L N Cg(Z) (or, in case
(C), h € L*) with Ug = Uwh. Indeed, in case (A) this follows from 3.10b. In case (B) U.g
and U.w both are not perpendicular to U and the claim follows from 3.3b. In case (C) we
first choose hy € L, with Ugh; L U. Then both U.gh; and U.w are perpendicular to U and
neither Ugh; nor Uw are perpendicular to [N, Z]. Thus by 3.6d and 3.3b (the latter applied
to UL/U) we get U.gh1q = U.w for some g € Q[y,z. This proves the claim. In particular,
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[Moy.g, Z] = [My.wh, Z] = [My.w, Z]h.
By 4.3 we have
[Mo.w, Z] + Cyn(G) = My + Cy(G).

Thus [Myg, Z] + Cym(G) = Moh + Cyp(G) and Moh + Cp(G) < [M,Z] + Cu(G) <
M + Cp(G). Since L* normalises [M, Z] the lemma is established. O

Lemma 4.5 (a) (Cy(L).X)=[Cyv(L),X]|+ Cy(G).
(Cv(L).G) = [V.G] + Cv(G).

(b)

(c) If V = (Cy(L).G), then [V,G] = [V,G,G].
(d)

)

d) [V,G,G,G] = [V,G,G.

(e) Let D be mazimal in V with [V,G,G] = 0, then Cy,p(G) = 0.

Proof: (a) follows immediately from 4.3 applied to Wy = Cy(L).

(b) By (a) (Cyv(L).G) < [V,G] + Cy(L). Now [V,G] = ([V, Z].G) < (Cy(L).G) and (b)
is proved.

(c) follows from (b). (d) from (c) applied to [V, G] in place of V and (e) from (d) applied
the inverse image of Cy/p(G) =0 in V. O

Lemma 4.6 Suppose that (C) holds. Then
(a) [Cv(L),Qu, P] =0
(b) [VvQUaQva] =0 and [V7Q7Q] = [VanZ]
(c) [V, 2, L*] < {Cv(P)G)

Proof: Let g € P with [N, Z]g £ [N, Z]. Then by ?? P = (L,LY) and Qu = Z9(Qu N
L). Thus

V. Z,Qu] < [Cv(L),Qu] = [Cv(L), 2°] < Cv((L, L) < Cy(P)
. Thus (a) is proved. Now (b) follows from Qu = (ZF) and (c) from L* = (QL")L. O

Lemma 4.7 Suppose that (C*) holds and [V, Z,L*] = 0. Then [V,G] =0

Proof: By 4.5 we may assume that Cy/(G) = 0. Let D = [V, Z]. Since G = (Z%) we
need to show that D = 0. Suppose not.

Assume first that char K # 2. Then Z(X) = Z(X1) < L,. Thus [D, Z(X) = 0 and so
we conclude from 2.3 that [D,X] = 0. By 2.3, D < Cy(G) = 0 and we are done in this
case.

Assume next that char K = 2. We may assume without loss that V = (DG). We will
first prove
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(1) V,Qu,Qu] = 0.

Indeed by 4.6, [V, Q, Q] = [V, Q, Z] is centralized by P and by L* and so by G.

(2) If N has Witt index at least three, then N is nondefective of dimension 6 and
|K| = 2.

Pick E € calS(2) N[N, Z]* with ENU = 0. Then Zg < P and so [Cv(Qu), Zxg]
is centralized by Y = (Qu,L*E. Hence if dim N > 6 we conclude from ?? that ¥ = G
and Cy(G) = 0i mplies [Cyv(Qu), Zg=0. Since [V, Z] < Cyv(Qu), [V, Z] is centralized by
(ZE) and L* and so by G. To show that K=2pick Zy € P N Y adjacent to Zg. Put
S = (Zg, Z>. Note that Ng(Zg) < L* and so centalizes D. Suppose that |K| # 2. Then
Zg =[Zr,Ns(Zg)] and so by 2.2d, S centralise D. But (S, L*) = G and (2) holds.

(3) N has Witt index at least three.

Suppose that N has Witt index 2. Since Qv z = (Qv,z N Qu)(Qn,z N Qu)?Y for
ginL* \ Ng(U) we conclude from (1) that [Cy(Qu), QN z), Q[v,z)] = 0 and we can apply
2.2 to (DF). Since L cenralizes D and since by ?? QpQu = [Qp, L]Qu we conclude from
2.2d that (Qf) centralizes [D]. So again [D,G] = 0.

Lemma 4.8 Suppose that (A),(B) or (C*) holds. Then (Cy(P)G) = [V,G] + Cy(G).

Proof: If (A) or (B) holds this is 4.5. So suppose that (C*) holds. Then by the
same reference, Cy(P) < Cy (L) < [V,G] + Cy(G). Moreover, by 4.6¢ and 4.7 (applied to
V/{Cv(P)G)), [V,G] < (Cv(P)G).

For the case (B) we need to define a few more subgroups of G. Let U; € (2) with
U < Up. Let U2 € 8§(2) with Uy NUs~ = 0 and put F = U 4 (U N U*. Define X =
Co((U1+U2)NNo(U))NNo(Uy), Z* = Cy(F), and X* = (Zx~). Note that X* = SLy(K)
and Z* is a maximal unipotent subgroup of X*. Moreover, Z* < Zr < Qr and so by 3.9
both Z* and X* are contained in G.

Lemma 4.9 Suppose that (B) holds.
(a) [V,Tr,Cq(F)) = 0. Inparticular, [V,Z*,Z*] = 0.
() G = (X*,Ca(F)).
(c) 4.3 still holdsif X, Z and L are replaced by X*, Z* and Cq(F'), respectively.

Proof: By 3.6, Tr = (Tg|E € §S(1) N F). Futhermore, C(F) < Cq(F) < Cq([V, TE]
for all £ in S(1) N F. Thus (a) holds.

(b) Go = (X*,Cq(F)) and A = FGy C S(2). Since FX* contains elements adjacent
to F' (with respect to the graph defined in 3.7 )3.3b implies that A containes all elements
in calS(2) adjacent to F. Since G acts transitive on A, A is a connected component of
calS(2) and so by 3.7 A = calS(2). Since Tr < Gy and G = (¥), G = Gy.

(c) Using (a) and (b) the proof for 4.3 goes through.
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Theorem 4.10 Suppose that V = (Cy(P)%). Then there an (R, K)-module M such that
V/Vy(G) 2 M ®x N/N* as an RG -module.

Proof: By4.5 we may assume that Cy(G) = 0. Let Py = NG(U). In case (B) define
X* and Z* as above. In cases (A) and (C) let X* = X and Z* = Z. Then X* N Py acts
transitively on U# and therefore Py = (X N Py)P.

Let W = Cy(P) and Wy = (WX). Tt is easily checked that X < L, X*) and so
by 4.2, G = (L, X*. Note that by 4.9b Z* acts quadratically on W;. By 4.3 and 4.9¢
CW1<X*) < Cv(G) =0, Wi = [Wl,X*] and W = [Wl,Z*]. Let Uy = <UX>X<> Then
Up is a natural module for X% = SLy(K),U = [U1,Z*] and Cx«(U) = P N X*. Hence
[W,Cx~(U)] =0 and [W1, Zx,Cx+(U)] = 0. Therefore we can apply 2.3 to X* and W, and
find an (R, K)-module M such that

(1) W1 =2 M ®p U as an RX*- module.

Let No = M ® K(N/N+). We will show that Ny and V' are isomorphic as RG- modules.
Py = (X*NPF)P and (1) imply that M ® U and W are isomorphic RPy-modules. Let M
be the RG-module induced from the RFPy-module W. Let

M = M/{({M, Z,L]) and M = M/Cy(G).

By assumption V' = (WWG). Furthermore, Ny = (M ®x G) and so by the universial
property of induced modules there exist RG-epimorphisms:
1M — V and ¢poM — Ny.

Since [V, , Z, L] = 0 and [Ny, Z, L] = 0 we get that ([M, Z, L]) < ker ¢; for i=1,2. Further,
Cy(G) = 0 and Cy0(G) = 0, the latter being true since Ny as a ZG module is the direct
sum of copies of N/N+. Thus ¢; and ¢3 induce RG-epimorphism

EM -V and ¢_2M — No.

We now prove that
(2) ker phi; N [M, Z] = 0.

For this note first that by 4.4 applied to [M, Z] = (W L*), where we identified W with
its canonical image in M. Obviously @; restricted to W is one to one. So if [I, 2] = W, (2)
is proved. Otherwise (C) holds. Recall the definition of X — 1 and g; at the beginning of
this section.Then

[1,Z] = (WL") = (WX1)(WX)g1 = (Wi)g1

Now [(Wig1, Z{] = Wg1 = W and so [Wigi, Z] Nker ¢; = 0, [ker ¢; N Wigy, Z] = 0 and
ker ¢; N Wig1 < Cw,g, (X1) = 0. This proves (2).
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By (2) we get that [ker ¢;, Z] = 0 and so ker ¢; < Cparar(G). By 4.5¢, Cr(G) = 0 and
thus ¢; is one to one. Hence

V = M = Ny as RG-modules,
Theorem 4.10 is established.

5 Determination of [V,G] N Cy(G)

Retain the assumptions and notation from the previous section. This section is entirely
devoted to the proof of

Proposition 5.1 Suppose that V/Cy(G) = M @ N/N* for some (R, K)-module M and
that V = [V, G]. Then one of the follwing holds

(a) There exists an R-submodule C < M ® N+ such that V = M @y N/C as RG-
modules.

(b) |K| =4, 0 #id and dim N = 4.

Proof: Recall the notations introduced in 2.5 and 2.7. Then we are trying to proof
that M ®k N is a universial central C extension, where C is the class of RG-modules W
with [W, Z, L] = 0. In view of 2.7 we may assume without loss that V/Cy (G) = N/N*.
We first prove

(1) There exists an RG-module W and RG-submodules C; and Cy of Cy (G) such
that W/Cy =2 V,W/Cy = N and [W, Z, L] = 0.

Let 1 be an RG-isomorphism from V/Cy (G) onto N/N+. Put W = {(v,n)|v € V,n €
N, (v + Cy(G)) =n+ N1}, Let C; = {0} x N+ and Cy = Cy(G) x {0}. Then C; is the
kernel of the projection of W onto the i’th coordinate and so W/C; =V and W/Cy = N.

In view of (1) we may assume that Cy(G) has a submodule C' such that V/C = N. Pick
x € Qu \ Ty such that [N, z] is singular. Put V = V/Cy(G) and A = [V, P,Qu]. Note that
V =~ N/N*t.

Let R be maximal in G with respect to acting trivially on [V, 2], Cy(x)/[V, 2] and
V /Cy(x). Then by 3.4b and3.10a, [V, R] = Cy(x). Note that [V, z, R, Z]=0. Indeed, if z is
contained in an element of ¥, then this follows from [V, Z, L] = 0 and if not, (B) holds and it
follows from 4.9a. Moreover, [R, Z] = 0 anf the three subgroup lemma implies [V, R, z] = 0.

(3) Asssume that (B) holds and |K| # 2,4. Then [V, Z*] N Cy(G) = 0.

Recall the definitions of X*, X and Z* (see before ??). It is enough to prove that
[V, X*]NCy(G) =0. By (2), V = [V, X*]Cy(X*) since the same statement holds for V in
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plcae of V. Thus if K is not commutative or char K # 2 we are done by 2.4 So assume that
K is commutative. Since |K| # 2,4 there exist Au € K\{0} so that A # 1 and A\? = 1.
This in turn yields an element 1 # h € X* with [h, X*|] = 1 and acting as Au on one of the 2-
dimensional singular subspaces of [N, X*| normalised by X*. Now [[V, X*],h]|NCy(G) =0,
[V, X*, X*] <[[V,X"],h] and since X* is perfect [V, X*] N Cy(G) = 0. So (3) is proved.

(4) ANCy(G) =0, except possibly in the case (B), |K| =4, dim N =4 and o # id.

Suppose first that Q@ = (z). Since [V, P, z, P] = 0 we get that [V, P,Q] = (2F) =
([V,P,z]) = [V, P,x]. Now by (1), [V,z] N Cy(G) = 0 and (4) holds in this case. Suppose
next that the hypothesis of (3) holds. Note that by ??, Q = (Z*F’). So replacing = by Z* in
the preceeding argument shows that (4) holds also in this case. Now by 7?7 we have covered
all cases but the one excluded in (4).

(5) If ANCy(G) =0, then C = 0.

Let v € V' \ ([V, P] 4+ Cy(G)). We claim that [v,Q] N (Cy(G) + A) < A. Suppose not
and put V = V/A. Since [V,Q,Q] = 0, we have [V,Q'] = 0 and [0,Q] = {[,4q]lq € Q]}.
Hence there exists ¢ € @ with [0,q] # 0 and [v,¢q] € Cy(G) + A. Reading this equation
modulo C' and applying the " Q" = T”-statement of 7?7 we get that ¢ € Q’, a contradiction
to [0, q] # 0.

Therefore ([v,Q] + A) N Cy(G) = 0. Since P normalizes [v, Q] + A, we conclude that
[v,Q] + A = [V,P,P] = [V,Q] and [V,Q] N Cy(G) = 0. Let g € G with U9 £ U*. Then
V=[V,Q®&Cy(G)® AI. P=(PNPI)Q and [A9, PN P9 = 0 imply that [V, P] = [V, Q)].
Moreover, [V,Q] = A& [V,PNPI andso V =[V,G|=[V,P|+[V,Pl9 =Aa[V,PNPI| &
AY9. Finally, this direct sum remains a direct sum modulo C and C intersects each of the
summands trivally. This implies that C = 0, proving (5).

Theorem A is now a direct consequence of (4) and (5).

6 Proof of Theorem B

Theorem 6.1 Suppose (G,X) fulfills the hypothesis of Theorem B. Let L1 = Cg([N, Z]),
Vi, Z,L;] = 0 and [Vp, G] = W1 + Ws.

Proof: Since dim N > 2 we can choose 1-dimensional subspaces U and U of N and
N, respectively, so that U([N, Z]) = 0, U(U) = 0, [N, Z|(U) # 0 and U # [N, Z]. Let
Zy = T(U,[N, Z]). Then [V, Zo] is centralized by C(U) N C([N, Z]) and, in particular,
by Q := Cq(U+) N CG(). Note that Z centralizesU and therefore normalizes Q. Now
Vo, Zo] < Cy,,(Q) and so

Vo, Zo, Z] < Cv,y(Q).
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By ?? applied to L1/CL,(Cx([N, Z]) in place of G we have (Lo, Zyp) = L. Hence Ly =
<L0,Q> and
[VO7ZO7Z] < CVo(LO) N CVO(Q) < CVO(Ll)'

Since (Z£°) is normalized by (Lo, Zo) = L1, we have Ly = (Z£°) and thus
Vo, (25°), 2] = [Vo, L1, Z] < Ciy (L)
By a symmetric argument [Vp, Lo, Z] < Cy;,(L2). Furthermore,
[Vo, G| = [Vo, (L1, L2)] = [V, L] + [Vo, Lo]

and thus It follows that [Vp, G| = [Vb, G, G| = V1 + Va.

To complete the proof of 6.1 it is enough to show that [V;, Z] < F; 4+ Cy,(G). A glance
at the proofs of 7?7, 7?7 and 77?7 shows that these lemmas hold with V replaced by V; and L
replaced by Lg. It follows that [V;, Z] < F;+Cyv(G). So [V;, Z, L;] = 0 and 6.1 is established.
O

To prove Theorem B we now merely have to apply Theorem A to the modules V7 and
V2 of 6.1. Note here that we can view N as a subspace of the dual space of N and that
then T(;N) = T(N, N).

7 Finitary modules for Classical Groups

finitary
Remark: we need to be more precise

Suppose G is one of the groups in the introduction and that N is infinite dimensional
over K. Furthermore, let W be a G-module over the integers such that [W, ¢g] has finite rank
for all g € G. In case (A) let Ly be defined as in Theorem B, otherwise let Ly = L. Then
in any case [Z, Lo] = 0. Now it is well-known(?) that Lo has no non-central Z-module of
finite rang. Hence [W, z, Ly] = 0, for all z € Z, and so [W, Z, Ly] = 0. Therefore we can
apply our main theorems with R the ring of integers to see that [W, G]/[W,G] N Cw (G) is
a direct sum of natural modules. Thus Theorem C holds.
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