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Abstract

A finite group L is of Ly-type provided that L is simple and has an involution
z with CL(z) isomorphic to the double cover of Alt(11), 2.Alt(11). In this paper
we give a computer-free construction of a group of Ly-type.

1 Introduction
The first evidence for the existence of a sporadic simple group with centralizer of
an involution isomorphic to the double cover of the alternating group of degree
11 was given by Lyons [Ly] in 1972. Subsequently, Sims [Si] constructed such
a group and proved its uniqueness. His proof provides generators and relations
for the group and uses a computer to determine the index of a subgroup which
is isomorphic to G2(5). The linear representations of the Lyons group such as
the Meyer–Neutsch–Parker 111-dimensional GF(5) representation [MNP] or the
Jansen–Wilson 651-dimensional GF(3) representation [JW] ultimately depend
on the relations that Sims produced to show that the group their matrices
generate is the Lyons group. In [CFYT] the 111-dimensional GF(5) matrix
group was used to obtain permutations which generate the Lyons group and
using these permutations a further computer based existence proof has been
given by Gollan [Gol]. A more elementary, though still computer dependent,
uniqueness proof can be found in Wilson [Wi]. In [AschS] Aschbacher and
Segev gave the first computer-free uniqueness proof of a group of Ly-type. The
purpose of this paper is to give a hand construction of a group of Ly-type. Thus
our main theorem is

Theorem 1.1 There exists a group of Ly-type.

Formally, for a natural number n, we follow Ivanov [Iv] and define an amal-
gam A of rank n to be a set M such that for each 1 ≤ i ≤ n there are subsets
Mi and a binary operation ∗i defined upon Mi such that the following hold:

(i) M = ∪ni=1Mi;

(ii) ∩ni=1Mi 6= ∅;
(iii) (Mi, ∗i) is a group; and

(iv) if x, y ∈Mi ∩Mj , then x ∗i y = x ∗j y.

Generally, A is denoted by the n-tuple of groups (M1, . . . ,Mn). And, for J ⊆
{1, . . . , n}, we use MJ to denote the subset ∩j∈JMj . A completion of the
amalgam (M1, . . . ,Mn) is a group G and a mapping θ from ∪ni=1Mi to G such
that

(i) G = 〈θ(M)〉;
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(ii) for 1 ≤ i ≤ n, θ|Mi is a group homomorphism.

Note that every amalgam has the trivial group as a completion. Every amal-
gam also has a universal completion, this completion maps surjectively on
to every other completion (see [Iv, 1.3.2]). Note that a non-trivial amalgam
may have the trivial group as its universal completion. A completion is called
faithful provided that θ is injective.

Our approach to the proof of Theorem 1.1 is similar to that followed by
Ivanov and Meierfrankenfeld in [IM] when they constructed J4: we show that
the universal completion of a certain amalgam of groups is a group of Ly-type
or is trivial. Then we prove that the given amalgam exists in GL111(5).

The amalgams that we shall be concerned with are defined as follows:

Definition 1.2 An amalgam (M1,M2,M3) is called a Ly-amalgam provided
that

1. M1 ∼ 3.McL.2, M2 ∼ 36.23.Sym(5) and M3 ∼ 35.2.Mat11.

2. |M2 : M12| = 2, |M2 : M23| = 10 and |M3 : M13| = 11.

3. |M23 : M123| = 2.

4. No non-trivial subgroup of M123 is normal in M1, M2 and M3.

Notice that, a priori , there may be a multitude of Ly-amalgams up to
isomorphism.

Our main theorem follows from the more specific result

Theorem 1.3 Suppose that T is a Ly-amalgam. Then

(a) T is unique up to isomorphism.

(b) There exists an amalgam isomorphic to T in GL111(5).

(c) The universal completion of T is a group of Ly-type.

In particular, there exists a group of Ly-type.

The definition of a Ly-amalgam is motivated by [Ly, Propositions 2.3, 2.5
and 2.7] from which it can be deduced that, if there exists a group of Ly-type,
then it is a completion of a Ly-amalgam. Using this fact and Theorem 1.3 we
obtain
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Corollary 1.4 There exists a unique group of Ly-type.

The first five sections of this article contain the preparatory results needed
for the proof of 1.3. Specifically, Section 2 contains general results about
amalgams, information about the 5-dimensional GF(3)Mat11-modules and facts
about representations of extraspecial groups. Section 3 contains a characteri-
zation of the alternating groups, 3.2, which will be used in Section 7 to show
that, if there is a faithful completion of a Ly-amalgam, then it contains a sub-
group isomorphic to 2.Alt(11). In Section 4 we gather a myriad of facts about
McL and Aut(McL). Section 5 is given over to the construction of a group
H ∼= 3.McL and a 90-dimensional representation for 3.Aut(McL) over GF(5).
This section is necessary because the current proof of the existence of the triple
cover of McL relies on the existence of the Lyons group.

In Section 6 we get to grips with Ly-amalgams. In 6.3 we prove that a Ly-
amalgam exists and in 6.4 we prove that, up to isomorphism, there is only one.
Note that this is not the same thing as showing that the universal completion
of a Ly-amalgam is not trivial. We need the results of Section 6 for the con-
struction of a Ly-amalgam in GL111(5) in Section 8. In Section 7 we suppose
that M is a faithful completion of a Ly-amalgam and analyse the coset graph
Γ of M1, M2 and M3 in M ; our aim is to determine the orbits of M1 on its
cosets in M . We quickly find five orbits, 7.3, and the remainder of the section
is devoted to proving that these are the only orbits. Of particular consequence
is 7.4, where a subgroup H of M isomorphic to 2.Alt(11) is uncovered (though,
of course, at this stage we do not know that it is the centralizer of an involution
in the whole of M). Not only is this positive progress towards showing that M
is of Ly-type, but this subgroup is very easy to calculate in! We add the cosets
of this subgroup to our coset graph with incidence defined in the usual way.
Setting Z = Z(H), in 7.7, we show a certain connected component of the sub-
graph of Γ which is fixed by Z, in fact has H as its stabilizer in M . This then
allows us to prove that if M1 and M1h are in the same connected component of
the fixed graph of a conjugate of Z, then M1h lies in one of the orbits that we
have already found. Next we focus on the normalizer of a certain subgroup F
of order five. We find that M contains a subgroup N of shape 51+4.4.Sym(6),
a connected component of the fixed graph of F has stabilizer N and that, once
again, if M1 and M1h are in the same connected component of the fixed graph
of F , then M1h is already accounted for in one of our five orbits. Finally in
7.15 we show that there are just the five orbits found in the very beginning of
the endeavour. The detailed theorem of Section 7 is

Theorem 1.5 Suppose that M is a faithful completion of a Ly-amalgam of
groups (M1,M2,M3). Then

(a) M1 has five orbits on the right cosets of M1 in M . Moreover, the orbit
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stabilisers have shape 3.Aut(McL), 32+4.4.Sym(5), 2.Sym(7), 4.Sym(6)
and 51+2.Sym(3).

(b) M has order 28 · 37 · 56 · 7 · 11 · 31 · 37 · 67.

(c) M has a unique class of involutions and CM (t) ∼= 2
.
Alt(11) for any

involution t in M .

(d) For i = 1, 2, 3 , Mi is a maximal 3-local subgroup of M .

(e) M has a subgroup F of order five with NM (F ) of shape 51+4.4.Sym(6).

(f) M is a group of Ly-type.

In our final section we construct a Ly-amalgam in GL111(5). Once this is
done we have completed the proof of 1.3.

We close the introduction with some comments on our notation. Suppose
that Γ is a graph with varying types of vertices. If e ∈ Γ, then Γ(e) is the
set of neighbours of e. If i is a type of a vertex of Γ, then Γi(e) = {x ∈
Γ(e) | x has type i}. If A operates as a group of automorphisms on Γ, then
ΓA represents the induced subgraph of Γ consisting of the vertices fixed by A.
Also for G ≤ Aut(Γ) and e ∈ Γ, Ge will be the stabilizer in G of e.

The alternating, symmetric and Mathieu groups of degree n are represented
by Alt(n), Sym(n) and Matn respectively. We shall use Mat9 to represent the
point-stabiliser in Mat10. We use Dn, Qn and SDn to represent the dihedral,
quaternion and semidihedral groups of order n respectively. We have been
terribly inconsistent with our notation for cyclic groups; we either use Cn or
when appropriate simply n (rarely seen alone) for a cyclic group of order n.
For a prime p, we use pa+b+c to represent a p-group of order pa+b+c. Often the
summands in the superscript indicate that a group operating on the p-group
has a chief factor of that order on the group. Beware the group pa+b+c may be
abelian so, for example, p1+4 does not necessarily mean an extraspecial group
of order p5. We write G ∼ A.B. . . . .Z or say that G has shape A.B. . . . .Z
when G has a normal series with factors isomorphic to A,B, . . . , Z. Thus for
example M2 ∼ 36.23.Sym(5) indicates that M2 contains normal subgroups of
order 36 and 36.23 and a factor group isomorphic to Sym(5). It does not specify
the structure of the normal 3-subgroup or that of the Sylow 2-subgroup of the
normal subgroup of order 36.23. However, M2 ∼ 36.C8.Sym(5) does specify the
structure of Sylow 2-subgroup of the subgroup of order 36.23. We follow Atlas

notation and write ‘.’ to mean non-split extension; thus 2.Alt(5) ∼= SL2(5).
Also, on some occasions, we shall use the symbol ‘:’ to denote a split extension
such as 22 : Sym(3) ∼= Sym(4). Hopefully the remainder of our notation is
standard and can be found in [Go].

Acknowledgement We thank Gerhard Hiss for his contribution to this
project. Particularly, he provided the original proof on which the presented
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proof of Theorem 5.2 is based. Moreover, he has read the entire manuscript
and has suggested a number of clarrifications.

2 Preliminaries
Lemma 2.1 Suppose that Γ is a graph, G is a group acting on Γ and AEH ≤
G. Assume that F is a non-empty connected subset of ΓA such that

1. NGe(A) = He for all e ∈ F .

2. If e in F and d ∈ ΓA(e), then d is H-conjugate to some element in F .

3. H = 〈He | e ∈ F〉.
4. No two distinct elements of F are conjugate under NG(A).

Let Ψ be the connected component of ΓA containing F . Then Ψ = {eh | e ∈
F , h ∈ H} and H = NG(A) ∩ StabG(Ψ).

Proof: Let Ψ∗ = {eh | e ∈ F , h ∈ H}. Since Ψ is a connected component of
ΓA, each He, e ∈ F , stabilizes Ψ and so (3) implies that H stabilizes Ψ. Thus
Ψ∗ ⊆ Ψ. Suppose now that a ∈ Ψ and d(F , a) = n. If n = 1, then there is
an e ∈ F such that a ∈ Ψ(e) and (2) implies that Ψ(e) ⊆ Ψ∗. Hence a ∈ Ψ∗.
We now proceed by induction on n. Let b ∈ Ψ(a) with d(F , b) = n − 1. Then
by induction there exists h ∈ H such that bh ∈ F . But then either ah ∈ F
(so a ∈ Ψ∗) or Ψ(ah) ∩ F is non-empty. In the latter case (2) shows that
there is an h1 in H such that ahh1 ∈ F . Therefore in any case a ∈ Ψ∗ and so
Ψ = Ψ∗. Let e ∈ F and g ∈ NG(A) ∩ StabG(Ψ). Then, as Ψ = Ψ∗, there exist
d ∈ F and h ∈ H such that eg = dh. But then (4) implies e = d and (1) gives
gh−1 ∈ H. Therefore, g ∈ H and so NG(A) ∩ StabG(Ψ) ≤ H. Since trivially
H ≤ NG(A) ∩ StabG(Ψ), we have NG(A) ∩ StabG(Ψ) = H as claimed.

Remark 2.2 A set F as in 2.1 can often be found using (variations of) the
following procedure:

0. Pick some e ∈ ΓA and put F = {e} = N .

1. For all e ∈ N verify that NGe(A) = He. This for example can be done
by finding a subset X of F such that NGx(A) = Hx for all x ∈ X and
NGe(A) = 〈NGex(A) | x ∈ X〉.

2. For all e ∈ N determine a set of representatives for the orbits of NGe(A)
on ΓA(e).

3. Replace N by the orbit representatives found in (2) which are not H-
conjugate to a member of F .
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4. Replace F by F ∪ N . Finally, if elements of F are conjugate under H,
remove all but one of them from F .

5. If N 6= ∅ go back to (1).

6. Verify that no two distinct elements of F are conjugate under NG(A).

The above procedure will be followed in 7.7 and 7.12 in Section 7.

Lemma 2.3 Let G and T be groups, L E G and H ≤ G with G = LH. As-
sume φ : H → T is a homomorphism and suppose that there exists a unique
homomorphism ψ : L → T with ψ |H∩L= φ |H∩L. Then there exists a unique
homomorphism Φ : G→ T with Φ |H= φ.

Proof: Clearly if Φ exists then it is unique and Φ(lh) = ψ(l)φ(h) for all l ∈ L
and h ∈ H. It remains to verify that Φ is well-defined and is a homomorphism.

So suppose that lh = l̃h̃. Define k = hh̃−1 = l−1 l̃ and observe that k ∈ H∩L.
Then

Φ(l̃h̃) = ψ(l̃)φ(h̃) = ψ(lk)φ(k−1h)
= ψ(l)ψ(k)φ(k−1)φ(h) = ψ(l)ψ(k)ψ(k−1)φ(h)
= ψ(l)φ(h) = Φ(hl).

Thus Φ is well-defined.
An elementary calculation shows that Φ is an homomorphism if and only if

(2.3.1) for all l ∈ L, h ∈ H we have

ψ(l) = φ(h)−1ψ(lh
−1

)φ(h).

Fix h ∈ H and define ψ∗ : L→ T by ψ∗(l) = φ(h)−1ψ(lh
−1

)φ(h). Then ψ∗ is
the composition of three homomorphisms, namely conjugation by h−1 followed
by ψ and finally conjugation by φ(h). Therefore, ψ∗ is a homomorphism from L
to T . Clearly ψ∗ equals φ when restricted to H∩L and thus, by the uniqueness
of ψ, ψ = ψ∗ and (2.3.1) is demonstrated. Hence Φ is a homomorphism and
the lemma is proved.

The next lemma is extracted from [IM, 2.2]. It will be used in Section 8
when we construct a representation of a Ly-amalgam.

Lemma 2.4 Let (M1,M2,M3) be an amalgam, H a group and A a subgroup
of Aut(H). Suppose that, for each i ∈ {1, 2, 3}, there exist homomorphisms

αi : Mi → H
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and elements ai ∈ A such that the homomorphisms

α1|M13a2 = α3|M13

α2|M12a3 = α1|M12

α3|M23a1 = α2|M23 .

Put M∗23 = M
α3a
−1
2

23 , M∗13 = Mα1
13 , M∗12 = Mα1

12 and B∗ = Mα1
123. Then

(a) The following two statements are equivalent:

(a1) There exist b1, b2, b3 ∈ A such that for all {i, j} ⊂ {1, 2, 3}

αibi|Mij = αjbj |Mij .

(a2) a2a1a3 ∈ CA(M∗23)CA(M∗13)CA(M∗12).

(b) B∗ ≤
⋂

{i,j}⊂{1,2,3}

M∗ij and a2a1a3 ∈ CA(B∗). In particular, (a1) and (a2)

hold if
CA(B∗) = CA(M∗23)CA(M∗13)CA(M∗12).

(c) Assume that (a1) holds and that for each i ∈ {1, 2, 3}, αi is one-to-one.
For each i ∈ {1, 2, 3} set M∗i = Mαibi. If M∗i ∩M∗j = Mαibi

ij for all 1 ≤ i <
j ≤ 3, then (M∗1 ,M

∗
2 ,M

∗
3 ) is an amalgam isomorphic to (M1,M2,M3).

Next we present some well-known facts about the GF(3)-representations of
Mat10 and Mat11.

Lemma 2.5 Suppose that H ∼= Mat11, K ≤ H with K ∼= Mat10 and E is the
field with 3 elements.

(a) There is a unique irreducible EH-module, V , of dimension 5 in which K
leaves invariant a 1-space.

(b) There are two irreducible EK ′-modules of dimension 4. One is obtained
from the other by tensoring with the −1-representation.

(c) When restricted to K, V is an indecomposable EK-module with composi-
tion factors of dimension 1 and 4.

(d) The orbits of H on the 1-dimensional subspaces of V have lengths 11
and 110 with stabilisers K and 32:Q8 respectively. Moreover, K operates
non-trivially on the 1-space fixed by K.

(e) K has orbits of length 10 and 30 on the 1-spaces and hyperplanes of ei-
ther of the 4-dimensional irreducible modules. The 1-space stabilisers are
Mat9 ∼= 32:Q8 and Sym(4) respectively.
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(f) Suppose that W is an irreducible 4-dimensional EK-module. Then, up to
isomorphism, there is a unique indecomposable EK-module of dimension
5 with a quotient isomorphic to W and a submodule of dimension 1 which
is inverted by K. Furthermore, dimE H1(K,W ) = 1.

(g) Let f be an element of order 4 in H. Then dimE(CV (f)) = 1 and
dimE(CV (f2)) = 3.

Proof: ¿From [Jam, Theorem 7.1] we see that the 11-dimensional EH-module
W = (−1)HK has composition factors 1, 5 and 5̄ (using the notation from [Jam]).
Moreover, from [Jam, Section 7] we have that 5 and 5̄ are the only 5-dimensional
irreducible modules; they are dual to one another. Clearly 1 is not a quotient
of W as K centralizes it and, similarly, W has no submodule centralized by K.
Hence W is a uniserial module 5/1/5̄. This proves (a).

¿From [Be, pg. 208] or [MATLAS] we have that K ′ ∼= Alt(6) has a unique
irreducible E-module of dimension 4. This module extends to K and so (b)
holds.

Let V be as in part (a). Then V restricted to K has at least one 1-
dimensional composition factor. Since Mat10 has no E-modules of dimension
less than 4, we have (c).

¿From (a), we see that H has an orbit of length 11 on the 1-spaces of V . Let
{v1, . . . , v11} be this orbit. Then the normalizer of the subspace U = 〈v1, v2〉
is L ∼= Mat9 ∼ 32:Q8 and L inverts U . Hence L fixes the 1-space 〈v1 + v2〉. It
follows that 〈v1 + v2〉 is a representative for an orbit of length 110. Since there
are only 121 subspaces of dimension 1 in V , we conclude that (d) holds.

For part (e) we set U = V/〈v1〉. Since (〈v1 + v2〉 + 〈v1〉)/〈v1〉 is a 1-space
fixed by L, we conclude that K has an orbit of length 10 on W . Since Sym(4)
fixes a 1-space, we also have an orbit of length 30.

Let R be the 4-dimensional EAlt(6)-module. Then it is easy to show that
H1(Alt(6), R) has dimension at most 2. Since the 5-dimensional submodule
of the permutation module for Sym(6) over E has centralisers of elements of
order 3 and cycle shape (13, 3) of dimension 3 and of elements of cycle shape
(32) of dimension 2, we see that this 5-dimensional module does not admit K.
Since Aut(Alt(6)) acts on H1(Alt(6), R), we conclude that H1(Alt(6), R) has
dimension 2 and that Out(Alt(6)) acts non-trivially on this space. We deduce
that H1(K,W ) has dimension 1. Tensoring with the −1-representation of K
now delivers (f).

We obtain part (g) from the ordinary character table of Mat11 [ATLAS] or
[Frob] and the decomposition matrix [Jam, Theorem 7.1].

Lemma 2.6 Suppose that p is an odd prime, P is an extraspecial p-group of ex-
ponent p and order p1+2n. Let K = COut(P )(Z(P )), H = P :K ∼ p1+2n:Sp2n(p),
E ≤ Q be elementary abelian of maximal order and E be the set of maximal
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subgroups of E which complement Z(P ). Assume that r is a prime with r 6= p
and let V be an irreducible GF(r)P -module of dimension dpn where d is the
smallest integer such that GF(rd) contains a pth root of unity. Then

(i) V = ⊕E∗∈ECV (E∗) where, for each E∗ ∈ E, CV (E∗) has dimension d and
admits Z(P ) irreducibly.

(ii) V extends uniquely to a GF(r)H-module.

(iii) Suppose that E∗ ∈ E and let L = NK(E∗)/CK(E∗). Then L ∼= GLn(p)
and acts on CV (E∗). Furthermore, for x ∈ L, either detE∗(x) is a square
in GF(p) and centralizes CV (E∗), or x inverts CV (E∗).

Proof: Part (i) is well known. Since the irreducible GF(r)P -representations
are uniquely determined by the action of Z(P ) and H centralizes Z(P ), the
irreducible modules for P all extend uniquely to H. Thus (ii) holds.

This brings us to (iii). We have NK(E) is a subgroup of K isomorphic to
p(

n
2 )+n:GLn(p). Set K∗ = NK(E∗) and L = K∗/CK∗(E∗). Then L ∼= GLn(p).

Now L acts on CV (E∗) and, as K∗ commutes with Z(P ), the only non-trivial
action comes from the cyclic group L/L′ ∼= GF(p)∗ of order p − 1. Select an
element λ of L which projects to a generator of L/L′ and such that P1 = [P, λ]
is an extraspecial group of order p3. Then P2 = CP (λ) is an extraspecial p-
group of order p1+2(n−1). Note that P1〈λ〉 commutes with P2. Thus Clifford’s
Theorem implies that V restricted to P1〈λ〉 is a single homogeneous component.
So V restricted to P1〈λ〉 is a direct sum of pn−1 isomorphic irreducible modules
of dimension dp. Let V1 = 〈CV (E∗)P1〉. Then V1 is a submodule of V of
dimension dp. Applying (i) to V1, we see that V1 is a sum of p d-dimensional
spaces T and on these subspaces 〈λ〉 acts with orbits of length 1 and p− 1. So
λ induces a p − 1-cycle πλ on T \ {CV (E∗)}. As πλ is an odd permutation,
detV1(λ) = −detCV (E∗)(λ). Since V is a direct sum of pn−1 P1〈λ〉-modules
isomorphic to V1 and detV (λ) = 1, we deduce that detV1(λ) = −1. This proves
(iii).

Lemma 2.7 Suppose that Q is an extraspecial group of order 35, K ≤ Aut(Q)
with K ∼= 2.Alt(5) ∼= SL2(5), H = Q : K. Let B be the normalizer of a Sylow
3-subgroup of H and i ∈ {18, 36}. Then

(a) There exists a unique irreducible faithful i-dimensional GF(5)H-module
Vi.

(b) V36 ∼= V18 ⊗ V2, where V2 is the unique 2-dimensional GF(5)H-module.

(c) Vi is uniquely determined by its restriction to B. More precisely, if φ and
ψ are two irreducible embeddings of H into GLi(5) with φB = ψB, then
φ = ψ.

(d) Let E be the unique normal subgroup of order 33 in B and let E∗ be a
complement to Z(Q) in E. Assume that T ∼= C4 is a Sylow 2-subgroup of
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NB(E) and let t ∈ T be an involution. Then T centralizes CV18(E∗) and
t inverts CV36(E∗).

Proof: We first prove parts (a) and (b). Note that, by 2.6 (ii), H has a
faithful irreducible 18-dimensional GF(5)H-module. Tensoring this module by
the natural GF(5)K-module V2 gives an irreducible GF(5)H-module of dimen-
sion 36. Our task is to show that these are the unique irreducible modules of
these dimensions. To do this we show that there is a unique (up to conjugacy)
embedding of H in GL(Vi). Suppose now that i ∈ {18, 36} and Vi is an irre-
ducible GF(5)H-module of dimension i. Then Vi|Q is the direct sum of j = i

18
(isomorphic) irreducible GF(5)Q-modules of dimension 18. In particular, Vi
is uniquely determined, up to isomorphism, as a GF(5)Q-module. Note that
NGL(Vi)(Q) ∼ (31+4 : Sp4(3)◦GLj(25)).2 (where ◦ denotes central product) and
so NGL(Vi)(Q)∞ = L1 × L2, with L1 ∼ 31+4.Sp4(3) and L2 ∼ SLj(25). Since
H is perfect and CH(Q) ≤ Z(H), the Three Subgroups Lemma implies that
H has no non-trivial automorphism centralizing Q. Thus the embedding of Q
into L1 can be extended uniquely to an embedding of H into L1. Moreover, if
j = 2 there exists a non-trivial homomorphism of H/Q ∼= SL2(5) into L2 and
this homomorphism is unique up to conjugation in GL2(25). Thus (a) and (b)
hold.

We now move on to part (c). By (a) ψ = φρ for some ρ ∈ Inn(GL(Vi)).
Since, by hypothesis, ψB = φB, ρ centralizes Bφ. As B acts irreducibly on Vi,
EndB(Vi) = EndH(Vi) ∼= GF(25). Thus ρ ∈ EndH(Vi) and so ρ centralizes Hφ.
Therefore, φ = ψ.

Finally we prove part (d). By 2.6 (iii), T centralizes CV18(E). Moreover, t
inverts V2 and so by (b), t inverts CV36(E).

3 A Characterization of the non-Abelian
Simple Alternating Groups
In this section we show that certain amalgams of groups characterize the alter-
nating groups. We will employ this characterization in Section 7 to identify a
subgroup isomorphic to 2.Alt(11) in a faithful completion of a Ly-amalgam of
groups. We begin with a definition.

Definition 3.1 Let k and l be integers greater than 2, n = k + l, Ω be a set
of size n and for i ∈ {k − 1, k, k + 1}, Ωi be a subset of Ω of size i such that
Ωk−1 ⊂ Ωk ⊂ Ωk+1. Then an amalgam of type (k, l)-Alt(n) is an amalgam
of groups isomorphic to the amalgam (StabAlt(Ω)(Ωi) | k − 1 ≤ i ≤ k + 1) in
Alt(Ω).
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Observe that StabAlt(Ω)(Ωi) = StabAlt(Ω)(Ω \ Ωi) and thus the definition of
an amalgam of type (k, l)-Alt(n) is symmetric in k and l.

Theorem 3.2 Suppose that M is a faithful completion of an amalgam
(M1,M2,M3) of type (k, l)-Alt(n). If n ≥ 5, then M ∼= Alt(n).

Proof: Without loss of generality we may assume that M is the universal
completion of the amalgam. Then there exists a homomorphism − : M →
Alt(Ω) such that

(Mj | 1 ≤ j ≤ 3) = (StabAlt(Ω)(Ωi) | k − 1 ≤ i ≤ k + 1),

where Ω and Ωi are as in 3.1.
Suppose first that k = 2. Then M1 ∼= Alt(n−1), M2 ∼= Sym(n−2) |∧Sym(2)

and M3 ∼= Sym(n− 3) |∧Sym(3). Observe that M12 ∼= Alt(n− 2) has index 2 in
M2 and is normal therein. Also M123 ∼= Alt(n − 3), M13/M123 and M23/M123
are two different groups of order two in M3/M123. Thus, as M3/M123 ∼= Sym(3),
M3 = 〈M13,M23〉. Therefore, M = 〈M1,M2〉.

Choose an involution t ∈M23\M1. Then, as M12EM2, M12 ≤M1∩M t
1 and,

as M1∩M t
1 = M12, M12 = M1∩M t

1. Let Γ be the graph with vertices the cosets
of M1 in M and edges the translates of (M1,M1t) by right multiplication with
elements from M . Then M operates faithfully on Γ and, as M = 〈M1,M2〉 =
〈M1, t〉, Γ is connected.

Since |M3 : M13| = 3, M1M3 contains three cosets of M1: M1, M1t and
M1s where s and t are involutions (t being the one above in M23). Moreover,
M3 acts 2-transitively on these three cosets and so M1s is adjacent to both M1
and M1t; in particular, Γ(M1t)∩ Γ(M1) 6= ∅. Now M t

1 is the stabilizer in M of
the vertex M1t and (as n ≥ 5) M t

1 operates 2-transitively on Γ(M1t). Hence,
as Γ(M1t) ∩ Γ(M1) 6= ∅, every neighbour of M1t is a neighbour of M1. Since
M1 has exactly n − 1 neighbours, we find that |Γ| ≤ 1 + (n − 1) = n. Thus
|M | ≤ n · |M1| = n!

2 and, as Alt(n) is an image of M , we finally conclude that
M ∼= Alt(n) in this case.

We now assume that k ≥ 3 and by symmetry also that l ≥ 3. Let Ωk−2
be a set of size k − 2 contained in Ωk−1. For i = 1, 2, 3 let Pi be the subgroup
of Mi which maps to the subgroup of Mi which fixes Ωk−2 pointwise. Then
(Pi|1 ≤ i ≤ 3) is of type (2, l)-Alt(l + 2). Let P = 〈Pi | 1 ≤ i ≤ 3〉. As l ≥ 3,
l + 2 ≥ 5 and so, by the k = 2 case, P ∼= Alt(l + 2). Again using l ≥ 3,
we have StabM123(Ωk−2) induces Sym(k − 2) on Ωk−2 and normalizes every
generating subgroup of P and hence P . Put M0 = StabM123(Ωk−2)P . Then
M0 ∼ Alt(l + 2).Sym(k − 2), M0 ∼= M0 = StabAlt(Ω)(Ωk−2), and for i = 1, 2,
M0 ∩Mi = StabM123(Ωk−2)Pi ∼= M0 ∩Mi. Thus (Mi | 0 ≤ i ≤ 2) is of type
(k− 1, l+ 1)-Alt(n) and so, by induction on k, M∗=〈Mi | 0 ≤ i ≤ 2〉 ∼= Alt(n).
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Since M3 = 〈M13,M23〉 ≤ M∗, we finally have M = M∗ and the lemma is
proved.

Lemma 3.3 Let M be a group, A a finite subgroup of M , D ∈ Syl3(A) and
LD a subgroup of NM (D) containing D. Suppose that

1. A ∼= Alt(5).

2. LD ∼= Sym(3) |∧Sym(n), n ≥ 2.

3. LD ∩A = NA(D) ∼= Sym(3).

4. For g ∈ A and E = Dg define LE = LgD (well-defined by (3)). Then

LD ∩ LE ∼=
{

Sym(n− 1) if 〈D,E〉 ∼= Alt(4)
C2 × Sym(n− 2) if 〈D,E〉 = A

.

5. M = 〈A,LD〉.
Then M ∼= Alt(n+ 3).

Proof: We shall show thatM is a completion of a (4, n−1)-Alt(n+3) amalgam
of groups. The result will then follow from 3.2.

Select E,F ∈ Syl3(A) with B = 〈D,E〉 ∼= Alt(4) and A = 〈D,F 〉 and define

M1 = LD,

M2 = B(LD ∩ LE) and
M3 = A(LD ∩ LF ).

Notice that, by (3), for X ∈ Syl3(A),

LD ∩ LX ∩A = NA(X) ∩NA(D).

In particular, by (1), LD ∩LE ∩A = 1 and |LD ∩LF ∩A| = 2 and LD ∩LE and
LD ∩ LF are uniquely determined up to automorphisms of LD in LD. Also we
see that LD ∩LE inverts D and LD ∩LF contains an element which centralizes
F and inverts D. It now follows from (4) that M2 ∼= Sym(4) |∧Sym(n− 1) and
M3 ∼= Sym(5) |∧Sym(n− 2). We now calculate that

M12 = M1 ∩M2 = LD ∩B(LD ∩ LE) = (LD ∩B)(LD ∩ LE)
= D(LD ∩ LE) ∼= Sym(3) |∧Sym(n− 1).

and, as |LD ∩ LF ∩A| = 2,

M13 = (LD ∩A)(LD ∩ LF ) = D(LD ∩ LF ) ∼= Sym(3)× Sym(n− 2).

Furthermore, we now determine M123 in M1 and get that M123 = M12∩M13 ∼=
Sym(3) |∧Sym(n − 2). Finally, since M2 > M23 ≥ BM123 we have M23 =
BM123 ∼= Sym(4) |∧Sym(n− 2). It follows that (M1,M2,M3) of type (4, n− 1)-
Alt(n+ 3). Hence M ∼= Alt(n+ 3).

13



4 Properties of McL
In this section M = Aut(McL), U ≤ M with U ∼ U4(3).2, K ≤ M with
K ∼ U3(5).2 and F ≤ K, with |F | = 5 and CM (F ) divisible by 3. Set
L = NM (F ) ∼ 51+2.3.8.2. We define Γ2 to be the set of 3-central groups of
order three in M , Γ3 the set of elementary abelian groups of order 34 in M and
Γ4 the set of 2-central groups of order 2 in M . Let Γ = Γ2 ∪Γ3 ∪Γ4. We make
Γ into a graph by stipulating that for i ∈ {2, 3, 4} and ai ∈ Γi, a2 is adjacent
to a3 if a2 ≤ a3, a2 is adjacent to a4 if [a2, a4] = 1 and a3 is adjacent to a4 if
a4 normalizes a3. Let Λ the left cosets of U in M . We make Λ into a graph by
stipulating that x, y ∈ Λ are adjacent if and only if Mx∩My ∼ 34.Mat10. Thus
Λ is the graph, discovered by McLaughlin, which admits M as a primitive rank
3 permutation group and has parameters k = 112, l = 162, λ = 30 and µ = 56
[McL]. Finally we let ∆ be the set of cyclic subgroups of order 5 which are not
equal to F in NM (F ). We have gleaned much of the the information about the
subgroup structure of M from the Atlas [ATLAS] and [Fink].

Lemma 4.1 (a) A Sylow 3-subgroup of M contains a unique elementary
abelian subgroup, Q, of order 34.

(b) M operates transitively on Γi for each i ∈ {2, 3, 4}.
(c) NM (Q) operates naturally as Mat10 on Γ2 ∩Q which has order 10.

(d) Let x ∈ Γ2. Then Γ4∩NM (x) ⊂ O2,3(NM ′(x)) ∼ 31+4 : 2; in particular, if
z ∈ Γ4 ∩NM (x), then z normalizes all the Sylow 3-subgroups with centre
x.

Proof: Let S be a Sylow 3-subgroup of M . Then S contains an elementary
abelian subgroup Q of order 34 with normalizer 34 : (Mat10 × C2). Let Q1 be
a further elementary abelian subgroup of S of order 34. Then, as Mat10 does
not possess transvections when operating on a 4-dimensional GF(3)-space, we
have S = QQ1 and Z(S) ≥ Q1 ∩Q which has order 9. However, the centre of
S has order 3 and so we have a contradiction; no such Q1 exists. Hence (a)
holds and (c) follows from 2.5 (e) as NM (Q) ≥ S. Part (b) follows immediately
from (a) and the fact that the centres of a Sylow 2-subgroup of M and a Sylow
3-subgroup of M have orders 2 and 3 respectively. Suppose next that x ∈ Γ2
and let X = NM ′(x). Then X ∼ 31+4.2.Sym(5). Let K be a complement to
O3(X). Then K centralizes O2(K) := 〈z〉 ∈ Γ4 and so K ≤ CM ′(z) ∼= 2.Alt(8)
and normalizes a 3-cycle in the quotient Alt(8). Thus we deduce that all the
involutions of K/〈z〉 are products of exactly two transpositions. Each of these
involutions therefore lifts to an element of order 4 in K and so z is the unique
involution of K and the final part of the lemma holds.

14



Lemma 4.2 (a) The cliques of maximal size in Γ have three elements, any
clique in Γ lies in a clique of maximal size and M ′ acts transitively on the
set of cliques of maximal size.

(b) Let {a, b, c} be a maximal clique with a, b, c of type 2, 3, 4 respectively.
Then

(ba) Ma ∼ 31+4.4.Sym(5), Mb ∼ 34.(C2 ×Mat10) and Mc ∼ 2.Sym(8).
(bb) Mab ∼ 31+2+1.(C2 × 32.Q8), Mac ∼ 2.(Sym(3)× Sym(5)) and Mbc ∼

32.(C2 × SD16).
(bc) Mabc ∼ 2.(Sym(3)× C2 × Sym(3)).

(c) Let c ∈ Γ4. Then Mc acts transitively on (Γ4)c\{c} and, for d ∈ (Γ4)c\{c},
Mcd ∼ 2.21+2+2.Sym(3).

(d) Let c ∈ Γ4 and i ∈ {2, 3}. Then Γci = Γi(c). In particular, Mc acts
transitively on Γci .

Proof: Let S be a Sylow 3-subgroup of M and x = Z(S) ∈ Γ2. By 4.1 (a),
x is incident to a unique y ∈ Γ3 which is contained in S and by 4.1 (d) the
normalizer of S contains z ∈ Γ4 which normalizes y and centralizes x. Thus
{x, y, z} is a clique and, as the maximal size of a clique is three, {x, y, z} is a
maximal clique. Moreover, we have shown that any clique with an element of
type 2 and an element of type 3 is contained in a maximal clique with three
elements. If we have a clique {y, z} of type 3, 4, then z ≤ NM ′(y). By 4.1 (c),
NM ′(y) acts as Mat10 on Γ2 ∩ y and z induces a cycle of type 24. It follows
that z centralizes exactly two elements of Γ2 ∩ y. Thus {y, z} extends to a
clique with three elements. Now suppose that {x, z} is a clique of type 2, 4
with x = Z(S). Then 4.1 (d) indicates that z ≤ NM (S) and so 4.1 (a) implies
that there is a y ∈ Γ3 which is normalized by z and centralized by x. Thus
{x, z} also extends to a clique with three elements. This shows that all maximal
cliques have size three. Now suppose that {a, b, c} and {a1, b1, c1} are cliques
with a, a1 ∈ Γ2, b, b1 ∈ Γ3 and c, c1 ∈ Γ4. Without loss of generality we may
assume that b = b1. Then, as Mb operates transitively on the 10 elements of
type 2 in b we can conjugate a to a1 by an element which fixes b. Hence we
may assume a = a1. Now Mab ∼ 34.32(C2 × Q8) ∼ 34(2 ×Mat9) by 2.5 (e).
Hence, by 4.1 (d), and Sylow’s theorem, Mab operates transitively on Γ4 ∩Mab

and so M acts transitively on maximal cliques. We obtain part (ba) directly
from [ATLAS]. Also we have Mab ∼ 34.(C2×Mat9) ∼ 31+2+1.(C2×32.Q8) and
Mbc = CMb

(c) ∼ 32.(C2 × SD16). Additionally, as a projects to a 3-cycle in
Mc/c, Mac = NMc(a) ∼ 2.(Sym(3)×Sym(5)). Finally we calculate in 2.Sym(8)
that Mabc ∼ 2.(Sym(3)× Sym(3)× C2). Therefore, parts (bb) and (bc) hold.
Let c ∈ Γ4. Then Γc4 are the conjugates of c which lie in M ′c ∼ 2.Alt(8). As there
is a unique class of involutions in 2.Alt(8) (those corresponding to a product
of 4 commuting transpositions), we conclude that part (c) holds. Finally, part
(d) follows directly from the definition of incidence in Γ.
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Lemma 4.3 Suppose that t ∈ M \M ′ is an involution. Then CM (t) ∼= C2 ×
Mat11 and, for i = 2, 4, CM (t) acts transitively on Γti and has two orbits on
Γt3. Moreover, setting Ct = CM (t) we have

(a) If x ∈ Γt3, then either Mx ∩ Ct ∼ C2 × Mat10 and t inverts O3(x) or
Mx ∩ Ct ∼ C2 × 32 : SD16.

(b) If x ∈ Γt4, then Mx ∩ Ct ∼ 2.((Sym(2) |∧23) : Sym(3)).

Proof: That Ct = CM (t) ∼= C2×Mat11 can be read from the Atlas [ATLAS].
Since Mat11 contains a unique class of involutions, we see that Ct is transitive
on Γt4. Let x ∈ Γt2. Then x is inverted by t and there is a z ∈ Γt4 ∩ NM (x).
Thus 〈t, x〉 ≤ CM (z) ∼ 2.Sym(8). Since Ct contains no subgroup isomorphic
to 2.Alt(6), we see that t projects to an involution of cycle shape (2, 2, 2) in
CM (z)/〈z〉. It follows that CCM (z)(t) ∼ 2.((Sym(2) |∧23) : Sym(3)) which is
transitive on all the subgroups of order 3 which are normalized by t and gener-
ated by elements which project to 3-cycles in CM (z)/〈z〉. As Ct acts transitively
on Γt4, we conclude that Ct acts transitively on Γt2. Now suppose that x ∈ Γt3.
Then t is an involution in NM (x) ∼ 34 : (2 × Mat10) which is not in M ′.
Thus either t inverts O3(x) or t is a diagonal involution. In the former case
we have that K = Ct ∩NM (x) ∼ C2 ×Mat10 with O2(K) = 〈t〉. Since NM (x)
has a unique class of complements to O3(NM (x)) and Ct has a unique class of
subgroups isomorphic to C2 ×Mat10, we conclude that Ct acts transitively on
x ∈ Γt3 with O3(x) inverted. In the case that t is a diagonal involution in Mx,
we have Ct ∩Mx ∼ C2 × 32 : SD16. This subgroup is the normaliser in Ct of a
Sylow 3-subgroup and so is also unique up to conjugacy in Ct and once again
〈t〉 = O2(Ct ∩Mx). It follows that Ct acts transitively on Γt3 in this case as
well.

Lemma 4.4 Let a ∈ Γ2. Then Ma has five orbits on Γ2, Xi(a), 0 ≤ i ≤ 4.
Moreover, the orbits and some of their properties may be described as follows:

(a) X0(a) = {a}.
(b) If b ∈ X1(a), then [a, b] = 1, Mab ∼ 34.(C2×Q8) and there exists a unique

c ∈ Γ3(a) ∩ Γ3(b).

(c) If b ∈ X2(a), then 〈a, b〉 ∼ 2.Alt(4), Mab ∼ 4.Sym(4) and |X1(a) ∩
X1(b)| = 4.

(d) If b ∈ X3(a), then 〈a, b〉 ∼ 2.Alt(5), Mab ∼ (Q8 × C3).2 and |X1(a) ∩
X1(b)| = 1.

(e) If b ∈ X4(a), then 〈a, b〉 ∼ 51+2.3, Mab ∼ D10 and X1(a) ∩X1(b) = ∅.

Proof: Let t be an involution in M ′ (so an element of Γ4). Then CM (t) ∼
2.Sym(8) and a group of order three in CM (t) is in Γ2 if and only if it projects to
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a 3-cycle in Sym(8). Furthermore, as alluded to in the description of F above,
we can find elements from Γ2 in CM (F ). Thus we see that two elements from
Γ2 may generate the groups indicated in parts (b)-(e) of the lemma. Hence
Ma has at least 5 orbits on Γ2. We next determine the stabilisers of these
configurations. Assume that a, b ∈ Γ2 with a 6= b and suppose that c ∈ Γ3
and 〈a, b〉 ≤ c. Then, by 4.1 (c), Mab ∼ 34 : (C2 × Q8) and c = O3(Mab). In
particular, Γ3(a) ∩ Γ3(b) = {c}.

In the cases when 〈a, b〉 = 2.Alt(4) or 2.Alt(5), Mab centralizes the central
involution of 〈a, b〉 and we may therefore calculate in 2.Sym(8) to find the
structure of Mab. Finally, in case (e), we have Mab ≤ L ∼ 51+2.3.8.2, from
which we calculate Mab

∼= D10. Thus we have the orders of each Xi(a). Since
|Γ2| = 15400 =

∑4
i=0 |Xi(a)|, we deduce that {Xi(a) | 0 ≤ i ≤ 4} is the set of

orbits of Ma on Γ2. Observing that X1(a) ∩ X1(b) = (Mab ∩ Γ2) \ {a, b} now
completes all the parts of the lemma.

Our next lemma helps us to recognize the orbits of Ma on Γ2 in terms of
the action of elements of Γ2 on Λ.

Lemma 4.5 (a) Every maximal clique in Λ has size 5 and is of the form Λa

for some a ∈ Γ2. Every clique of size three lies in a unique maximal clique
and every clique of size 2 lies in 10 maximal cliques.

(b) Let Φ be a maximal clique in Λ and x ∈ Λ \ Φ. Then x is adjacent to
exactly two elements of Φ.

(c) Suppose that a, b ∈ Γ2. Then

(ca) Λa = Λb if and only if a = b;
(cb) |Λa ∩ Λb| = 2 if and only if b ∈ X1(a);
(cc) |Λa ∩ Λb| = 1 if and only if b ∈ X2(a);
(cd) if Λa ∩ Λb = ∅ and there exists a clique of size four intersecting Λa

and Λb in sets of size two, then b ∈ X3(a); and
(ce) if Λa ∩Λb = ∅ and no clique of size four intersects Λa and Λb in sets

of size two, then b ∈ X4(a).

Proof: Let x ∈ Λ. Then from [McL] we know that Λ(x) consists of 112
vertices and for y ∈ Λ(x), |Λ(x) ∩ Λ(y)| = 30. Hence the induced subgraph
on Λ(x) is isomorphic to the graph on the singular 1-spaces in a 6-dimensional
non-degenerate orthogonal space of “−”-type over GF(3) in which two 1-spaces
are incident if and only if they are perpendicular. Since maximal cliques in the
graph Λ(x) have just 4 members, a maximal clique in Λ has exactly 5-vertices.
Furthermore, since every clique of size two in Λ(x) is contained in a unique
maximal clique in Λ(x) we have that every clique of size three is contained in
a unique maximal clique. Similarly, we have that every clique of size two is
contained in exactly ten maximal cliques.
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Since the elements of Γ2 ∩Mx fix a clique of size 4 in Λ(x), we have that
for a ∈ Γ2, Λa contains a clique Φ = {a} ∪ Λ(x)a of size 5. Assume that there
is a y ∈ Λa \ Φ. Then y 6∈ Λ(x). From the structure of Λ [McL], y is incident
to exactly 56 elements of Λ(x)a. Since 56 is not divisible by 3, y is incident to
some z ∈ Λ(x)a ⊂ Φ. But then |Λ(z)a| = 5, a contradiction. Using the fact
that for a, b ∈ Γ2 ∩ U , 〈a, b〉 ∼ 32 or 2.Alt(4) we deduce that the first three
statements in (c) are also true.

Let a, b ∈ Γ2 with Λa ∩ Λb = ∅. Note that X1(a) ∩X1(b) 6= ∅ if and only if
there exists a clique of size five, Λc intersecting Λa and Λb in sets of size two.
Thus, using 4.4 (e), the last two statements in (c) hold.

To prove (b) we note first that by (a), x is adjacent to at most two elements
of Φ. Let P be one of the ten sets of size two in Φ. Then P lies in 9 cliques of
size 5 different to Φ. Each of these cliques contains three elements not contained
in Φ. Hence we have found 10 · 9 · 3 = 270 distinct elements in Λ which are
adjacent to exactly two elements of Φ. Since |Λ \ Φ| = 275 − 5 = 270, (b) is
proved.

Recall that L = NM (F ) ∼ 51+2.3.8.2 and ∆ is the set of subgroups of O5(L)
of order 5 which are not equal to F .

Lemma 4.6 L has two orbits Ξ and Θ on Λ. Furthermore,

(a) |Ξ| = 125, Ξ =
⋃
d∈ΓF2

Λd and O5(L) acts regularly on Ξ; and

(b) |Θ| = 150, Θ =
⋃
e∈∆ Λe, O5(L) has 6 orbits of length 25 on Θ and

O5,2(L) has three orbits Λi(L), 1 ≤ i ≤ 3 each of length 50 on Θ.

Proof: Let E be a group of order five in U . Then, as L contains a Sylow 5-
subgroup of M , without loss of generality we may assume that E ≤ L. Notice
also that F does not fuse into U , and hence F operates semiregularly on Λ.
Since there are 6 choices for 〈E,F 〉 in O5(L) and L acts transitively on such
subgroups, it follows that O5(L) has a multiple of 6 orbits of length 25 on Λ and
the remaining orbits are regular. We conclude that O5(L) has one regular orbit
and 6 orbits of length 25; the latter orbits are all fused into a single orbit by L.
Hence L has two orbits on Λ. Let Ξ be the orbit of length 125 and Θ be the
orbit of length 150. Notice that

⋃
a∈ΓF2

Λa and
⋃
e∈∆ Λe are both L-invariant.

By 4.5 (c), for a, b ∈ ΓF2 , Λa∩Λb = ∅ and so
∣∣∣⋃a∈ΓF2

Λa
∣∣∣ = 5|ΓF2 | = 5 ·25 = 125.

Therefore, (a) holds. Since also
⋃
e∈∆ Λe is L-invariant and O5(L) is regular on

Ξ, we must have Θ =
⋃
e∈∆ Λe. Thus (b) also holds.

Remember that K ∼ U3(5).2 and that the Hoffman-Singleton graph H may
be constructed on the cosets K ′/A where A is any subgroup of K ′ isomorphic
to Alt(7) and two cosets x, y ∈ K ′/A are incident if and only if K ′xy ∼= Alt(6).
Note that, as F ≤ K, O5(L) ≤ K.
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Lemma 4.7 Let Ai, 1 ≤ i ≤ 3, be representatives for the three conjugacy
classes of subgroups isomorphic to Alt(7) in K ′ and let H be the Hoffman-
Singleton graph with vertex stabilisers the conjugates of A1. Then

(a) H has diameter 2, has no cycles of length less than five and K ′ acts
transitively on paths of length three and on cycles of length five.

(b) The orbits of A1 on H have lengths 1, 7 and 42 and the orbits of A2 and
A3 on H have lengths 15 and 35.

(c) (ca) O5(L) has two orbits L1 and L2 on H.
(cb) For i = 1, 2, F has five orbits Lik, 1 ≤ k ≤ 5 on Li. Each Lik is, as a

subgraph of H, a cycle of length five.
(cc) For a fixed i ∈ {1, 2} and for j, k ∈ {1, . . . , 5} with j 6= k, no two

elements of Lij and Lik are adjacent.

(cd) Let 1 ≤ j ≤ k ≤ 5. Then L1
j ∪ L2

k is a Petersen graph.

Proof: Part (a) is well-known and also easily verified. The first part of (b)
follows from (a) so to prove (b) it remains to determine the orbits of A2 and A3
on H. Note that A1 and A2 both contain a Sylow 3-subgroup and a Sylow 7-
subgroup of K ′. Hence, as no proper subgroup of Alt(7) contains both a Sylow
3-Subgroup and a Sylow 7-subgroup, there exist orbits of A2 on H (respectively
A3 on H) one which has length divisible by 3 and not by 7 and one which has
length divisible by 7 and not by 3. On the other hand, the Sylow 5-subgroups
of A1 and A2 are not conjugate in K ′ and so all orbits of A2 on H (respectively
A3 on H) have length divisible by 5. This gives (b).

Since |H| = 50, we see that O5(L) has 2 orbits L1 and L2 on H. So (ca)
holds. Let t be an involution in CK′(F ). Then O5(L)〈t〉 operates transitively
on H. Moreover, CK′(t) ∼ 2.Sym(5), CA1(t) ∼ 2.(Sym(3) × Sym(2)) and
CAlt(6)(t) ∼ 2.(Sym(2) × Sym(2)). Thus FixH(t) is a Petersen graph, and, as
F ≤ CK′(t), t fixes pointwise one F -orbit in L1 and one F -orbit in L2. As there
are exactly 25 involutions in O5(L)〈t〉 and no two involutions in O5(L)〈t〉 have
the same fixed points we deduce that (cb) and (cd) are true. Finally, since
the valency of every vertex is 7, and 7 neighbours to each vertex have been
accounted for in (cb) and (cd), we deduce that (cc) also holds.

Lemma 4.8 Suppose that H is a Hoffman-Singleton graph for K ′ and K is the
graph with vertices the edges of H and two vertices incident if and only if they
are the first and last edges of a path of length 3 in H.

(a) Every clique of size 2 in K is contained in 10 maximal cliques.

(b) Let Ψ be a maximal clique in K. Then either |Ψ| = 5 or |Ψ| = 3 and
there exists a cycle (a1, a2, a3, a4, a5, a6) of length 6 in H such that Ψ
corresponds to {(a1, a2), (a3, a4), (a5, a6)}.
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Proof: Suppose that c = {c1, c2} is a clique of size 2 in K. Then c corresponds
to a path of length 3 in H and, as such, by 4.7 (a), is unique up to conjugation.
Thus, by 4.7 (cb), we may suppose that c is a path of length 3 in L1

1. Now,
by 4.7 (cc), no element of c is incident to any other edge in L1 \ L1

1. Thus
any maximal clique containing c must be contained in P = L1

1 ∪ L2
k for some

k ∈ {1, . . . , 5}, which, by 4.7 (cd), is a Petersen graph. Calculation in P shows
that c is contained in exactly two maximal cliques: one of size 5 and one which
consists of every other edge in a cycle of length 6. Hence parts (a) and (b) hold.

Lemma 4.9 (a) On Λ, K has two orbits Λ0(K) and Λ1(K) of lengths 100
and 175 respectively. K ′ acts transitively on Λ1(K) and has two orbits of
length 50, Λ2(K) and Λ3(K), on Λ0(K).

(b) As a K-set Λ1(K) is isomorphic to the edges in a Hoffman-Singleton graph
H. Two such edges are adjacent in Λ1(K) if they are the first and the last
edge of some path of length three in H.

(c) Λ2(K) and Λ3(K) are Hoffman-Singleton graphs and as K ′-sets neither
isomorphic to each other nor to H.

(d) Λ1(K) = Ξ ∪ Λi(L) for some i ∈ {1, 2, 3}.
(e) Suppose that Ψ is a maximal clique in Λ. Then |Ψ ∩ Λ1(K)| = 1, 3 or 5.

Proof: It follows from 4.6 (a) and (b) that L∩K has orbits of length 125, 50
and 100 on Λ. As M = 〈L,K〉, K does not normalize the orbit of length 125.
Furthermore, since 275 does not divide |K|, K does not act transitively on Λ.
Also K does not have a subgroup of index 225 and so we deduce that the orbits
of K must have length 175 and 100. In particular, 4.6 implies that part (d)
holds. Since K has a unique conjugacy class of subgroups of index 175, Λ1(K)
is as a K-set isomorphic to the set of edges of a Hoffman-Singleton graph H.
Therefore, K ′ is transitive on Λ1(K). Moreover, K ′ has no subgroup of index
100 and hence K ′ has two orbits each of length 50 on Λ0(K). So part (a) holds.
Since elements of order five have at most five fixed points on Λ, Λ2(K),Λ3(K)
andH are as K ′-sets pairwise non-isomorphic. Let i ∈ {2, 3}. Then Λi(K) is, as
a graph, either isomorphic to the Hoffman-Singleton graph or its complement.
But the latter has cliques of size larger than five which is against 4.5 (a). So
(c) holds.

To prove the second statement of (b) let x, y be two distinct elements of
Λ1(K). Define δ(x, y) to be the minimal distance of a vertex of H on x (re-
member x corresponds to an edge of H) to a vertex of H on y. Assume now in
addition that x, y are adjacent in Λ. If δ(x, y) = 0, the seven edges on a vertex
would form a clique of size 7 in Λ, which is impossible as a maximal clique has
size 5. So assume that δ(x, y) = 2. We use the notation of 4.7 (c). Let xk be an
edge in L1

k and x0 some edge in L1
1 different from x1. Then {x1, x2, x3, x4, x5}
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and {x0, x2, x3, x4, x5} are cliques of size 5 in Λ which intersect in a clique of
size 4, a contradiction to 4.5 (a). Thus x and y are adjacent if and only if
δ(x, y) = 1 and so (b) holds.

Finally, suppose that Ψ is a maximal clique in Λ. As, by 4.5 (a), each clique
of size 2 in Λ is contained in exactly 10 maximal cliques and as a clique of
size 2 in Λ1(K) is contained in 10 maximal cliques of Λ1(K) by 4.8, we see
that Ψ ∩ Λ1(K) has size 0, 1, 3 or 5. Because, by (c), Λ0(K) is the union
of two Hoffman-Singleton graphs, 4.7 (a) implies that Ψ 6⊆ Λ0(K). Hence
|Ψ ∩ Λ1(K)| = 0 is impossible. Therefore, part (e) holds.

The next proposition is the ultimate aim of our preliminary calculations
within Aut(McL).

Proposition 4.10 Suppose that a ∈ Γ2. Then ΓF2 6⊆ X4(a).

Proof: We use the notation of 4.6 and 4.9. If there exists u ∈ Ξ ∩ Λa, then,
by 4.6 (a), there exists b ∈ ΓF2 with u ∈ Λb. Thus Λa ∩ Λb 6= ∅ and 4.5 (c)
implies that b 6∈ X4(a) and the proposition holds.

Therefore we may assume that Ξ∩Λa = ∅ and so 4.6 implies Λa ⊆ Θ. Choose
notation in accordance with 4.9 so that Λ1(K) = Ξ ∪ Λ1(L) and Λ0(K) =
Λ2(L) ∪ Λ3(L). Because Λa ∩ Θ = ∅, 4.5 (a) and 4.9 (e) imply that |Λa ∩
Λ1(L)| = |Λa ∩ Λ1(K)| = 1, 3 or 5. Conjugation by elements of L permutes
{Λi(L) | 1 ≤ i ≤ 3} and yields |Λa ∩ Λi(L)| = 1, 3 or 5 for all 1 ≤ i ≤ 3. Hence
Λa intersects one of the Λi(L) in a set of size 3 and the other 2 in sets of size
one. Without loss of generality we may assume that Λa ∩Λ1(L) = Λa ∩Λ1(K)
has size 3. Set Φ = Λa ∩ Λ1(L) and recall that, by 4.9 (b), Λ1(K) is the set
of edges of a Hoffman-Singleton graph H with two edges adjacent if they are
the ends of a path of length three in H. Moreover, the edges of H which lie in
L1 ∪ L2 correspond to the vertices of Λ1(L) and the vertices of Ξ correspond
to edges which join L1 to L2. As, by 4.5 (a), Φ is a maximal clique in Λ1(K),
4.8 (b) implies that Φ is every second edge on a cycle Π of length six in H. Let
Ψ consist of the three edges on Π which are not contained in Φ. Then Ψ is a
clique of size 3 in Λ. Let b ∈ Ψ. Then b is not adjacent to any of the elements
in Φ and so by 4.5 (b) is adjacent to both of the elements in Λa \ Φ. Hence
Ψ ∪ (Λa \ Φ) is a clique of size 5 and thus, by 4.5 (a), Ψ ∪ (Λa \ Φ) = Λc for
some c ∈ Γ2. Since Π is a closed path, an even number of edges of Π join L1

to L2. Thus, as Φ ∩ Ξ = ∅, |Ξ ∩ Ψ| = |Ξ ∩ Λc| = 2. Therefore, without loss of
generality we may assume that Ψ ∩ L1 = {e} and e ∈ X where X ⊆ L1 is an
F -orbit. Since Φ∩Ξ = ∅, we deduce from 4.7 (c) that the two edges of Φ which
are incident as edges in H to e also lie in X. Let Y ⊆ L2 be the F -orbit on H
which contains the remaining element of Φ and C be the clique corresponding
to the edges joining X to Y in the Petersen graph X ∪Y . Then C is an F -orbit
on Ξ and so C = Λb for some b ∈ ΓF2 . But then |Λb ∩Λc| ≥ 2 ≤ |Λc ∩Λa| which,
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by 4.5 (c), implies that c ∈ X1(a) ∩X1(b). Finally, 4.4, implies that b 6∈ X4(a)
and we conclude that ΓF2 6⊆ X4(a).

Lemma 4.11 (a) Let Φ be a maximal clique in Λ and c ∈ Λ \Φ. Then M ′cΦ
induces Sym(3)× Sym(2) on Φ.

(b) There exists a unique class of tuples (Φ, a, b, c), where Φ is a maximal
clique in Λ, a 6= b ∈ Φ and c is an element of Λ neither adjacent to a nor
to b.

(c) Let (Φ, a, b, c) be any tuple as in (b) and let {d, e} = Φ(c). Then M ′abc
∼=

Alt(6) and O3(Mde) ∩Mabc is a Sylow 3-subgroup of Mabc.

Proof: By 4.5 (b), c is incident to exactly two elements of Φ. Let {e, d} =
Φ(c). Put Q = O3(Mde) and let Ψ be the unique maximal clique in Λ con-
taining d,e and c. Then O3(MΦ) acts transitively on the nine maximal cliques
containing {a, b} but different from Φ. Also Q = Q ∩ O3(MΦ)(Q ∩ O3(MΨ))
and so, as Q preserves every clique containing {d, e}, O3(MΦ) acts transitively
on Ψ \ {d, e}. Hence we see that the pair (Φ, c) is unique up to conjugation
under M ′ and MΦc = MΦ{de}O3(MΦ). Thus (a) and (b) hold. Moreover,
|M ′abc ∩ Q| = 32 and M ′abcΦ ∼ 32.4. By (b), M ′abc acts transitively on the ten
maximal cliques containing a and b and so |M ′abc/M ′abcΦ| = 10. Thus M ′abc is a
subgroup of M ′ab of order 360 and so M ′abc ∼= Alt(6).

5 3.Aut(McL) and its 90-dimensional repre-
sentation over GF(5)
In this section we determine the Schur multiplier of McL, construct a unique
non-split group 3.Aut(G) and prove that it has a unique 90-dimensional repre-
sentation over GF(5).

Lemma 5.1 The following hold:

(i) The Schur multiplier of McL has order 3.

(ii) There exists a group G = 3.Aut(McL) and O3(G) is inverted by G.

Proof: Let M = Aut(McL), G = M ′ and m(G) = |H2(G,C∗)| be the order
of the Schur multiplier of G. Then, since |G| = 27 · 36 · 53 · 7 · 11, m(G) is
prime to 7 and 11 [Asch, 33.14]. Moreover, as the Schur multiplier of 2.Alt(8)
is trivial and the Schur multiplier of U3(5) is a 3-group, m(G) is a power of 3.
Suppose that G̃ is the universal covering group of G and let A = Z(G̃). We
shall show first that |A| ≤ 3. Recall that G and hence G̃ acts on the graph
Λ of Section 4. Let Φ, a, b, c, d, e be as in 4.11 and set Qab = O3(Gab). Since
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both Ga and Gab contain Sylow 3-subgroups of G, Gaschütz’ Theorem implies
that G̃a and G̃ab are also perfect central extensions. Since Gab does not fix a
symplectic form on Qab, we conclude that Q̃ab is abelian. In particular, 4.11
(c) implies that G̃abc has abelian Sylow 3-subgroups. Therefore, G̃abc splits
over A and is thus a complement to Q̃ab in G̃ab. Hence, as G̃ab is perfect, we
must have A ≤ [Q̃ab, G̃ab]. Since, by 2.5 (f), |H1(Gabc, Qab)| = 3, we conclude
that |A| ≤ 3 as claimed. To complete the lemma it only remains to prove that
m(G) ≥ 3. To achieve this we employ what Griess calls the stable cocycle
method [Gr]. Let B be a cyclic group of order 3 which is centralized by G and
inverted by M . We recall from [CE, p. 257] that a cocycle in H2(Ma, B) is
M -stable if the conjugation map cg : H2(Ma ∩Mg

a , B) → H2(Mg−1

a ∩Ma, B)
makes the triangular diagram made from the restriction maps H2(Ma, B) →
H2(Ma ∩Mg

a , B) and H2(Ma, B) → H2(Mg−1

a ∩Ma, B) commute. Clearly, it
suffices to check this for representatives of the double cosets of Ma in M . In
our special case we can choose x0, x1, x2 double Ma-coset representatives so
that x0 = 1, x1 ∈ Z(M{a,b}c)# and ax2 = c. Because Ma inverts B, we have
|H2(Ma, B)|3 = 3 from [ATLAS]. Let r be a non-trivial cocycle in |H2(Ma, B)|.
To show that r isM -stable it suffices to show that, for i ∈ {0, 1, 2}, the restricted
cocycle zi in H2(Ma∩Mxi

a , B) is (Ma∩Mxi
a )〈xi〉-stable. We continue to use the

notation of the first part of the lemma. Since Mabc
∼= Mat10 and Mabc inverts

B, H2(Mabc, B) = 0 [ATLAS]. Thus the restriction of r to Mabc is trivial. As
Mabc contains a Sylow 3-subgroup of Mac, z2 is trivial and so clearly M{a,c}-
stable. Next we recall that Mab = MabcQab, x1 centralizes Mabc and x1 inverts
Qab. But this clearly implies z1 is Mab〈x1〉-stable. We conclude that r is indeed
M -stable and so the lemma follows from [CE, Proposition 9.4].

Our next objective is

Theorem 5.2 Suppose that G ∼= 3.McL. Then G has a faithful irreducible
representation of degree 45 in characteristic 5.

For the proof of 5.2 we set H = 32
.U4(3) ( [ATLAS] notation), G = 3.McL

and let k denote the algebraic closure of the field with 5 elements. We follow
the Atlas [ATLAS] for conjugacy class names.

In Table 1 we give the faithful part of the ordinary character table of H =
32
.U4(3). The elements from classes 3B, 3C, 3D, 9A, 9B, 9C and 9D are not

listed as their character values are all zero. We also recall that b7 = −1+
√
−7

2

and b7∗∗ = 1+
√
−7

2 .
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1A 2A 3A 4A 4B 5A 6A 6B 6C 7A B** 8A 12A
36 4 9 4 0 1 1 -2 -2 1 1 0 1

451 -3 -9 1 1 0 3 0 0 b7 ** -1 1
452 -3 -9 1 1 0 3 0 0 ** b7 -1 1
126 14 -9 2 2 1 -1 2 2 0 0 0 -1
189 -3 27 5 1 -1 3 0 0 0 0 1 -1

3151 11 18 -1 -1 0 2 2 2 0 0 1 2
3152 -5 18 3 -1 0 -2 -2 4 0 0 -1 0
3153 -5 18 3 -1 0 -2 4 -2 0 0 -1 0
630 6 -45 2 -2 0 3 0 0 0 0 0 -1
720 16 18 0 0 0 -2 -2 -2 -1 -1 0 0
729 9 0 -3 1 -1 0 0 0 1 1 -1 0
756 -12 27 -4 0 1 3 0 0 0 0 0 -1
945 -15 -27 1 1 0 -3 0 0 0 0 1 1

Table 1: Ordinary faithful irreducible characters of 32
.U4(3)

Lemma 5.3 The faithful non-projective kH-modules form a unique block with
Brauer tree as follows:

36
◦ 36

189
◦ 153

756
◦ 603

729
◦ 126

126
◦.

Proof: All the character values in Table 1 which are divisible by 5 remain
irreducible when reduced modulo 5 and are projective. So they form blocks of
size 1. This leaves the five characters of degrees 36, 126, 189, 729 and 756. By
[HL, 2.1.5], these characters form a single block B. Furthermore, [HL, 2.1.22]
tells us that the node of highest degree is not an end node. Thus the node
labelled 756 is internal.

Since, by [HL, 2.1.5], two consequetive nodes correspond to a 5-modular
projective indecomposable module, the sum of the degrees at those nodes has
to be a multiple of 5. It follows that we have four possible Brauer trees for B.
On the other hand, from the ordinary character table of U4(3) [ATLAS], we see
that H has two non-faithful, irreducible, projective 5-modular representation of
degree 35, 351 and 352. Thus we may form the faithful, projective kH-module
351 ⊗ 36. Decomposing the corresponding complex character we have that

351 ⊗ 36 = 36 + 189 + 3153 + 720

and this establishes the existence of a projective 5-modular character of di-
mension 225. This now leaves two possible Brauer trees for B. The false tree
indicates that there should be a faithful irreducible kH-module of dimension
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1A 2A 3A 4A 4B 6A 6B 6C 7A B** 8A 12A
36 4 9 4 0 1 -2 -2 1 1 0 1

451 -3 -9 1 1 3 0 0 b7 ** -1 1
452 -3 -9 1 1 3 0 0 ** b7 -1 1
126 14 -9 2 2 -1 2 2 0 0 0 -1
153 -7 18 1 1 2 2 2 -1 -1 1 -2

3151 11 18 -1 -1 2 2 2 0 0 1 2
3152 -5 18 3 -1 -2 -2 4 0 0 -1 0
3153 -5 18 3 -1 -2 4 -2 0 0 -1 0
603 -5 9 -5 -1 1 -2 -2 1 1 -1 1
630 6 -45 2 -2 3 0 0 0 0 0 -1
720 16 18 0 0 -2 -2 -2 -1 -1 0 0
945 -15 -27 1 1 -3 0 0 0 0 1 1

Table 2: 5-modular faithful irreducible characters of 32
.U4(3)

27. This is immediately shown to be impossible by considering the subgroup
of shape H3 ∼ 31+4.Alt(6) of H. Indeed, this subgroup has orbits of length 36
and 45 on the maximal subgroups of O3(H3) which do not contain the centre
of H. This shows that the minimal conceivable dimension for a faithful kH-
module is 36. Hence the correct Brauer tree is the one described in the lemma.
Alternatively, consult [MATLAS].

As a consequence of 5.3 we obtain the faithful part of the 5-modular char-
acter table of 32

.U4(3). This is recorded in Table 2.

Lemma 5.4 (a) U4(3) has a unique faithful irreducible ordinary character of
degree less than 22. Partial information for this character is as follows:

1A 2A 3A 4A 4B 5A 6A 6B 6C 7A B** 8A 12A
21 5 -6 1 1 1 2 -1 -1 0 0 -1 -2

(b) McL has a unique irreducible ordinary character of degree 22. Partial
character information is as follows:
1A 2A 3A 3B 4A 5A 5B 6A 6B 7A B** 8A 12A
22 6 -5 4 2 -3 2 3 0 1 1 0 -1

(c) The character of degree 21 for U4(3) remains irreducible after reduction
modulo 5.

(d) The character of degree 22 for McL has composition factors 1 + 21 when
reduced modulo 5.
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Proof: (a) and (b) follow from the ordinary character table of U4(3) and McL
respectively (see [ATLAS]).

Let T be the subgroup of U4(3) of shape 24.Alt(6). Then, by considering
the eigenspaces of O2(T ) and noting that T acts transitively on the maximal
subgroups of O2(T ), we see that any faithful module for U4(3) in odd char-
acteristic has dimension at least 15. Hence either the 21-dimensional complex
representation remains irreducible when reduced modulo 5 or it has a trivial
composition factor. However, by [ATLAS], the multiplicity of the trivial mod-
ule for the 5′-subgroup C3 × Q8 (contained in 21+42.Sym(4)) on the 21-space
is

1
24

(21 + 5 + 2 · −6 + 6 · 1 + 2 · 2 + 12 · −2) = 0

and hence (c) holds. Alternatively consult [MATLAS].
For (d) we note that McL is the elementwise stabilizer of a triangle of type

223 in the Leech lattice, [CS, Table 10.4]. Hence McL stabilizes vectors a, b
such that (a, a) = (b, b) = 4 and (a + b, a + b) = 6. Thus (a, b) = −1, and
(a, a − b) = 5 and (b, a − b) = −5. Hence in Λ̄ = Λ/5Λ we see that McL acts
on the 21-space M = 〈ā, b̄〉⊥/〈a− b〉. By (c), U4(3) acts irreducibly on M and
so (d) holds.

Lemma 5.5 Partial information on the fusion of conjugacy classes for H in
G is as follows:
H 1A 2A 3A 4A 4B 5A 6A 6B 6C 7A B** 8A 12A
G 1A 2A 3A 4A 4A 5B 6A 6B 6B 7A B** 8A 12A

Proof: By 5.4 (a), McL has a character of degree 22. By 5.4 (b) this character
decomposes as 1+21 when restricted to U4(3). Comparing character values we
see that the fusion must be as claimed.

¿From the character table of 3.McL [ATLAS] we have:

Lemma 5.6 3.McL has (among others) the following faithful irreducible ordi-
nary characters:

1A 2A 3A 4A 5B 6A 6B 7A B** 8A 12A
1980 -36 9 4 0 9 0 -1 -1 0 1

23761 -24 -56 0 1 6 0 b7 ** 0 0
23762 -24 -56 0 1 6 0 ** b7 0 0
80192 -45 0 3 -1 0 0 -b7 ** -1 0
80191 -45 0 3 -1 0 0 ** -b7 -1 0

Lemma 5.7 Restricted to 32
.U4(3) we have
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(a) 1980 = 451 + 452 + 189 + 756 + 945.

(b) For i = 1, 2, 2376i = 45i + 630 + 756 + 945.

(c) For i = 1, 2, 45i is a summand of 8019i.

Proof: For (a) and (b) one verifies that character values on the right hand
side add up to the character values on the left. For (c) we claim that (45i, 8019i)
is positive. Indeed for all x not in 7A or 7B ∗ ∗, 45i(x) · 8019i(x−1) is a non-
negative integer. Furthermore b7 = 1

2(−1 +
√
−7) and so b7 · (−b7) has 3/2 as

it real part. Thus |32
.U4(3)| · (45i, 8019i) is the sum of positive integers.

We are now ready to begin our proof of 5.2. For i = 1, 2 we let λi be the
CG-module induced from the CH-module corresponding to the character 45i.
Similarly, let λ̂i be the kG-module induced from the kH-module corresponding
to the 5-modular character 4̂5i. More generally we will use “hats” to indicate
modules over k.

Lemma 5.8 For i = 1, 2 we have λi = 1980 + 2376i + 8019i.

Proof: By 5.7, we know that 1980, 2376i and 8019i are summands of λi.
Since λi has degree 45 · 275 = 12375 = 1980 + 2376 + 8019, the lemma holds.

Lemma 5.9 For i = 1, 2 we have λ̂i is a projective indecomposable kG-module.

Proof: Since 4̂5i is a projective kH-module, λ̂i is a projective kG-module.
Suppose that λ̂i is the sum of two proper projective kG-submodules ρ̂1 and ρ̂2.
As, for j = 1, 2, ρ̂j is projective, ρ̂j is the reduction of some CG-module ρj . By
5.8, ρ1 +ρ2 is the sum of three irreducibles, and so either ρ1 or ρ2 is irreducible.
But none of 1980, 2376 and 8019 is divisible by 125, which is a contradiction.
It follows that λ̂i is indecomposable.

Lemma 5.10 Restricted to 32
.U4(3),

(a) 1̂980 has the following composition factors:

{4̂51, 4̂52, 3̂6, 1̂53, 1̂53, 6̂03, 9̂45}; and

(b) for i = 1, 2, 2̂376i has the following composition factors:

{4̂5i, 1̂53, 6̂03, 6̂30, 9̂45}.

Proof: Use 5.7 and 5.3.

Let µ̂i be the unique irreducible quotient of λ̂i [Alp, Theorem 5.3]. Then, as
4̂5i is a summand of 1̂980 |H , 1̂980 is a quotient of λ̂i and consequently µ̂i is a

27



quotient of 1̂980. Hence every composition factor of µ̂i |H is also a composition
factor of 1̂980 |H and, using exactly the same argument, is a composition factor
of [2376i |H . From 5.10 we conclude that µ̂i |H= 4̂5i+ai · 1̂53 + bi · 6̂03 + ci · 9̂45,
for some {ai, bi, ci} ∈ {0, 1}. Since, by 5.5, 4A and 4B fuse in 3.McL the values
of µ̂i |H on 4A and 4B elements must agree. As the character values on 4A
and 4B elements agree on 4̂5i, 1̂53 and 9̂45 and do not agree on 6̂03, we have
bi = 0. Moreover, µ̂1 and µ̂2 are also both composition factors of 1̂980 and so
c1 + c2 ≤ 1. So we may assume without loss of generality that c1 = 0. Put

µ̂ = µ̂1.

Then we have demonstrated that either

µ̂ |H= 4̂51

or
µ̂ |H= 4̂51 ⊕ 1̂53.

In the first case µ̂ has degree 45 and 5.2 is proven. Therefore, we assume from
now on that

µ̂ |H= 4̂51 ⊕ 1̂53

and seek a contradiction.

Because we will now only be considering 5-modular modules, we drop the
“hats” which were used to distinguish between ordinary and 5-modular repre-
sentations. By 5.4 (c), kG has a (non-faithful) 21-dimensional representation.
Set

σ = 21⊗ µ.

Then σ is a faithful kG-module. We have

Lemma 5.11 σ |H= (153 \ (36⊕ 603) \ 153)⊕451⊕452⊕945⊕945⊕603. In
particular, as a kH-module, 21⊗ 451 is the projective cover of the 153.

Proof: Since 451 is projective, µ |H= 451 ⊕ 153. Hence we need to compute
the kH-modules 21⊗ 451 and 21⊗ 153. Their Brauer characters are:

1A 2A 3A 4A 4B 6A 6B 6C 7A B** 8A 12A
21⊗ 451 945 -15 54 1 1 6 0 0 0 0 1 -2
21⊗ 153 3213 -35 -108 1 1 4 -2 -2 0 0 -1 4

Now it is easy to verify that 21⊗ 451 has composition factors 36, 603 and 153
twice. Since 451 is projective, 21⊗451 is projective. Since 36 and 603 occur only
once in 21⊗ 451, their projective cover cannot be a summand of 21⊗ 451. By
5.3 the projective cover of 153 is 153\ (36⊕603)\153. Therefore 21⊗451 is the
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projective cover of 153. Finally we note that 21⊗ 153 has composition factors
451, 452, 945 twice and 603. All of these modules except 603 are projective
kH-modules and so 21⊗ 153 is completely reducible and 5.11 holds.

Let α be an outer automorphism of G normalizing H. Then for each kG-
module δ, we define δα to be the kG-module with G-action given by v · g =
vα(g). We will be concerned with the kG-modules δ∗α where ∗ as usual denotes
duality. Since there is a unique kG-module of dimension 21 we have 21∗α ∼= 21.
Moreover, the CH-module λ1 = 1980 + 23761 + 80191 is also invariant under
∗α. Thus ∗α fixes both µ and σ = 21⊗ µ. In particular, there exists a k-linear
isomorphism

β : σ → σ∗

such that
β(mg) = β(m)α(g)

for all m ∈ σ and all g ∈ G. For γ ≤ σ, set

γ̃ = {m ∈ σ|φ(m) = 0 for all φ ∈ β(γ)}.

Then, if γ is a kG-submodule of σ, we have γ̃ is a kG-submodule of σ and
σ/γ̃ ∼= γ∗α.

Let ρ be the unique kH-submodule of σ isomorphic to 451 and let δ be the
kG-submodule of σ spanned by ρ. Notice that, since ρ is unique in σ, any kG-
submodule of σ that contains a composition factor isomorphic to 451 contains δ.
Let ε be a maximal kG-submodule of δ. We claim that ε is unique and δ/ε ∼= µ.
First note that by the definition of δ, ρ does not lie in any proper kG-submodule
of δ. In particular, ρ 6≤ ε and so δ/ε is an irreducible kG-module which restricted
to H has (ρ+ε)/ε ∼= ρ ∼= 451 as a submodule. Therefore, δ/ε ∼= µ. Furthermore,
if τ is any proper kG-submodule of δ, then τ ≤ ε. For otherwise, since δ/ε is
irreducible, δ = τ + ε and so τ/(τ ∩ ε) ∼= (ε+ τ)/ε = δ/ε ∼= µ. This implies that
τ has a kH-composition factor isomorphic to 451. But then ρ ≤ τ , which is a
contradiction. Hence τ ≤ ε and ε is unique.

Since µ is ∗α-invariant and δ/ε ∼= µ, we have ε̃/δ̃ ∼= µ∗α ∼= µ. Therefore,
(ε̃/δ̃)|H has 451 as a composition factor. Hence ρ ≤ ε̃, ρ 6≤ δ̃ and δ ≤ ε̃. As ε̃/δ̃
is irreducible, we conclude that ε̃ = δ + δ̃ and δ/(δ ∩ δ̃) ∼= ε̃/δ̃ ∼= µ. Thus δ ∩ δ̃
is a maximal submodule of δ and so δ ∩ δ̃ = ε. So

ε̃/ε ∼= δ/ε⊕ δ̃/ε = (δ + δ̃)/ε ∼= µ⊕ δ̃/ε.

Recall that, by hypothesis, µ|H = 451⊕153. So, as 153 is ∗α-invariant, we have
153 is a composition factor of ε|H if and only if it is a composition factor of
(σ/ε̃)|H . Hence as, by 5.11, σ|H only has two composition factors isomorphic
to 153, we see that the composition factors isomorphic to 153 only appear in
ε̃/ε. But then 153 must occur as a composition factor of (δ̃/ε)|H . It follows
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that σ|H has a section isomorphic to the direct sum of two copies of 153. This
is the final straw, as by 5.11, σ|H contains no composition factor isomorphic to
153⊕ 153. This contradiction draws to a close the proof of 5.2.

Corollary 5.12 3.Aut(McL) has a faithful irreducible representation of degree
90 over GF(5).

Suppose now that G ∼= 3.Aut(McL) and let

G2 ∼ 31+1+4.4.Sym(5)

and
G3 ∼ 31+4.(C2 ×Mat10)

be subgroups of G with

G23 := G2 ∩G3 ∼ 31+1+2+1(C2 × 32.Q8) = 31+1+2+1(C2 ×Mat9)

Set Z = O3(G), Q2 = O3(G2) and Q3 = O3(G3). Now let (G2, G3) be the
abstract amalgam isomorphic to the amalgam just described in G.

Lemma 5.13 Any two faithful irreducible 90-dimensional GF(5)-modules for
the amalgam (G2, G3) are isomorphic. In particular, if φ is a faithful irre-
ducible representation of the amalgam (G2, G3) into GL90(5), then 〈Gφ2 , G

φ
3 〉 ∼=

3.Aut(McL).

Proof: Let V be any faithful irreducible 90-dimensional GF(5)-module for the
amalgam (G2, G3), and view V as a 45-dimensional semilinear representation
over GF(25). Note that both the normalizer of a Sylow 5-subgroup and a
Sylow 2-subgroup are maximal, 3′-subgroups of Mat10. It follows that G3 has
two orbits L and H of lengths 36 and 45 on the maximal subgroups of Q3
not containing Z. Since [V,Q3] is a direct sum of the centralizers in V of
the maximal subgroups of Q3 and Z fixes only 0 in V , we deduce that the
Wedderburn components for Q3 on V = [V,Q3] = [V, Z] are 1-dimensional and
are transitively permuted by G3. Moreover, if CV (H) 6= 0 for H maximal in
Q3, then H ∈ H and NG3(H) ∼ 35.(C2 × SD16).

Let X2 be the group of order three normal in G2 and different from Z and
A,B be the other two maximal subgroups of 〈X2, Z〉. Note that O2(G2)/Y ∼
31+4.2.Alt(5) and Q2/Y is extraspecial for each Y ∈ {Z,X2, A,B}. Further-
more, we know that V has an O2(G2)-invariant decomposition

V = CV (X2)⊕ CV (A)⊕ CV (B).
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Since G23 has orbits of length 9 and 36 on H, V decomposes as a G23-module
into a direct sum of irreducible modules Z4 and Z5 of dimensions 9 and 36
respectively. Since CV (A) has dimension at least 9, we have Z4 = CV (X2) and
Z5 = [V,X2]. In particular, Z4 and Z5 are also invariant under G2. Thus, by
2.6 and 2.7 (a), Z4 and Z5 are uniquely determined when restricted to O2(G2).

Suppose that H ∈ H and define V H = CV (H). So V H is 1-dimensional.
To complete the determination of V as a G3-module, we need to determine
the action of NG3(H) on V H . Let S∗ be a Sylow 2-subgroup of NG3(H) and
S = CS∗(Z). Then S ∼= SD16 and it suffices to determine CS(V H). For i = 2, 3,
let Ki = S ∩G′i and set K0 = Ω1(K2). Then K3 ∼= Q8, K2 ∼= C4 and K0 ∼= C2.
We clearly have S′ ≤ CS(V H). First, select H ∈ H such that X2 ≤ H. Then
V H ≤ CZ4(H ∩Q2) and so, by 2.7 (d), K2 centralizes V H . Thus S′K2 central-
izes V H and we know that S′K2 ∼= Q8. Thus CS(V H) ∼= Q8 or SD16. Next
choose H ∈ H so that X2 6≤ H. Then V H ≤ CZ5(H ∩ Q2) and, using 2.7 (d)
again, K0 inverts V H . Thus CS(V H) ∼= Q8. Therefore, V is uniquely deter-
mined as a G3-module. It particular, Z4 and Z5 are uniquely determined as
G23-modules and then, by 2.3 and 2.7, Z4 and Z5 are also uniquely determined
as G2-modules. Since EndGF(5)G2(V ) = EndGF(5)G23(V ), V is also uniquely de-
termined as module for the amalgam (G2, G3). Finally, as by 5.12, 3.Aut(McL)
has an irreducible representation of degree 90 over GF(5), the lemma holds.

6 Existence and Uniqueness of
Ly-amalgams
In this section we establish the existence and uniqueness of Ly-amalgams. The
proof of our next lemma is taken from [IM, Lemma 6.3].

Lemma 6.1 Let (M1,M2,M3) and (M∗1 ,M
∗
2 ,M

∗
3 ) be amalgams. Suppose that

1. (i) There exists L ≤ M123 such that L EM2, CM2(L) = 1 and for i ∈
{1, 3}, Mi2 = NMi(L).

(ii) There exists L∗ ≤ M∗123 such that L∗ EM∗2 , CM∗2 (L∗) = 1 and for
i ∈ {1, 3}, M∗i2 = NM∗i

(L∗).

2. For i ∈ {1, 3} there exist isomorphisms φi : Mi →M∗i such that φ1 |M13=
φ3 |M13, Mφi

13 = M∗13 and Lφi = L∗.

3. M2 = 〈M12,M23〉 and M∗2 = 〈M∗12,M
∗
23〉.

Then there exists an isomorphism φ2 : M2 → M∗2 such that for i ∈ {1, 3},
φ2 |M2i= φi |M2i and Mφ2

2i = M∗2i. In particular, (M1,M2,M3) and (M∗1 ,M
∗
2 ,M

∗
3 )

are isomorphic.

31



Proof: Let φ be the restriction of φ1 or φ3 to L. Then by assumption Lφ = L∗.
Define λ : M2 → Aut(L∗) by mλ : lφ → (lm)φ for all m ∈ M2 and l ∈ L.
Furthermore, define λ∗ : M∗2 → Aut(L∗) bymλ∗ : l→ lm for allm ∈M∗2 , l ∈ L∗.
Since CM2(L) = 1 = CM∗2 (L∗), λ and λ∗ are monomorphisms. Let i ∈ {1, 3}.
Then Mφi

i2 = NMi(L)φi = NM∗i
(L∗) = M∗i2. We claim that λ and φiλ∗ agree on

Mi2. Indeed let l ∈ L and m ∈Mi2. Then

mφiλ
∗

: lφ → (lφ)m
φi = (lφi)m

φi = (lm)φi = (lm)φ,

proving the claim. In particular,

Mλ
2 = 〈Mλ

12,M
λ
23〉 = 〈Mφ1λ∗

12 ,Mφ3λ∗

23 〉 = 〈M∗λ∗12 ,M∗λ
∗

23 〉 = M∗λ
∗

2 .

Set φ2=λλ∗−1. Then φ2 is an isomorphism between M2 and M∗2 which agrees
on M12 with φ1 and on M23 with φ3, completing the proof of the lemma.

We now recall the following definition from the introduction:

Definition 6.2 An amalgam of groups (M1,M2,M3) is called a Ly-amalgam
provided that

1. M1 ∼ 3.McL.2, M2 ∼ 36.23.Sym(5) and M3 ∼ 35.2.Mat11.

2. |M2 : M12| = 2, |M2 : M23| = 10 and |M3 : M13| = 11.

3. |M23 : M123| = 2.

4. No non-trivial subgroup of M123 is normal in M1, M2 and M3.

The next proposition establishes the existence of a Ly-amalgam of groups.

Proposition 6.3 There exists a Ly-amalgam of groups (M1,M2,M3) such that

(a) M1 ∼ 3.Aut(McL), M2 ∼ 32+4.8.Sym(5) and M3 ∼ 35 : (C2 ×Mat11).

(b) M12 ∼ 31+1+4.4.Sym(5), M13 ∼ 31+4.(C2 ×Mat10) and
M23 ∼ 32+2+1.(C2 × 32.SD16).

(c) M123 ∼ 31+1+2+1.(C2 × 32.Q8).

(d) M2 = M23M21.

Proof: By 5.1 there exists a unique group of shape 3.Aut(McL). Denote this
group by M1. By 2.5 (a), there is a unique group X of shape 35 : (C2×Mat11)
such that CX(O3(X)) = O3(X), O3(X) is an irreducible GF(3)Mat11-module
and C2×Mat10 inverts a cyclic subgroup in O3(X). Denote this group by M3.
Then both M1 and M3 contain subgroups of shape X ∼ 3(1+4):(C2 ×Mat10)
with O3(X) an indecomposable GF(3)Mat10-module (see 2.5 (d) and the proof
of Theorem 5.1). By 2.5 (f), a subgroup which has the shape of X is unique
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up to isomorphism. Hence we may arrange for M1 and M3 to intersect in a
common subgroup M13 of shape 3(1+4) : (C2 ×Mat10). Let S be a Sylow 3-
subgroup of M13, Z2 be the centre of S and set Z1 = O3(M1). So Z2 has order 9
and Z1 order 3. Let T ∈ Syl2(NM13(S)). Then T ∼= Q8×C2. Write T = A×B
where |A| = 2 and AO3(M3)/O3(M3) centralizes M3/O3(M3) and, without
loss of generality, B ∼= Q8 is a subgroup of O2(M3). Then, as M3/O3(M3)
operates irreducibly on O3(M3), A inverts every non-trivial element of Q3 and
hence of Z2. As Z(B) = B′ ≤ M ′13 ≤ M ′1 = CM1(Z1) and Z2 admits B,
CZ2(Z(B)) = Z2 and B operates on Z2 as a Klein four group. Thus, by 2.5
(g), there are distinct cyclic subgroups, B1 and B2, of order 4 in B such that
Z2 = CZ2(B1) × CZ2(B2). In particular, the third cyclic subgroup of order 4,
B3, in B inverts every element of Z2. Let b be a generator of B3 and a be an
element of order 2 in A. Then C = 〈ab〉 is of order 4 and centralizes Z2. Now
〈A,B3〉 ∼= C4 ×C2 inverts every element of Z2 while the other two over-groups
of C are quaternion and each centralizes a cyclic subgroup of Z2 . As there
are only two cyclic subgroups of order 4 in C4 × C2 we conclude that there is
a unique cyclic subgroup of order 4 in T which inverts Z2, namely B3.

We define
L = 〈BNM13 (S)

3 〉 = B3[B3, S] ≤M13.

Then, L ∼ 32+4.4 and CM1(L) = CM3(L) = 1. For i = 1, 3, and 13, de-
fine Mi2 = NMi(L). Then T ≤ M12 and T ≤ M23. Let X=NM1(Z2). As
CO3(L)(b2) = Z2, M12 ≤ X ∼ 32+4.4.Sym(5). Now since O2,3(X) inverts
Z1, O2,3(X) 6≤ M ′1. Hence, from the structure of McL, O2,3(X) also in-
verts Z2/Z1. Since Sp4(3) does not contain a subgroup 4.Alt(5), we see that
O2,3(X) inverts Z2. Thus O2,3(X) and L are equal. Hence M12 = X and
M12 ∼ 31+1+4.4.Sym(5). Because M23 ≥ NM13(S) and [NM3(S) : NM13(S)] = 2
the maximality of NM3(S) in M3 implies that

M23 = NM3(S) ∼ 32+2+1.(C2 × 32.SD16) ∼ 32+4.8.(Sym(3)× Sym(2)).

Finally we get

M123 = NM13(S) ∼ 32+2+1.(C2 × 32.Q8) ∼ 32+4.4.(Sym(3)× Sym(2)).

Since, for i ∈ {1, 3}, CMi(L) = 1, we identify Mi2 with their images in
Aut(L). Then M12∩M23 = M123. Let M2 be the subgroup of Aut(L) generated
by M12 and M23. We claim that M2 ∼ 32+4.8.Sym(5).

Let T ∈ Syl2(L) and D = CM2(T ). Then, as |T | = 4, we have |M2/DL| = 2,
by the Frattini Argument, and, as D centralizes the element of order 2 in T , the
Three Subgroup Lemma implies thatD acts faithfully onO3(L)/Z2. Thus, since
D centralizes T , D is isomorphic to a subgroup of GL2(9). Let Di = Mi2∩D for
i = 1, 3, 13. Then D1/T ∼= Alt(5), D3/T ∼= C2 × Sym(3) and D13/T ∼= Sym(3).
Since all the 2-elements centralizing an element of order three in GL2(9) are
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contained in Z(GL2(9)) we conclude that D3 = D13X where X centralizes
D1. Thus D = 〈D1, D2〉 = 〈D1, X〉 ∼ 8.Alt(5) and so M2 ∼ 32+4.8.Sym(5)
as claimed. Hence the amalgam (M1,M2,M3) is a Ly-amalgam of groups and
statements (a), (b) and (c) hold.

Theorem 6.4 Up to isomorphism, there is a unique Ly-amalgam of groups
(M1,M2,M3).

Proof: Let (M1,M2,M3) be any Ly-amalgam of groups and, for i = 1, 2, 3,
set Qi = O3(Mi). Because |M3/M13| = 11, we have M13 ∼ 35.(2 × Mat10).
Also, since elements of order five in McL are not centralized by a group of
order 34, M ′13/Q3, and hence also M ′3/Q3, acts faithfully on Q3. Thus, as
M3 operates non-trivially on Q3 and M3 possesses no 4-dimensional irreducible
GF(3)-modules, M3 operates irreducibly on Q3. Hence, by 2.5 (a), Q3 is the
unique irreducible GF(3)M ′3-module in which M13 ∩M ′3 stabilizes a 1-space.
In particular, 2.5 (c) implies that Q3 does not split over Q1 as an M13-module
and, by 2.5 (d), M13 ∩M ′3 inverts Q1. Thus M1 ∼ 3.Aut(McL). It follows
that CM13(Q3) = Q3 and therefore, M3/Q3 ∼= C2×Mat11 acts faithfully on Q3.
Thus M1 and M3 are unique up to isomorphism. Since the outer automorphism
group of M13 is trivial (the group 34 does not admit PGL2(9)), the pair of
groups (M1,M3) is unique up to isomorphism. As M12 ∼ 36.2x.Alt(5).2y with
x + y = 3, the structure of M1 implies M12 ∼ 31+1+4.4.Sym(5). Let L =
O3,2(M12). As M12 is normal in M2, L is normal in M2. Clearly M12 =
NM1(L). Since |M13/M123| = 10, M123 has a unique Sylow 3-subgroup S and
M123 = NM1(S). In particular, L ≤ M123 ≤ M3. Moreover, |M23/M123| = 2
implies that S EM23 and so M23 ∼ 32+2+1.(C2 × 32.SD16), M23 = NM3(L)
and M123 ∼ 31+1+2+1.(C2 × 32.Q8). The argument concluding the proof of 6.3
shows that M2 ∼ 32+4.8.Sym(5) and M2 = M12M23. Finally we apply 6.1 to
get that (M1,M2,M3) is unique up to isomorphism. This in conjunction with
6.3 gives the theorem.

We finish this section with a corollary to the proof of 6.3.

Corollary 6.5 Suppose that (M1,M2,M3) is a Ly-amalgam of groups and let
K∗ ∈ Syl2(M23). Then

(a) CM2(Z(Q2)) = O2(M2) = O2(M12).

(b) M2/O
2(M2) ∼= D8.

(c) CK∗Q2/Q2(O2(M2)/Q2) ∼= C8.

(d) O2,3(M2) ∼ 31+1+2+2.C8.
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7 Completions of Ly-amalgams
Throughout this section M is assumed to be a faithful completion of a Ly-
amalgam of groups (M1,M2,M3). We identify M1, M2 and M3 with their
images in M . For the moment let Γ = Γ(M ;M1,M2,M3) be the coset graph
of M1, M2 and M3 in M with two cosets incident if and only if they have non-
trivial intersection. Then M acts on Γ by right multiplication. For i = 1, 2
and 3 set Γi = M/Mi. Our goal is to determine all the orbits of M1 on Γ1. For
a, b ∈ Γ1 we write a on b if a and b are adjacent to a common vertex of type 2.
We denote the distance between a, b ∈ Γ1 in the graph (Γ1,on) by d(a, b). For
a ∈ Γ set

Qa = O3(Ma)

and
Za = Z(Qa).

We now assume that a ∈ Γ1 is a fixed vertex and change notation so that
Ma = M1. Then we set

X0(a) = {a}

and
X1(a) = {b ∈ Γ1 | a on b}.

A path a, b, c, . . . in Γ is said to be of type i − j − k . . . if a ∈ Γi, b ∈ Γj ,
c ∈ Γk, . . .. We freely use the information about the structure of M1, M2 and
M3 guaranteed by 6.4 and given in 6.3.

Notice that the for a ∈ Γ1, the results of Section 4 apply to describe the
action ofMa on Γi(a) for 2 ≤ i ≤ 4. Also note that if a on b and c ∈ Γ2(a)∩Γ2(b),
then {c} = Γ2(a) ∩ Γ2(b) and {a, b} = Γ1(c). So, if a on b, then Mab = Mabc ∼
32+4.4.Sym(5) has index 2 in Mc.

Lemma 7.1 There exist unique M -classes of paths of type 1−2−1 and 1−3−1
in Γ.

Proof: Because |M2 : M12| = 2, paths of type 1 − 2 − 1 are in one-to-one
correspondence with paths of type 1− 2. Thus there is a unique class of these
paths. That there is a unique class of paths of type 1− 3− 1 follows from the
2-transitivity of M3 on the cosets of M13.

Lemma 7.2 Suppose that b ∈ Γ2 and c ∈ Γ3(b). Then

(a) Γ1(b) ⊆ Γ1(c).

(b) if f ∈ Γ1(c) and Zf ≤ Qc ∩Qb, then f ∈ Γ1(b) and Zf ≤ Zb.
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Proof: By 6.3 (a) and (b), |Γ1(b)| = 2. Let {a, e} = Γ1(b). We may assume
that a ∈ Γ1(c). Since Mb = MbaMbc, by 6.3 (d), Mbc acts transitively on Γ1(b).
Therefore, e ∈ Γ1(c) and so (a) holds.

Now note that Mc acts three-transitively on Γ1(c) and Mcb is the stabiliser
of a set of two points under this action. Hence Mcb has an orbit of length 9
and an orbit of length 2 on Γ1(c), the latter is {a, e}. Suppose that f ∈ Γ1(c)
and Zf ∈ Qc ∩ Qb. Since 〈Za, Ze〉 = Zb ≤ Qc ∩ Qf , Mcf normalizes Qc ∩ Qf
and 〈ZMc

f 〉 = Qc, the action of Mcb now shows us that Zf ≤ Zb and f ∈ {a, e}
as claimed.

Lemma 7.3 There exist four M -classes of paths a, b, c, d, e of type 1− 2− 1−
2 − 1 in Γ. These classes are distinguished by the isomorphism type of the
subgroup of Mc generated by Za and Ze as follows:

〈Za, Ze〉 ∈ {32, 2.Alt(4), 2.Alt(5), 51+2.3}.

Moreover,

(a) If [Za, Ze] = 1, then e ∈ X1(a) and there exists a unique f ∈ Γ3(a) ∩
Γ3(c) ∩ Γ3(e).

(b) If 〈Za, Ze〉 ∼ 2.Alt(4), then Mae ∼ 2.Sym(7).

(c) If 〈Za, Ze〉 ∼ 2.Alt(5), then Mae ∼ 2.(C2 × Sym(6)).

(d) If 〈Za, Ze〉 ∼ 51+2.3, then Mace
∼= D30.

Proof: By 7.1 we may assume that the path a − b − c is fixed. We work
inside Mc. By 4.4, Mbc has four orbits on Γ2(c) \ {b} and since a vertex of
type 2 has only two neighbours of type 1, there exist exactly four paths of
type 1 − 2 − 1 − 2 − 1. Moreover, 4.4 (b), (c), (d) and (e) together show that
the four classes are distinguished by the isomorphism type of 〈Za, Ze〉Zc/Zc as
described.

Suppose that [Za, Ze] ≤ Zc. Then, by 4.4 (b), there exists a unique f ∈
Γ3(b) ∩ Γ3(c) ∩ Γ3(d). Then a, e ∈ Γ1(f) and the two transitivity of Mf on
Γ1(f) indicates that there is a h ∈ Γ2(f) with {a, e} = Γ1(h). So, by definition,
e ∈ X1(a) and (a) holds.

Notice that if 〈Za, Ze〉 is non-abelian, then, Za and Ze are conjugate in
〈Za, Ze〉.

Suppose that 〈Za, Ze〉Zc/Zc ∼ 2.Alt(i), i = 4, 5. Then 4.4 (c) and (d)
(allowing for the central 3 in Mc which is inverted) give Mace ∼ 2.(Sym(3) ×
Sym(4)) when i = 4 and Mace

∼= 2.(C2×Sym(3)×Sym(3)) when i = 5. Let t be
the involution in 〈Za, Ze〉. Then clearly Mae ≤ CMa(t) ∼ 6.Sym(8). Therefore
as Za ∩Mae = 1, Mae/〈t〉 is isomorphic to a subgroup of Sym(8).

We shall show that all the 3-cycles of Mae/〈t〉 are conjugate. So let r〈t〉/〈t〉
be such 3-cycle with |〈r〉| = 3. If 〈r, Zc〉Za/Za ∼= 2.Alt(4) or 2.Alt(5), 〈r〉 and Zc

36



are conjugate in 〈r, Zc〉 ≤Mae. So suppose that [Zc, r] = 1 and pick y ∈ X1(c)
with r ∈ Zy. Then y has distance at most two from a in (Γ1,on) and so, by (a),
a on y and as [Zy, Ze] = 1, the same argument yields y on e. Moreover, the path
(a, y, e) in (Γ1,on) is unique up to conjugacy in M and so conjugate to (a, c, e).
Hence y and c are conjugate in Mae. Thus Mae/〈t〉 contains a unique class of
3-cycles and the normalizer in Mae/〈t〉 of such 3-cycles is conjugate to Mace/〈t〉
and so is isomorphic to Sym(3) × Sym(4) if i = 4 and C2 × Sym(3) × Sym(3)
if i = 5. Furthermore, we note that Mae > Mace and 〈Za, Ze〉 ∩ Zc = 1, which
gives the first parts of (b) and (c).

If i = 4, this implies Mae ∼ 2.Sym(7) or Mae ∼ 2.(Sym(4)×Sym(4)).2. Let
x ∈ Γ2(c) be chosen so that 〈Za, Ze〉 normalizes Zx. Then NMx(〈Za, Ze〉) ∼
32.8.Sym(4) and so Mxae ∼ 32.8.2. Moreover, the elements of order eight
in Mxae centralizes Za while Mxae inverts Za. Therefore, we conclude that
MaxeZa/Za〈t〉 is a subgroup of Sym(8) = NMa(t)/Za〈t〉 of shape 32.D8 which
intersects Alt(8) in 32.C4. Now a subgroup of shape (Sym(4) × Sym(4)).2
has a unique conjugacy class of subgroups of shape 32.D8 and this class of
subgroups intersects Alt(8) in a subgroup of shape 32.(C2 × C2). Thus when
i = 4 we cannot have Mae ∼ 2.(Sym(4) × Sym(4)).2. Hence when i = 4 we
have Mae ∼ 2.Sym(7) and so (b) holds.

If i = 5, we calculate that Mae ∼ 2.(C2× Sym(6)) or Mae ∼ 2.(C2× 32.D8).
Let f ∈ X1(c) with Zf ≤ 〈Za, Ze〉 and 〈Za, Zf 〉 ∼ 2.Alt(4) ∼ 〈Ze, Zf 〉. Then,
by (b), Maf ∼ 2.Sym(7) ∼Mfe. Both of these group are in CMf

(t) ∼ 6.Sym(8)
and thus Mafe contains a subgroup 2.Alt(6). Therefore, Mae ∼ 2.(C2×Sym(6))
and so (c) holds.

Finally, if 〈Za, Ze〉Zc/Zc ∼ 51+2.3, then, 4.4 gives Mace
∼= D30 and, as Ze

and Zc are conjugate in 〈Za, Ze〉, (d) also holds.

Notice that 7.3 completely determines those vertices in (Γ1,on) at distance
2 from a. Moreover, in all but the case of a − b − c − d − e as in 7.3 (d), we
know Mae and thus the action of Ma on such paths. Define

X2(a) = {e ∈ Γ1 | d(a, e) = 2 and 〈Za, Ze〉 ∼ 2.Alt(4)},

X3(a) = {e ∈ Γ1 | d(a, e) = 2 and 〈Za, Ze〉 ∼ 2.Alt(5)}

and
X4(a) = {e ∈ Γ1 | d(a, e) = 2 and 〈Za, Ze〉 ∼ 51+2.3}.

Suppose that e ∈ X3(a), a− b− c− d− e is a path as in 7.3 joining a to e
and set Z = Z(〈Za, Ze〉). Note that Z ≤Ma. We define

H = 〈CMa(Z), Ze〉.
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Notice that, by 7.3, CMa(Z) operates transitively on the set

{f ∈ X3(a) | Z = Z(〈Za, Zf 〉)}.

Since we claim that any faithful completion of a Ly-amalgam of groups is a
group of Ly-type, the relevance of the next lemma is clear.

Lemma 7.4 We have H ∼= 2.Alt(11).

Proof: Let A = 〈Za, Ze〉. Then A/Z ∼= Alt(5). Furthermore, we have
CMa(Z)/Z ∼= Sym(3) |∧Sym(8). Since A ≤Mc, we have

NA(Za) ≤ NMc(Zb) = Mcb = Mab ≤Ma.

Therefore, as A 6≤Ma,

CMa(Z) ∩A = NA(Za) ∼ 3.4.

Suppose that f ∈ X1(c) with Zf ∈ Syl3(A), then from 7.3 we have

CMa(Z) ∩ CMf
(Z) =

{
2.Sym(7) 〈Za, Zf 〉 ∼ 2.Alt(4)
2.(C2 × Sym(6)) 〈Za, Zf 〉 = A

.

We now apply 3.3 with H/Z, A/Z, CMa(Z)/Z and 8, in place of M , A, LD and
n, to get H/Z ∼= Alt(11). Finally, because H ≥ CMa(Z) ∼= (2.Sym(8)) |∧Sym(3),
we conclude that H ∼= 2.Alt(11).

We now adjust our notation, if necessary, so that Z2 ≤ H and |Z3∩H| = 33.
So with this choice of H we have

CM1(Z(H)) ∼= Sym(3) |∧2.Sym(8),

CM2(Z(H)) ∼ 32.8.Sym(5)

and
CM3(Z(H)) ∼ 33.(C2 ×GL2(3)) ∼ 33(C2 × 2.Sym(4)).

We now extend Γ by adding vertices of type 4 corresponding to the cosets of
H in M . Thus for the rest of this section

Γ = Γ(M ;M1,M2,M3,H),

Γ4 = M/H and once again two vertices in Γ are incident if and only if the
cosets intersect non-trivially. Often we will denote H by M4. Observe that at
this stage we do not know the structure of Mj ∩ H for j ∈ {2, 3}, though we
do know that H ∩M1 = CM1(Z). For t ∈ Γ4, set Zt = Z(Mt) and let Ω(t) be a
set of size 11 admitting Mt/Zt naturally. Lastly, given d, e ∈ Γ4 we write d ? e
provided that Γ1(d) ∩ Γ1(e) 6= ∅ and [Zd, Ze] = 1.
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Lemma 7.5 Let b, a, c, d be a path of type 4−1−2−1 in Γ such that Zb ≤Mabcd.
Then c and d are adjacent to b in Γ.

Proof: Let t be an involution in M ′a. Then, as M ′a has a unique class of
involutions, there exists x ∈ Γ4(a) with t ∈ Zx. Since Max = CMa(t), x is
uniquely determined by a and t. As, by 4.1(d), M ′a ∩Mc also has a unique
class of involutions, we conclude that the path (b, a, c) and so also (b, a, c, d) is
unique up to conjugation. Since (M4,M1,M2) is a path like (b, a, c), we have
that c is adjacent to b.

Let y ∈ X3(a) with Zb = Z(〈Za, Zy〉). Then, by the construction of H,
〈Za, Zy〉 ≤Mb and so y is adjacent to b.

We note, by calculating in the centralizer of t in Ma, that there exists
u, v, w ∈ X1(a) fixed by t such that [Zu, Zw] = 1 and 〈Zu, Zv〉 ∼ 〈Zv, Zw〉 ∼
2.Alt(5). Select r ∈ Γ4(u) with t ∈ Zr. Then by the previous paragraph applied
to (u, v, r) in place of (a, y, b), r is adjacent to v. Applying the same trick once
more this time to (v, w, r) yields that r is adjacent to w. As (b, a, d) is conjugate
to (r, u, w), we conclude that d is adjacent to b.

We now clarify the structure of the edge stabilisers in Γ.

Lemma 7.6 Suppose that d ∈ Γ4 and {a, b, c, d} is a clique in Γ. Then, for
γ ∈ {a, b, c}, Mγd = CMγ (Zd). In particular, for i ∈ {1, 2, 3}, we have Mi∩H =
CMi(Z(H)).

Proof: Since {a, b, c} is a clique in Γ\Γ4, we may assume that a ∈ Γ1, b ∈ Γ2
and c ∈ Γ3. By the construction of H and 7.4 we have, CMa(Zd) = NMd

(Za)
and so Mda = CMa(Zd).

Let {a, x} = Γ1(b). By 7.5, x is incident to d and so there exists h ∈Md with
ah = x and xh = a. Thus h ∈ Mdb. Since [CMb

(Zd) : CMab
(Zd)] = 2 and h 6∈

CMab
(Zd), we have CMb

(Zd) = CMab
(Zd)〈h〉 ≤ Md and hence CMb

(Zd) = Mbd.
This in turn implies that CMc(Zd) = 〈CMac(Zd), CMbc

(Zd)〉 = 〈Macd,Mbcd〉 =
Mcd. Finally, as M1,M2,M3,H is a clique, we have the last statement of the
lemma as well.

Let d ∈ Γ4. Then Γ1(d) corresponds to subsets of Ω(d) of size 3, Γ2(d)
corresponds to partitions of subsets of Ω(d) of size 6 into two parts of size 3
and the elements of Γ3(e) to partitions of subsets of Ω(d) of size 9 into three
parts each of size 3. Incidence between elements of Γ(d) is then recognised by
symmetrized containment. The set {e ∈ Γ4 | d ∗ e} corresponds to partitions of
subsets of Ω of size 8 into four parts of size 2.

Proposition 7.7 Let d ∈ Γ4 and let Γd be the connected component of ΓZd,
the fixed points of Zd on Γ, containing d. Then Md = StabM (Γd). Moreover,
for every x ∈ Γd, Mxd = CMx(Zd).
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Proof: Let Λ = ΓZd . We follow the algorithm laid out in 2.2 so that we can
apply 2.1. Let {a, b, c, d} be a clique in Γ containing d with a ∈ Γ1, b ∈ Γ2 and
c ∈ Γ3. Then a, b, c are representatives for the orbits of Md on Γ(d). Moreover,
by 7.6, CMγd

(Zd) = Mγd for γ ∈ {a, b, c}. Let e ∈ Λ4(a) \ {d}. Since, by
assumption, Zd fixes e, [Ze, Zd] = 1 and so

Ze ≤ CMa(Zd) = Mad ≤Md.

In particular, by 4.2 (c) and (d), we have b, c, d, e is a complete set of representa-
tives for the orbits of Mad on Λ(a). Now, Zd is an involution in Me ∼ 2.Alt(11)
and so we know that the non-trivial element of Ze has cycle shape (2, 2, 2, 2)
when it acts on Ω(e). Thus Za corresponds to the unique 3-cycle in Me/Ze
centralized by Zd. Hence CMe(Zd) normalizes Za, and therefore

CMe(Zd) = CMae(Zd) = Made = Mde ∼ 2.(Sym(3) |∧23).Sym(4).

Observe that Mbd ∼ 32.8.Sym(5) acts transitively on Λ1(b) with representative
a and on Λ3(b)(= Γ3(b)) with representative c and that Λ4(b) = ∅. Next we
consider the action of Mcd on Λ(c). Now Mcd = CMc(Zd) ∼ (33.(2×2.Sym(4)))
and O3(Mcd) fixes every element of Γi(c) for i = 1, 2. Thus, for i = 1, 2, Mcd

operates as 2 × 2.Sym(4) on Λi(c). Since Zd acts with exactly 3 fixed points
and 4 pairs of interchanged elements on the 11 elements in Γ1(c), we infer that
Mcd is transitive on Λ1(c) (which has 3 elements and representative a) and has
two orbits on Λ2(c) one of length 3 and one of length 4. Furthermore, Mcd has
two orbits on Λ4(c) with representatives e and d. Let b and f be the respective
representatives for these last two orbits. Notice that Zd interchanges the two
elements of Γ1(f) and so Λ1(f) = ∅. Also, as Zd centralizes Zb and, by 7.2
(b), Zb 6≤ Qc ∩Qf , ZbQf/Qf = QcQf/Qf is centralized by Zd. It follows that
CMf

(Zd) normalizes QcQf and so CMf
(Zd) ≤Mfc. Therefore,

CMf
(Zd) ≤ CMc(Zd) ≤Md

and so
Mdf = Mdcf ∼ 33.(C2 × C2 × Sym(3)).

We will now investigate Λ(e). Choose notation such that on Ω(e), a corresponds
to [1, 2, 3] and Zd acts as 〈(4, 5)(6, 7)(8, 9)(10, 11)〉. Then we can identify the
image of CMe(Zd) in Me/Ze acting on Ω(e) with

〈(1, 2, 3), (1, 2)(5, 7)(4, 6)(8, 9), (6, 8, 10)(7, 9, 11), (4, 6)(5, 7)(8, 10)(9, 11)〉.

It is now straightforward to calculate that Mde(= CMe(Zd)) has four orbits on
Λ3(e) with representatives

c̃ ↔ [1, 2, 3 | 4, 6, 8 | 5, 7, 9]
g ↔ [1, 10, 11 | 4, 6, 8 | 5, 7, 9]
h ↔ [1, 10, 11 | 2, 4, 5 | 3, 6, 7]
i ↔ [1, 10, 11 | 2, 4, 5 | 3, 8, 9]
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where we remark that the last two orbits are fused under NMe(〈Zd, Ze〉). We
also calculate that Mde has one orbit on Λ1(e) \ {a} with representative

j ↔ [1, 10, 11]

(note that in this case Zd normalizes, but does not centralize, Zj) and two
orbits on Λ2(e) with representatives

f̃ ↔ [4, 6, 8 | 5, 7, 9]
k ↔ [1, 10, 11 | 2, 4, 5]

.

Recall that incidence of x, y ∈ Γ(e) is recognized in Ω(e) by one the objects
being a refinement of the other. Since c̃ is adjacent to a we may assume that
c = c̃ and noting that f̃ is adjacent to c̃ = c we may also assume that f = f̃ .
Because Zd inverts Zj , 4.3 gives us that

CMj (Zd) ∼= C2 ×Mat11.

By determining the stabilizer of j (which represents an orbit of length 12 under
Mde) in Mde we calculate

Mdej
∼= C2 ×Q8 : Sym(3) ∼= C2 ×GL2(3).

As Zd inverts Zj but not Qg, ZdQg/Qg is a diagonal involution in Mg/Qg ∼
Mat11 × C2 and so we deduce that

CMg(Zd) ∼ 32.(C2 ×GL2(3)).

Since we already know CMf
(Zd) = Mdf ≤ Md and g ∈ Λ3(f) is in an orbit of

length 3, we conclude that

Mdfg = CMg(Zd) ∩Mf ∼ C2 × 32.(C2 × Sym(3)).

Furthermore, as (using M3 is 3-transitive on its neighbours of type 1) Mfgj ∼
35(SD16 × C2),

Mdfgj ∼ C2 × 32.22.

In particular, we note Mdfgj 6≤Mdej and so, as Mdej is a maximal subgroup of
CMj (Zd),

CMj (Zd) = 〈Mdej ,Mdfgj〉 = Mdj ∼ C2 ×Mat11.

Since Zd inverts Zk, 6.5 (a) and (b) indicate that the non-trivial element z of
Zd is a square in Mk/Qk. It follows that z acts as an Alt(5)-type involution on
Γ3(k). Hence, |Λ3(k)| = 2 and so Λ3(k) = {h, i} (each adjacent to e). Now 2.5
(d) indicates that Zd inverts exactly one of Qh and Qi. We choose notation so
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that Zd inverts Qi. Thus CMi(Zd) ∼= C2×Mat11, Mdei = CMi(Zd)∩CMi(Ze) ∼=
C2 ×GL2(3), and Mdji = CMj (Zd) ∩Mi

∼= C2 ×Mat10 by 4.3 (a). Hence,

CMi(Zd) = 〈Mdei,Mdji〉 = Mdi ∼ C2 ×Mat11.

Furthermore, by 4.3 (a), Mdjg = CMj (Zd) ∩Mg = CMjg(Zd) ∼ C2 × 32.SD16
and so

CMg(Zd) = 〈Mdfg,Mdjg〉 = Mdg ∼ C2 × 32.GL2(3).

Also, because CMk
(Zd) ≤Mi,

CMk
(Zd) = Mdik = Mdk ∼ C2 × 32.SD16.

Finally, we claim that hr = g for some r ∈ Md. Indeed, by 4.3, such an r can
be found in Mdj .

Put F = {a, b, c, d, e, f, g, i, j, k}. We have demonstrated

(7.7.1) If x ∈ F , then CMx(Zd) = Mdx.

Also note that for x 6= y ∈ F having the same type, x, y are distinguished
by the action of Zd on Zx and Zy. Indeed, Zd centralizes Za but inverts Zj ; Zd
centralizes Zb, inverts Zk and neither centralizes nor inverts Zf ; Zd centralizes
a 33 in Zc, a 32 in Zg and inverts Zi; and Zd equals Zd but not Ze. Thus F is
a set of representatives of distinct orbits of Md on Γd.

We next show that if x ∈ F and y ∈ Λ(x), then y is Md-conjugate to an
element of F . We do this by using (7.7.1) to show that, for x ∈ F , there is
a set Ξ of representatives for the orbits of Mxd on Λ(x) with Ξ ⊂ F ∪ {h, kr}
where r ∈Mdj is the element that achieves hr = g. We find

Ξ =



{b, c, d, e} when x = a
{a, c, d} when x = b
{a, b, d, e, f} when x = c
{a, b, c} when x = d
{a, c, f, g, h, i, j, k} when x = e
{c, e, g} when x = f
{e, f, j, kr} when x = g
{e, j, k} when x = i
{e, g, k, i} when x = j
{e, h, i, j} when x = k

.

Indeed, for x ∈ {a, b, c, d, e}, the claim is transparent from our previous
discussion. Suppose that x = f . Then Mdf ∼ 32.(C2 × C2 × Sym(3)) which
acts transitively on Γ1(f), so that Λ1(f) = ∅. Now on Λ3(f), Mdf has orbits of
length 1, 3 and 6, the orbits of lengths 1 and 3 corresponding to the fixed points
of Zd with representatives c and g, respectively. Finally, we also have that Mdf
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acts transitively on Λ4(f) this time with representative e. Next assume that
x = g, then Mdg ∼ C2 × 32.GL2(3). Since GL2(3) has one class of non-central
involutions, Mdg operates transitively on Λ4(g) with representative e. Also
Λ1(g) has three members and Mdg acts transitively on these, the representative
is j. Finally Λ2(g) has two orbits under Mdg; one has representative f , the other
kr. Now assume that x = i. Then Mdi ∼ C2×Mat11, a complement to O3(Mi)
with Zd inverting O3(Mi). It follows that Λ1(i) = Γ1(i) and Λ2(i) = Γ2(i) both
of which admit Mdi transitively with representatives k and j. Furthermore, as
Mat11 has a unique class of involutions, Mdi is also transitive on Λ4(i). For
x = j we refer the reader to 4.3 to obtain representatives {e, j, k, i}. Finally we
assume that x = k. Then Mdk ∼ C2 × 32.SD16. Since the elements of Λ4(k)
correspond to involutions which invert O3(Mdk), we have a single class here
with representative e. The elements of Λ3(k) are h and k as discussed earlier
and, as Zd inverts Zk, Λ1(k) has order 2 and representative j.

Hence, we have shown that the hypothesis of 2.1 holds. Therefore, Γd =
FMd and Md = StabM (ΓD) ∩NM (Zd), as claimed.

Notice that one consequence of 7.7 is that for d ∈ Γ4, Md has exactly two
orbits on Γ1 ∩ Γd. One orbit consists of those elements a ∈ Γd of type 1
with [Zd, Za] = 1, the other those b ∈ Γd of type 1 with [Zd, Zb] = Zb and
Mdb ∼ C2×Mat11. We now incorporate this fact into our notation. Let d ∈ Γ4
and x ∈ Γd1 we write x † d if Zd inverts Zx. Thus we have d † x if and only if
x ∈ Γd \ Γ1(d). Another consequence of the proof of 7.7 is

Corollary 7.8 Suppose that d ∈ Γ4 and f ∈ Γ2∩Γd. If Zd neither inverts nor
centralizes Zf . Then there exists a unique c ∈ Γ3(d) ∩ Γ3(f).

Proof: This follows as Mdf = Mdcf for any c ∈ Γ3(d) ∩ Γ3(f).

Lemma 7.9 Let d ∈ Γ4 and x, y ∈ Γd1. Then d(x, y) ≤ 2.

Proof: If x, y ∈ Γ1(d), then, since Zx and Zy are generated by 3-cycles in
Md/Zd, there is a u ∈ Γ1(d) with x on u on y. Thus d(x, y) ≤ 2. Suppose that
x 6∈ Γ1(d) and y ∈ Γ1(d). Then Mxd

∼= C2 ×Mat11, acts 3-transitively on Ω(d)
and, in particular, Mxd acts transitively on Γ1(d). Hence we only need to show
that d(x, y) ≤ 2 for some x, y fulfilling the assumptions of the current case.
Pick e ∈ Γ4(y) with e ? d. We may suppose that the action of y and d on Ω(e)
are described as follows: y ↔ [1, 2, 3] and d ↔ [4, 5][6, 7][8, 9][10, 11]. Select
x̃ ∈ Γ1(e) with x̃ ↔ [1, 4, 5]. Then x̃ ∈ Γd1 \ Γ1(d) and d(x̃, y) = 2 and we are
done in this case.

Suppose finally that neither x nor y are adjacent to d. Then as there are
only two orbits of Md on Γd1, y ∈ {xMd}. Recall that permutation rank for Md

on {xMd} is that of Alt(11) on Mat11 is five (see [ATLAS]) and so there are
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exactly 5 distinct classes of triples (x, y, d) with the property that neither x nor
y is adjacent to d. Let a, b ∈ Γ1 with a on b. We now work in Mb. For 0 ≤ i ≤ 4,
let Yi(a) be the five distinct orbits of Mab on the neighbours of b in (Γ1,on)(see
4.4). Then for 0 ≤ i ≤ 4, select ci ∈ Yi(a). By 4.4, there exists di ∈ Γ4 with
di † b and Zdi ≤ Mabci . Then a † di † ci and we have found representatives for
all five classes of triples (x, y, d) with x † d † y and in each case d(x, y) = 2.

Lemma 7.10 Let b ∈ X4(a). Then Mab ∼ 51+2Sym(3) and |X1(a) ∩X1(b)| =
25. In particular, O5(Mab) acts transitively on X1(a)∩X1(b) and Z(O5(Mab))
fixes X1(a) ∩X1(c) pointwise.

Proof: Let c ∈ X1(a) ∩ X1(b) and put A = 〈Za, Zb〉. Then, by 7.3 (d),
A ∼ 51+2.3, C5 ∼= Z(A) ≤Mabc

∼= D30 and Mab ≤ NMa(Z(A)) ∼ 3.51+2.3.SD16.
Pick e ∈ Γ4 with e † a and Ze ≤ Mabc. Then e † b, Mabce = Ze and Mae ∼
C2 ×Mat11 ∼ Mbe. In particular, by orders, Mabe = Mae ∩Mbe 6= Ze = Mabce

and thus Mab 6= Mabc. Since Mabc = NMab
(Zc), the structure of Mabc and

NMa(Z(A)) imply that Mab ∼ 51+2.Sym(3), as required.

Suppose that b ∈ X4(a), put A = 〈Za, Zb〉 and define F = Z(A). Let
c ∈ X1(a)∩X1(b) and let f = Γ2(c)∩ Γ2(a). Notice that Mabc inverts both Za
and Zb. Pick d ∈ Γ4(a) so that Zd centralizes both Zf and F (so we can choose
Ma = M1, Md = H and Mf = M2). Then we have

NMd
(F ) ∼ 2.(5.4 |∧Sym(6))

NMa(F ) ∼ 3.51+2.3.SD16

and
NMad

(F ) = 6.(5× 3).4.

Define
R = 〈NMd

(F ), NMa(F )〉.

Also, just as in 7.10, fix e ∈ Γ4 with a † e, b † e, d ? e and so that Ze inverts
Zf . (So Ze is an involution in Mabc ∼ D30). Notice that Ze inverts F . Since
Zd ≤ CMa(F ) and acts fixed-point-freely on O5(CMa(F ))/F . Hence Zd fixes a
unique complement to O5(CMa(F ))/F in NMa(F )/F and so we infer that Zd
centralizes a unique group of order 32 in CMa(F ). In particular, c is the unique
member of X1(a) ∩X1(b) fixed by Zd.

We exploit this notation in the following lemma where we uncover the struc-
ture of the subgroup R of M .

Lemma 7.11 We have R ∼ 51+4.4.Sym(6) and for x ∈ {a, f, d, e}, NMx(F ) ≤
R.
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Proof: Set A = X1(c)F , A0 = O5(〈Zx | x ∈ A〉), B = X1(a)F , B0 = O5(〈Zx |
x ∈ B〉) and Y = {a, f, d, e}.

From the structure of NMa(F ) ∼ 3.51+2.3.SD16, we have |B| = 25. On
the other hand, we have both X1(a) ∩ X1(b) ⊆ B and |Xa(a) ∩ X1(b)| = 25
from 7.10. Thus B = X1(a) ∩ X1(b) and B corresponds to the set of Sylow
3-subgroups of Mab.

In particular, we have B0 = O5(Mab) is extraspecial of order 53 with centre
F and for x 6= y ∈ B we have x ∈ X4(y).

Similarly, as Za and Zb are both subgroups of Mc and centralize F , A ≤Mc

andA corresponds to the set of Sylow 3-subgroups of A. Therefore, A0 = O5(A)
is also extraspecial of order 53 with centre F . Because A0 centralizes B0 and
A0 ∩ B0 = Z(A0) = Z(B0) = F , A0B0 is extraspecial of order 55. Notice also
that, by 7.10, B0 operates transitively on B. Since A corresponds to the set of
Sylow 3-subgroups of A and B corresponds to the set of Sylow 3-subgroups of
Mab, we have A ⊆ X1(x) for all x ∈ B.

For each x ⊆ Y define Rx = Mx ∩ NM (F ). Then, by definition, R =
〈Rd, Ra〉. Since F ∈ Syl5(Mac) and Mac has index 2 in Mf the Frattini ar-
gument implies Mf = RfMac and so Rf acts non-trivially on Γ1(f) = {a, c}.
Therefore, the definitions of A and B imply that Rf interchanges A0 and B0
and so normalizes A0B0. Put R0 = A0B0Rf . Then, from 6.5 (i) and (ii) we get

(7.11.1) Rf ∼ 32.5.4.D8 and R0 ∼ 51+4.4.32.D8.

From the structure of 2.Alt(11), we get

(7.11.2) Rd ∼ 2.(5.4 |∧Sym(6)).

Our goal is to show that Rd normalizes A0B0 and R = A0B0Rd. Using 7.7
and 7.11.1, we get

Rfd = Mfd ∩NM (F ) = CRf (Zd) = Rf ∼ 32.4.5.D8.

In particular, Rf is a maximal subgroup of Rd.
We now investigate Re, so set R0e = CR0(Ze). Then, as Ze normalizes both

A0 and B0 we have

R0e = CA0(Ze)CB0(Ze)CRf (Ze).

Now, recalling that Ze inverts F , we have CA0(Ze) ∼ C5 ∼ CB0(Ze) and, as A0
and B0 commute, CA0(Ze)CB0(Ze) is an elementary abelian subgroup of order
25 which intersects F trivially. On the other hand, as Rf ≤ Rd and Ze ≤ Rf ,
CRf (Ze) can be calculated in Rd. We find that CRf (Ze) ∼ 24. Therefore,

R0e ∼ 52.24.
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In particular, R0e is a subgroup of the normalizer of a Sylow 5-subgroup of Me;
that is a subgroup of index 2 in a group of shape 2.(5 : 4 |∧5 : 4).2. Furthermore,
in Rd we compute

Rde=CRd(Ze) ∼ 4.23 and CRde(F ) = CRdef
∼= Q8.

We conclude that CRde(F ) is a Sylow 2-subgroup of CRe0(F ). Notice also
that as NM (F )/CM (F ) has order at most 4, we have Re = RdeCRe(F ) and
Re/CRe(F ) = 4. Furthermore, as Ze inverts F and so Ze 6≤ CM (F )∩Re. Hence
CRe(F ) splits over Ze. Recalling that CR0e(F ) ∼ 52 : Q8, it follows from the
structure of 2.Alt(11) that the overgroups in Me of RdeR0e are Me, 2.Alt(10),
or 2.(Alt(5) × Alt(5)) : 4 (using Re/CRe(F ) has order 4). Since CRe(F ) splits
over F , we conclude that Re is the normalizer of Sylow 5-subgroup in Me and
hence

(7.11.3) Re ∼ 52.25, R0e is a normal subgroup of Re of index 2 and Re =
CRde(F )R0e.

Let t ∈ CRde(F ) \R0. Then t2 ∈ R0e. In Rd we calculate that Rfd ∩Rtfd ∼
5.4.D8 and, by 7.11.3, R0e = Rt0e. In R0 we see that 〈Rfd ∩ Rtfd, R0e〉 ∼
51+4.4.D8 and thus A0B0 ≤ R0 ∩Rt0. It follows that A0B0 = O5(R0 ∩Rt0) and
so t normalizes A0B0. As Rd = 〈Rdf , t〉, Rd normalizes A0B0. Now for x ∈ Y
we have Rx = (Rx ∩ Rd)(Rx ∩ A0B0). Hence Rx ≤ A0B0Rd and so, by 7.11.2,
R = A0B0Rd ∼ 51+4.4.Sym(6) as claimed.

We continue with the notation of 7.11 in the next lemma.

Lemma 7.12 Let ΓR be the connected component of ΓF containing a. Then
R = StabM (ΓR).

Proof: Let X = {a, d, f}. Then by 7.11 NMx(F ) ≤ R for all x ∈ X. We
claim that X is a complete set of representatives for the orbits of R on ΓR. But
this is clear, as for all x ∈ X, X \{x} is a complete set of representatives for the
orbits of R∩Mx on Γ(x)F . Indeed, if x = a, then, as we saw in the first few lines
of 7.11, X1(a)∩X1(b) admits Ra transitively with representative c. Since each
element of X1(a)∩X1(b) determines a unique element of Γ2(a)F , Ra is transitive
on Γ2(a)F with representative f. Now Γ3(a)F is empty and Γ4(a)F corresponds
to the conjugates of Zd in Rf and so we have a single orbit with representative
d. As seen just before (7.11.1), Rf is transitive on Γ1(f)F with representative
a. Also Γ3(f)F = ∅ and Γ4(f)F = {d}. Finally, since the neighbours of type
1, 2 and 3 of d correspond to a subgroups or Md/Zd generated by a 3-cycle,
two commuting 3-cycles and 3 commuting 3-cycles respectively, we see that
Γ3(d)F = ∅ and Γ2(d)F and Γ1(d)F admit Rd transitively with representatives
a and f respectively.
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Hence we may apply 2.1 to obtain R = Stab(ΓR) ∩ NM (F ). Note that F
is the elementwise stabilizer of ΓR and so StabM (ΓR) ≤ NM (F ). Therefore, R
and StabM (ΓR) have the same orbits and stabilizers on ΓR. Thus, by a Frattini
argument, R = StabM (ΓR).

Lemma 7.13 Let x 6= y ∈ ΓR1 and put B = 〈Zx, Zy〉. Then either ZxO5(R) =
ZyO5(R) and y ∈ X4(x) or ZxO5(R) 6= ZyO5(R) and B ∼= BO5(R)/O5(R). In
particular, d(x, y) ≤ 2.

Proof: This follows from the structure of R as follows. Set R̄ = R/F and let
x ∈ ΓR1 . Then Zx maps to a 3-cycle in R/O5,2(R) and NR̄(Z̄x) ∼ 3×52.3.SD16.
Thus in R̄ there are 500 conjugates of Z̄x. Let C be a complement to O5(R̄)
which contains Z̄x. Since CO5(R̄)(Z̄x) ∼ 52, Z̄x is contained in exactly 25
complements. Let C1 be a further complement containing Z̄x and let t and t1
be the respective central involutions of C and C1. Suppose that y ∈ ΓR1 , x 6= y
and Z̄y ≤ C1 ∩ C. Put B = 〈Z̄x, Z̄y〉. Since B ≤ C, ZxO5(R) 6= ZyO5(R).
Thus BO5(R)/O5(R) ∼= C3×C3, 2.Alt(4) or 2.Alt(5). In any case B acts fixed-
point freely on O5(R̄). On the other hand B centralizes 〈t, t1〉 ∩ O5(R̄) ∼ C5,
a contradiction. Therefore, any two complements that contain Z̄x intersect
in a subgroup which normalizes Z̄x. So the complements which contain Z̄x
account for 19.25 + 1 conjugates of Z̄x. Moreover, in ZxO5(R) there are 25
conjugates of Z̄x. Thus we have accounted for all the conjugates of Z̄x and any
pair lie in ZxO5(R) and generate a group of shape 52.3 or live in a complement
and thus centralize an involution. In the latter case the distance between the
corresponding vertices is at most 2 by 7.9 while in the former case there is a
u ∈ ΓR1 for which Z̄u centralizes 〈Z̄x, Z̄y〉 and so y ∈ X4(x) and this completes
the proof.

Lemma 7.14 Suppose that e, f ∈ Γ4 with e ? f , d ∈ Γ1(f) and for 1 6= t ∈ Ze
assume that dt ∈ X2(d). Let T = 〈h ∈Mdef | h2 = 1〉. Then

(a) T ∼= D24.

(b) |Mdef : T | = 2;

(c) T has three orbits O1, O2 and O3 on Ω(b) of lengths 3, 4 and 4 respectively.
T induces Sym(3) on O1, and D8 on O2 and O3. The orbits O2 and O3
are not isomorphic as T -sets and O2 ∪ O3 is an orbit for Mdef .

Proof: We first compute the structure of T and Mdef inside Mf . Because
dt ∈ X2(d) we may choose notation such that in Ω(e),

d↔ [1, 2, 3] and e↔ [1, 2][3, 4][5, 6][7, 8].
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Then

Mdef/Zf ↔ 〈(9, 10, 11), (1, 2)(5, 7)(6, 8)(9, 10), (5, 6)(7, 8), (1, 2)(5, 6)〉

and so
T/Zf ↔ 〈(9, 10, 11), (1, 2)(5, 7)(6, 8)(9, 10), (56)(78)〉.

In particular T ∼= D24, |Mdef/T | = 2 and Mdef fuses the two classes of fours
groups in T . Let g ∈ Γ1(e) ∩ Γ1(f). Then Zg = O3(T ). Note also that
Ze 6≤Mdef and so Mdef operates faithfully on Ω(e). The statements about the
orbits of T on Ω(e) are now readily verified.

Proposition 7.15 We have d(x, y) ≤ 2 for all x, y ∈ Γ1.

Proof: Suppose that the statement is false. Then there is a pair a, d ∈ Γ1
with d(a, d) = 3. Let a, b, c, d be a path in (Γ1,on) connecting a and d. Then
c ∈ Xi(a) and b ∈ Xj(d) for some i, j ∈ {2, 3, 4}. We begin with

(7.15.1) Suppose that c ∈ X2(a). Let e ∈ Γ4(a) ∩ Γ4(c) and let 1 6= t ∈ Ze,
then dt 6∈ X1(d).

If dt ∈ X1(d), then, by 7.3 (a), there exists a unique f in Γ3(c) ∩ Γ3(d) ∩
Γ3(dt). By the uniqueness of f , e ∈ Γ4(f) and so |Γ1(f) ∩ Γ1(e)| = 3. As c ∈
X2(a) we see by calculating in Ω(e), that a on g for at least one g ∈ Γ1(f)∩Γ1(e).
But g on d and so d(a, d) ≤ 2, which is a contradiction.

(7.15.2) Suppose that f ∈ Γ4 and a ∈ Γf . Then Γ2(d) ∩ Γf = ∅.

Suppose that there exists g ∈ Γ2(d) and f ∈ Γ4 with a, g ∈ Γf . If Zf
centralizes or inverts Zg, then d ∈ Γf and d(a, d) ≤ 2 by 7.9. So assume
that Zf neither inverts nor centralizes Zg. Then, by 7.8, there exists a unique
h ∈ Γ3(f) ∩ Γ3(g). So |Γ1(f) ∩ Γ1(h)| = 3. Let i ∈ Γ1(f) ∩ Γ1(h). Then
i on d. Since a, i ∈ Γf , d(a, i) ≤ 2, by 7.9. Hence d(a, i) = 2. As Zf centralizes
Zi, the the three possible structures for 〈Za, Zi〉 indicate that a ∈ Γ1(f) and
a ∈ X2(i) ∪ X3(i). Let 1 6= t′ ∈ Zf . Then dt

′ ∈ X1(d). Hence 7.15.1 implies
that a ∈ X3(i) for each i ∈ Γ1(f) ∩ Γ1(h). But then using the shape of these
elements on Ω(f) we see that there is an involution t1 in Mfh inverting Qh and
centralizing Za. Let q ∈ Γ4 with Zq = 〈t1〉. Then a, d ∈ Γq and so 7.9 implies
that d(a, d) ≤ 2, a contradiction. Thus 7.15.2 holds.

(7.15.3) Up to changing the roles of a and d we may assume that c 6∈ X4(a).

Suppose that c ∈ X4(a) and set F = Z(〈Za, Zc〉). Then, by 7.10, X1(a) ∩
X1(c) has order 25 and is fixed pointwise by F . Now considering F as a
subgroup of Mc and applying 4.10 we see that X1(a) ∩X1(c) 6⊂ X4(d). Hence
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there exists b1 ∈ X1(a) ∩ X1(c) such that b1 6∈ X4(d) which is precisely what
we required.

By 7.15.3 we may assume that c ∈ X2(a) ∪ X3(a). Let e ∈ Γ4(a) ∩ Γ4(c)
and let 1 6= t ∈ Ze. We focus our attention on the path d, c, dt in (Γ,on).

(7.15.4) d 6= dt.

If d = dt, then a, d ∈ Γe and so d(a, d) ≤ 2 by 7.9. Thus d 6= dt.

(7.15.5) dt 6∈ X1(d).

Suppose that dt ∈ X1(d). Then there exists g ∈ Γ2(d)∩Γ2(dt) with g, a ∈ Γe,
this is against 7.15.2. Thus dt 6∈ X1(d).

(7.15.6) dt 6∈ X3(d).

Let f ∈ Γ4(c) ∩ Γ4(d) ∩ Γ4(dt). Then f ∗ e and calculating in Ω(f) shows
that it is impossible for dt ∈ X3(d).

(7.15.7) dt 6∈ X2(d).

Aiming for another contradiction we suppose that dt ∈ X2(d). Let f be in
Γ4(c) ∩ Γ4(d) ∩ Γ4(dt). Then f ? e. Using 7.14 we compute in Me that Medf

contains an involution s with [Za, Zsa] = 1. But this contradicts 7.15.2 applied
with the roles of a and d interchanged.

By 7.15.4 through 7.15.7, we have dt ∈ X4(d). Set T = Mcddt . Then, by 7.3
(d), T ∼= D30. Put F = O5(T ). Because t ∈M ′c and normalizes F , t centralizes
both F and Zc and hence also T . Therefore T ≤Me. Since a ∈ X2(c) ∪X3(c)
we see in Me acting on Ω(e), that either F fixes a or there exist involutions
s in T with [Za, Zsa] = 1. We then obtain contradictions via 7.13 and 7.15.2
(applied with the roles of a and d interchanged) respectively.

We now prove the main theorem of this section.

Theorem 7.16 Suppose that M is a faithful completion of a Ly-amalgam of
groups (M1,M2,M3). Then

(a) M1 has five orbits on M/M1. Moreover, the orbit stabilisers have shape
3.Aut(McL), 32+4.4.Sym(5), 2.Sym(7), 4.Sym(6) and 51+2.Sym(3).

(b) M has order 28 · 37 · 56 · 7 · 11 · 31 · 37 · 67.

(c) M has a unique class of involutions and CM (t) ∼= 2
.
Alt(11) for any invo-

lution t in M .
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(d) For i = 1, 2, 3 , Mi is a maximal 3-local subgroup of M .
(e) M has a subgroup F of order five with NM (F ) ∼ 51+4.4.Sym(6).
(f) M is a group of Ly-type.

Proof: Part (a) follows from 7.3 (a), (b) and (c), 7.10 and 7.15 and part (b)
is a direct consequence of (a). Let H be the subgroup of M found in 7.4. Then
H ∼= 2.Alt(11) and so, by (b), 1 6= t ∈ Z(H) is a 2-central involution. Since
H has a unique class of involution different from t and these involutions are
conjugate to t, M contains a unique class of involutions. If g ∈ ΓZ(H)

1 , then
7.15 implies that d(M1, g) ≤ 2 and so ΓZ(H)

1 is connected. Thus NM (ΓZ(H)
1 ) =

CM (t) = H by 7.7. Hence (c) holds. That M1 is a maximal subgroup follows
immediately from parts (a) and (b). As for Mi, i = 2, 3, Mi acts transitively
on the M -conjugates of Z1 in Qi and so by a Frattini argument NM (Qi) =
Mi(NM (Qi) ∩ NM (Z1)) = MiNM1(Qi) = Mi. Hence M2 and M3 are also
maximal 3-locals. Let F be the cyclic group of order 5 introduced just before
7.11. Then 7.15 shows that ΓF is connected and so (e) follows from 7.12.
Finally we come to part (f). If N is a normal subgroup of M and N ∩Mi = 1
for i = 1, 2, 3, then M/N is also a faithful completion of (M1,M2,M3). Since,
by (a), |M | = |M/N | we get N = 1. So suppose that Ni = M∩Mi 6= 1 for some
i ∈ {1, 2, 3} and fix i. It follows that Z1 ≤ Ni ≤ N . Thus Z2 = 〈ZM2

1 〉 ≤ N
and M ′1 = 〈ZM1

2 〉 ≤ N . Then M3 = 〈(M ′1 ∩M3)M3〉 ≤ N , M1 = M ′1M13 ≤ N
and M2 = M12M23 ≤ N . Thus N = M and M is simple. Finally (c) implies
that M is of Ly-type.

8 A Ly-amalgam in GL111(5)
In this section we show that there exists a Ly-amalgam of groups, (M1,M2,M3),
in GL111(5). This then establishes the existence of a faithful completion of a
Ly-amalgam of groups. Our calcuations depend on the details of the structure
of such an amalgam which is given in 6.3. Let F be the field with 5 elements.
The following notation is used to describe the action of the groups M1, M2
and M3 on the various modules as we build the 111-dimensional F -space. Let
K∗ ∈ Syl2(M23) and define

B = M123,

S = O3(B) and
K = K∗ ∩B.

Also, for i ∈ {1, 2, 3, 12, 13, 23}, we define

Ki = K ∩O2(Mi),
Qi = O3(Mi) and
Zi = Z(Qi).
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Recall that S ∈ Syl3(B). Finally we let K0 be the subgroup of K2 of order two,
for i = 2, 3, Di be the maximal subgroup of K satisfying [Di, O

2(Mi)] ≤ Qi,
and D∗2 be the maximal subgroup of K∗ with [D∗2, O

2(M2)] ≤ Q2.
In the following technical lemma we detail the structure of, and relationship

between, many of the subgroups that we have just introduced.

Lemma 8.1 (a) B = SK, M23 = SK∗ and M2 = O2(M2)K∗.

(b) K∗ ∼= C2 × SD16.

(c) K ∼= C2 ×Q8.

(d) K1 ∼= Q8 and K1 = CK(Q1).

(e) D3 ∼= C2.

(f) D2 ∼= C4 and D∗2 ∼= C8.

(g) K2 ∼= C4, K0 ∼= C2 and K2 = K12 = CK∗(Z(Q2)) ≤ K1.

(h) D2K2 ∼= C4 × C2 and D3 ≤ D2K2.

(i) K3 ∼= Q8 and K2 ∩K3 = K0.

(j) D2 ≤ K3 and D2 = K∗′.

(k) D∗2 6≤M ′3.

(l) CK∗∩M ′3(S/Q2) ∼= D8.

Proof: Parts (a), (b), (c), (e) and K3 ∼= Q8 follow from 6.3 and (f) follows
from 6.5. Since O2(M12) = O2(M2) = CM2(Z2), by 6.5 (a), and O2(M12)/Q2 ∼=
2.Alt(5), we have K2 = K12 = CK(Z2) and so (g) holds. As, by definition,
D2 centralizes K2, D2K2 is the unique normal subgroup of K∗ isomorphic to
C2 ×C4. In particular, K∗′ = D2K2 ∩K3 ∼= C4 and so, as D2K2 contains only
two cyclic groups of order 4, D2K2∩K3 ∈ {K2, D2}. Since, by 6.5 (b), M2 and
K∗ induce D8 on Z(Q2), K∗/K2 ∼= D8 and thus we infer that K2 6= K∗′. Hence
D2 = D2K2 ∩K3 = K∗′ and K2 ∩K3 = K0. So (h), (i) and (j) hold. It only
remains to prove (k) and (l). Let X be the unique conjugate of Z1 in Q3 fixed
by K∗. Then, by 2.5 (d), CM ′3(X) ∼ 35.Alt(6), Since Q3 = X(Q3 ∩ Q2), we
have S = XQ2. Therefore, CK∗∩M ′3(S/Q2) is a subgroup of 35.Alt(6) of order
8. This proves (l). Moreover, D∗2 also centralizes S/Q2 and so X. But by (f),
D∗2
∼= C8 and and so by (l) D∗2 6≤ M ′3. Thus (k) is also proven and the lemma

is complete.

Let 1 ≤ i, j ≤ 3 with i 6= j. If X is an FMi-module, then Rij(X) denotes
the restriction of X to Mij . If, on the other hand, W is an FMij-module,
then Ii(W ) = W ⊗FMij FMi denotes the FMi-module induced from W and
RB(W ) denotes the restriction of W to B. Finally, if U is an FB-module, then
Iij(U) = U ⊗FB FMij .
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In the ensuing construction Xt(i) will always denote an FMi-module, Wt(ij)
an FMij-module and Ut an FB-module. If G is a group, H ≤ G, U is an
FH-module and W is an FG-module we write U → W provided that U is
isomorphic to an FH-submodule of W restricted to FH. (We remark that in
all cases below the FH-submodule of W isomorphic to U will be unique).

Recall that Aut(McL) has two irreducible 21-dimensional representation
over F arising from the Leech-lattice modulo 5; they differ by the −1 repre-
sentation (see 5.4 (d)). For the moment let X1(1) be either of the irreducible
21-dimensional FM1/Q1-modules. So

(1) X1(1) is irreducible of dimension 21.

Put
W1(13) = CX1(1)(Q3) and W2(13) = [X1(1), Q3].

Then X1(1) = W1(13)⊕W2(13). By 2.5 (e), M13 has two orbits one of length
10 and one of length 30 on the maximal subgroups of Q3/Z1. Set Q∗3 = Q3D3.
Then, since Q∗3 inverts Q3, it follows that

(2) (a) W1(13) is 1-dimensional and W1(13)→ X1(1).

(b) W2(13) is irreducible of dimension 20 and W2(13)→ X1(1).

(c) W2(13) is, as an FQ∗3-module, the direct sum of ten 2-dimensional Wed-
derburn components.

The two 21-dimensional FM1-modules can be distinguished by the action
of D3 on W1(13). We choose X1(1) so that

(3) D3 inverts W1(13).

Set
U1 = RB(W1(13)).

Since B permutes the ten Wedderburn components for Q∗3 in W2(23) as Mat9,
it follows from (2) (c) that

(4) Restricted to B, W2(13) is the direct sum of irreducible modules U2 and
U3 of dimension 2 and 18 respectively.

Put
W1(12) = CX1(1)(Q2) and W2(12) = [X1(1), Q2].

Then W1(12) is 3-dimensional and, by 2.7, W2(12) is 18-dimensional. Since
X1(1) is irreducible, M ′12 does not normalize W1(13). Hence, as RB(W1(12)) =
U1 + U2, we conclude that W1(12) is irreducible as an M13-module. Because
Q2Q3 is contained in M ′13, CW1(12)(Q2Q3) = W1(13) and so (using facts about
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the 3-dimensional F (2.Alt(5))-module, which is in fact the irreducible con-
stituent of the degree 5 permutation module), K2 inverts W1(13). Now (3),
8.1 (h) and (j) imply that D2 centralizes W1(13) and hence, as W1(12) is ir-
reducible, D2 centralizes W1(12). Therefore, CM12(W1(12)) = Q2D2. Pulling
these facts together we have

(5) (a) Restricted to M12, X1(1) is the direct sum of irreducible modules
W1(12) and W2(12) of dimension 3 and 18 respectively.

(b) CM12(W1(12)) = Q2D2.

(c) CM12(W2(12)) = Q1.

(d) Restricted to B, W1(12) is isomorphic to the direct sum U1 and U2.

(e) Restricted to B, W2(12) is isomorphic to U3.

Since M2/Q2D2 ∼= Sym(5) × C2, there exists a unique FM2-module X1(2)
such that

(6) (a) X1(2) is irreducible of dimension 3.

(b) Restricted to M12, X1(2) is isomorphic to W1(12).

(c) D∗2 inverts X1(2) and CM2(X1(2)) = Q2D2.

We have
X1(2) = CX1(2)(S)⊕ [X1(2), S].

Put
W1(23) = CX1(2)(S) and W2(23) = [X1(2), S].

Then it is straightforward to verify

(7) (a) W2(23) is irreducible of dimension 2.

(b) Restricted to B, W2(23) is isomorphic to U2.

(c) Restricted to M23, X1(2) is isomorphic to the direct sum of W1(23) and
W2(23).

By 8.1 (j), D2 ≤ K3 ≤ M ′3. Thus D2 ≤ M13 ∩M ′3. Since D2 6≤ M ′1 whereas
M ′13 ≤ M ′1, we get D2M

′
13 = M13 ∩M ′3. Hence, by (5) (b), M13 ∩M ′3 cen-

tralizes W1(13). Let X1(3) be the 1-dimensional FM3-module X1(3) which is
centralized by M ′3 and inverted by M3. Then the restriction of X1(3) to M13 is
isomorphic to W1(13). Then as FB-modules R23(X1(3)) and W1(23) are both
isomorphic to U1. On the other hand as, by 8.1 (k), D∗2 6≤ M ′3, D∗2 inverts
both W1(23) and CX1(2)(S). Thus R23(X1(3)) and W1(23) are isomorphic as
FM23-modules. We have proved:
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(8) (a) X1(3) is 1-dimensional.

(b) Restricted to M13, X1(3) is isomorphic to W1(13).

(c) Restricted to M23, X1(3) is isomorphic to W1(23).

(d) Restricted to B, X1(3) is isomorphic to U1.

Put
X2(2) = I2(W2(12)).

Then X2(2) is 36-dimensional and when restricted to M12, X2(2) is the direct
sum of W2(12) and W3(12), where W3(12) is irreducible of dimension 18. As
Q1 centralizes W2(12) but not W3(12), W2(12) and W3(12) are not isomorphic.
Therefore, X2(2) is irreducible of dimension 36. Put

U4 = RB(W3(12)) and W3(23) = R23(X2(2)).

We have

(9) (a) W3(12) is irreducible of dimension 18 and is not isomorphic to W2(12)
as an FM12-module.

(b) X2(2) is irreducible of dimension 36.

(c) Restricted to M12, X2(2) is isomorphic to the direct sum of W2(12) and
W3(12).

(d) U4 is irreducible of dimension 18 and not isomorphic to U3.

(e) Restricted to B, W3(12) is isomorphic to U4.

(f) W3(23) ∼= I23(U3) is irreducible of dimension 36.

(g) Restricted to B, W3(23) is isomorphic to the direct sum of U3 and U4.

Let
X2(3) = I3(W2(23)).

Then X2(3) is 110-dimensional. Since M3 operates on M3/M23 as it does on
duads in the S(4,5,11)-Steiner system, following back through (7) and (2) c)
delivers

(10) (a) W2(23) is a Wedderburn component for Q3 on X2(3).

(b) X2(3) is irreducible of dimension 110.

By (2) b) and (4), we have W2(13) ∼= I13(U2) and U3 → W2(13). Thus
W2(13)→ X2(3) and so U3 → X2(3). Since, M3 acts on M3/M23 as it does on
duads in the Steiner system and since M3 permutes the Wedderburn compo-
nents in X2(3) as is permutes the cosets M3/M23, we can use (10) to calculate
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(11) (a) Restricted to M13, X2(3) is isomorphic to the direct sum of W2(13)
and W3(13) where W3(13) is irreducible of dimension 90 = 45 · 2.

(b) Restricted to M23, X2(3) is isomorphic to the direct sum of W2(23),
W3(23) and W4(23), where W4(23) is irreducible of dimension 72.

(c) Set U5 = RB(W4(23)). Then U5 is irreducible of dimension 72.

(d) RB(W3(13)) is the direct sum of U4 and U5.

(e) Restricted to B, X2(3) is isomorphic to the direct sum of U2, U3, U4 and
U5.

We now claim that there is a 72-dimensional FM2-module which when re-
stricted to M23 is isomorphic to W4(23). Let E1 and E2 be the two subgroups
of order three in Z2 not conjugate to Q1 in M2 and set R = O2(M2). Then,
by 6.5, R centralizes Z2 and so, in particular, normalizes both E1 and E2.
Now for i = 1, 2, we let Wi be the unique FR/Ei-module of dimension 36
and W = W1 ⊕ W2 (see 2.7). Then W is a faithful FR-module. Next let
R3 = R ∩ M3. We will show that W is isomorphic to W4(23) as an FR3-
module. Thus in GL72(F ) we may arrange that the images of M23 and R
intersect in a subgroup isomorphic to R3. Denote the images by M∗23, R∗ and
R∗3 respectively. Following the same methods as in the end of the proof of
6.4 we see that 〈R∗,M∗23〉 ∼= M2. Therefore, to prove our claim it suffices to
show that W and W4(23) are isomorphic as FR3-modules. Set Y = W4(23)
and, for i = 1, 2, set Yi = CY (Ei). Since W3(13) admits M13 faithfully,
0 = CW3(13)(Q1) = CU5(Q1) = CW4(23)(Q1). Thus Y = Y1 ⊕ Y2. Since both
Y1 and Y2 are FR3-modules, our claim will be proved when we show that, for
i = 1, 2, the FR3-modules Yi and Wi are isomorphic. It clearly suffices to show
Y1 and W1 are isomorphic.

Let E be the preimage of the complement to Z2/E1 in (Q2 ∩Q3)/E1 which
is normalized by K2 (so E = [Q2 ∩Q3,K2]E1/E1) and set WE = CW1(E) and
YE = CY1(E) and consider them as FNR3(E)-modules. From 2.7 and 2.6 we
have dimF WE = 4 = dimF YE . Note that the FR3-modules W1 and Y1 are
induced from the FNR3(E)-modules WE and YE respectively. Hence to show
that W1 is isomorphic to Y1 as an FR3-module it suffices to show that WE and
YE are isomorphic as NR3(E)-modules.

Note that NR3(E) = Q3K2 acts as Q3K2/E ∼ 32.C4 (by 8.1 (e)) on both
WE and YE . Now K2 normalizes Z2E and so, as K0 does not centralize Q3/E,
we see that K2 has an orbit of length 2 and two orbits of length 1 on the
maximal subgroups of Q3 which contain E. Since Z2 acts with out fixing any
non-zero vectors on both WE and YE , we conclude that

YE = CYE (A1)⊕ CYE (A2)
WE = CWE

(A1)⊕ CWE
(A2)

55



where A1 and A2 are the maximal subgroups of Q3 which contain E and are
interchanged byK2. Thus to conclude the proof that YE andWE are isomorphic
as FNR3(E)-modules it only remains to show that they are isomorphic as FK0-
modules. We will show that K0 in fact inverts both spaces. This follows directly
from 2.7 (d) for WE . Thus we concentrate on YE . Let t ∈ CK∗∩M ′3(S/Q2) be an
involution (see 8.1 (l)). Then, as t centralizes S/Q2, (4) and (7) (b) imply that
t either centralizes or inverts W2(23). On the other hand, by (8) and (6) (c), t
centralizes X1(3), but not X1(2). Thus we see that t inverts W2(23). Since t is
conjugate into K0 in M ′3, we see that CX2(3)(E) is not centralized by K0. Now,
as mentioned earlier, E is contained in exactly four maximal subgroups of Q3;
extend our notation above by denoting the other two maximal subgroups of Q3
which contain E by A3 and A4 and assume that A3 = EZ2. Then

CX2(3)(E) = CYE (A1)⊕ CYE (A2)⊕ CX2(3)(A3)⊕ CX2(3)(A4),

where each summand is 2-dimensional. Now we plainly have CX2(3)(A3) ∼=
W2(23) and CX2(3)(A4) ∼= CX2(2)(E) and these are both centralized by K0.
Since A1 and A2 are interchanged by K2 we know that K0 operates in the same
way on both CYE (A1) and CYE (A2). Therefore, K0 inverts YE as claimed. Thus
we have shown that there exists an FM2-module, X3(2), which satisfies

(12) X3(2) is irreducible of dimension 72 and is restricted to M23 isomorphic
to W4(23).

Let W4(12) = R12(X3(2)). Note that both W3(13) and W3(12) ⊕W4(12)
are, when restricted to B, isomorphic to U4 ⊕ U5. Thus taking G2 = M12,
G3 = M13 and G23 = M123, we can apply 5.13 to get an FM1-module X2(1) so
that

(13) (a) X2(1) is irreducible of dimension 90.

(b) Restricted to M13, X2(1) is isomorphic to W3(13).

(c) Restricted to M12, X2(1) isomorphic to the direct sum of W3(12) and
W4(12).

Let X be a 111-dimensional vector space over F . We are now able to
construct a completion of the Ly-amalgam in GL(X). Set H = GL(X) and
A = Inn(GL(X)). Then, by (1)-(13), for i = 1, 2, 3 there exist monomorphism
αi : Mi → H such that as an FMα1

1 -module X = X(1) = X1(1)⊕X2(1), as an
FMα2

2 -module X = X(2) = X1(2) ⊕X2(2) ⊕X3(2) and as an FMα3
3 -module

X = X(3) = X1(3) ⊕X2(3). Let {i, j} ⊂ {1, 2, 3}. Then using (1)-(13), X(i)
and X(j) are isomorphic as FMij-modules. Thus there exist a1, a2, a3 ∈ A such
that

α1|M13a2 = α3|M13 , α2|M12a3 = α1|M12 and α3|M12a1 = α2|M23 .
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Therefore, the assumptions of 2.4 are fulfilled. Set M∗12 = Mα1
12 , M∗23 = M

α3a
−1
2

23 ,
M∗13 = Mα1

13 , and B∗ = Bα1 . If N is one of B∗, M∗23,M
∗
13 and M∗12, then

X is the direct sum of pairwise non-isomorphic, absolutely irreducible FN -
modules and so CH(N) consists of exactly those linear transformations which
act as non-zero scalars on each of the irreducible FN -submodules. By 2.4 (b),
B∗ ≤ N and so for each choice of N , CA(N) ≤ CA(B∗). Since, on restriction
to Mij (respectively B), X is a direct sum of pairwise non-isomorphic FMij-
modules, it is now easy to verify that CA(B∗) has order 44 and that CA(B∗) =
CA(M∗23)CA(M∗13)CA(M∗12). Thus by 2.4 (a), 2.4 (a1) holds. Put M∗∗i = Mαibi

i .
Then by 2.4 (c) we get

Theorem 8.2 Suppose that X is a 111-dimensional vector space over F . Then
there exists a Ly-amalgam in GL(X).

Theorem 1.3 now follows by combining 6.4, 8.2 and 7.16.
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